VFMA

Vector Fused Multiply Accumulate multiplies corresponding elements of two vectors, and accumulates the results into the elements of the destination vector. The instruction does not round the result of the multiply before the accumulation.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be undefined, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support.

It has encodings from the following instruction sets: A32 ( A1 and A2 ) and T32 ( T1 and T2 ) .

A1

313029282726252423222120191817161514131211109876543210
111100100D0szVnVd1100NQM1Vm
op

Encoding for the 64-bit SIMD vector variant

Applies when (Q == 0)

VFMA{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

Encoding for the 128-bit SIMD vector variant

Applies when (Q == 1)

VFMA{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED; if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED; constant advsimd = TRUE; constant op1_neg = (op == '1'); constant integer esize = 32 >> UInt(sz); constant integer elements = 64 DIV esize; constant d = UInt(D:Vd); constant n = UInt(N:Vn); constant m = UInt(M:Vm); constant regs = if Q == '0' then 1 else 2;

A2

313029282726252423222120191817161514131211109876543210
!= 111111101D10VnVd10sizeN0M0Vm
condop

Encoding for the Half-precision scalar variant
(FEAT_FP16)

Applies when (size == 01)

VFMA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Encoding for the Single-precision scalar variant

Applies when (size == 10)

VFMA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Encoding for the Double-precision scalar variant

Applies when (size == 11)

VFMA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED; if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED; if size == '01' && cond != '1110' then UNPREDICTABLE; constant advsimd = FALSE; constant op1_neg = (op == '1'); constant integer esize = 8 << UInt(size); constant integer d = if size == '11' then UInt(D:Vd) else UInt(Vd:D); constant integer n = if size == '11' then UInt(N:Vn) else UInt(Vn:N); constant integer m = if size == '11' then UInt(M:Vm) else UInt(Vm:M); constant boolean floating_point = boolean UNKNOWN; constant integer regs = integer UNKNOWN; constant integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

T1

15141312111098765432101514131211109876543210
111011110D0szVnVd1100NQM1Vm
op

Encoding for the 64-bit SIMD vector variant

Applies when (Q == 0)

VFMA{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

Encoding for the 128-bit SIMD vector variant

Applies when (Q == 1)

VFMA{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED; if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED; if sz == '1' && InITBlock() then UNPREDICTABLE; constant advsimd = TRUE; constant op1_neg = (op == '1'); constant integer esize = 32 >> UInt(sz); constant integer elements = 64 DIV esize; constant d = UInt(D:Vd); constant n = UInt(N:Vn); constant m = UInt(M:Vm); constant regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

T2

15141312111098765432101514131211109876543210
111011101D10VnVd10sizeN0M0Vm
op

Encoding for the Half-precision scalar variant
(FEAT_FP16)

Applies when (size == 01)

VFMA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Encoding for the Single-precision scalar variant

Applies when (size == 10)

VFMA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Encoding for the Double-precision scalar variant

Applies when (size == 11)

VFMA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED; if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED; if size == '01' && InITBlock() then UNPREDICTABLE; constant advsimd = FALSE; constant op1_neg = (op == '1'); constant integer esize = 8 << UInt(size); constant integer d = if size == '11' then UInt(D:Vd) else UInt(Vd:D); constant integer n = if size == '11' then UInt(N:Vn) else UInt(Vn:N); constant integer m = if size == '11' then UInt(M:Vm) else UInt(Vm:M); constant boolean floating_point = boolean UNKNOWN; constant integer regs = integer UNKNOWN; constant integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

Assembler Symbols

<c>

For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding A2, T1 and T2: see Standard assembler syntax fields.

<q>

See Standard assembler syntax fields.

<dt>

Is the data type for the elements of the vectors, encoded in sz:

sz <dt>
0 F32
1 F16
<Qd>

Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn>

Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm>

Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd>

Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn>

Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm>

Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Sd>

Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn>

Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm>

Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation

if ConditionPassed() then EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd); if advsimd then // Advanced SIMD instruction constant FPCR_Type fpcr = StandardFPCR(); for r = 0 to regs-1 for e = 0 to elements-1 bits(esize) op1 = Elem[D[n+r],e,esize]; if op1_neg then op1 = FPNeg(op1, fpcr); Elem[D[d+r],e,esize] = FPMulAdd(Elem[D[d+r],e,esize], op1, Elem[D[m+r],e,esize], fpcr); else // VFP instruction constant FPCR_Type fpcr = EffectiveFPCR(); case esize of when 16 constant op16 = if op1_neg then FPNeg(H[n], fpcr) else H[n]; H[d] = FPMulAdd(H[d], op16, H[m], fpcr); when 32 constant op32 = if op1_neg then FPNeg(S[n], fpcr) else S[n]; S[d] = FPMulAdd(S[d], op32, S[m], fpcr); when 64 constant op64 = if op1_neg then FPNeg(D[n], fpcr) else D[n]; D[d] = FPMulAdd(D[d], op64, D[m], fpcr);


Internal version only: isa v01_32, pseudocode v2024-12_rel ; Build timestamp: 2024-12-16T10:54

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.