Vector Saturating Rounding Doubling Multiply Subtract Returning High Half. This instruction multiplies the vector elements of the first source SIMD&FP register with either the corresponding vector elements of the second source SIMD&FP register or the value of a vector element of the second source SIMD&FP register, without saturating the multiply results, doubles the results, and subtracts the most significant half of the final results from the vector elements of the destination SIMD&FP register. The results are rounded.
If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation occurs. For details see Pseudocode details of saturation.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be undefined, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 ( A1 and A2 ) and T32 ( T1 and T2 ) .
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | D | size | Vn | Vd | 1 | 1 | 0 | 0 | N | Q | M | 1 | Vm |
if !IsFeatureImplemented(FEAT_RDM) then UNDEFINED; if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED; if size == '00' || size == '11' then UNDEFINED; constant add = FALSE; constant scalar_form = FALSE; constant esize = 8 << UInt(size); constant elements = 64 DIV esize; constant d = UInt(D:Vd); constant n = UInt(N:Vn); constant m = UInt(M:Vm); constant regs = if Q == '0' then 1 else 2; constant integer index = integer UNKNOWN;
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
1 | 1 | 1 | 1 | 0 | 0 | 1 | Q | 1 | D | != 11 | Vn | Vd | 1 | 1 | 1 | 1 | N | 1 | M | 0 | Vm | ||||||||||
size |
if !IsFeatureImplemented(FEAT_RDM) then UNDEFINED; if size == '11' then SEE "Related encodings"; if size == '00' then UNDEFINED; if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED; constant add = FALSE; constant scalar_form = TRUE; constant d = UInt(D:Vd); constant n = UInt(N:Vn); constant regs = if Q == '0' then 1 else 2; constant integer esize = 8 << UInt(size); constant integer elements = 64 DIV esize; constant integer m = if size == '01' then UInt(Vm<2:0>) else UInt(Vm); constant integer index = if size == '01' then UInt(M:Vm<3>) else UInt(M);
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | D | size | Vn | Vd | 1 | 1 | 0 | 0 | N | Q | M | 1 | Vm |
if !IsFeatureImplemented(FEAT_RDM) then UNDEFINED; if InITBlock() then UNPREDICTABLE; if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED; if size == '00' || size == '11' then UNDEFINED; constant add = FALSE; constant scalar_form = FALSE; constant esize = 8 << UInt(size); constant elements = 64 DIV esize; constant d = UInt(D:Vd); constant n = UInt(N:Vn); constant m = UInt(M:Vm); constant regs = if Q == '0' then 1 else 2; constant integer index = integer UNKNOWN;
If InITBlock(), then one of the following behaviors must occur:
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
1 | 1 | 1 | Q | 1 | 1 | 1 | 1 | 1 | D | != 11 | Vn | Vd | 1 | 1 | 1 | 1 | N | 1 | M | 0 | Vm | ||||||||||
size |
if !IsFeatureImplemented(FEAT_RDM) then UNDEFINED; if InITBlock() then UNPREDICTABLE; if size == '11' then SEE "Related encodings"; if size == '00' then UNDEFINED; if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED; constant add = FALSE; constant scalar_form = TRUE; constant d = UInt(D:Vd); constant n = UInt(N:Vn); constant regs = if Q == '0' then 1 else 2; constant integer esize = 8 << UInt(size); constant integer elements = 64 DIV esize; constant integer m = if size == '01' then UInt(Vm<2:0>) else UInt(Vm); constant integer index = if size == '01' then UInt(M:Vm<3>) else UInt(M);
If InITBlock(), then one of the following behaviors must occur:
Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD data-processing for the A32 instruction set.
<q> |
<dt> |
Is the data type for the elements of the operands,
encoded in
|
<Qd> |
Is the 128-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd" field as <Qd>*2. |
<Qn> |
Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2. |
<Qm> |
Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2. |
<Dd> |
Is the 64-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd" field. |
<Dn> |
Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field. |
<Dm> |
Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field. |
EncodingSpecificOperations(); CheckAdvSIMDEnabled(); integer op2; constant boolean round = TRUE; if scalar_form then op2 = SInt(Elem[D[m],index,esize]); for r = 0 to regs-1 for e = 0 to elements-1 constant op1 = SInt(Elem[D[n+r],e,esize]); constant op3 = SInt(Elem[D[d+r],e,esize]) << esize; if !scalar_form then op2 = SInt(Elem[D[m+r],e,esize]); constant integer rdmlsh = RShr(op3 - 2*(op1*op2), esize, round); constant (result, sat) = SignedSatQ(rdmlsh, esize); Elem[D[d+r],e,esize] = result; if sat then FPSCR.QC = '1';
Internal version only: isa v01_32, pseudocode v2024-12_rel ; Build timestamp: 2024-12-16T10:54
Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.