The ICV_RPR characteristics are:
Indicates the Running priority of the virtual CPU interface.
AArch32 System register ICV_RPR performs the same function as AArch64 System register ICV_RPR_EL1.
This register is present only when EL1 is capable of using AArch32, FEAT_GICv3 is implemented and EL2 is implemented. Otherwise, direct accesses to ICV_RPR are UNDEFINED.
ICV_RPR is a 32-bit register.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
RES0 | Priority |
Reserved, RES0.
The current running priority on the virtual CPU interface. This is the group priority of the current active virtual interrupt.
The priority returned is the group priority as if the BPR for the current Exception level and Security state was set to the minimum value of BPR for the number of implemented priority bits.
If 8 bits of priority are implemented the group priority is bits[7:1] of the priority.
If there are no active interrupts on the virtual CPU interface, or all active interrupts have undergone a priority drop, the value returned is the Idle priority.
Software cannot determine the number of implemented priority bits from a read of this register.
Accesses to this register use the following encodings in the System register encoding space:
coproc | opc1 | CRn | CRm | opc2 |
---|---|---|---|---|
0b1111 | 0b000 | 0b1100 | 0b1011 | 0b011 |
if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then UNDEFINED; elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.<IRQ,FIQ> == '11' then UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TC == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TC == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then R[t] = ICV_RPR; elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then R[t] = ICV_RPR; elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FMO == '1' then R[t] = ICV_RPR; elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then R[t] = ICV_RPR; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x03); elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.<IRQ,FIQ> == '11' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch32.TakeMonitorTrapException(); else R[t] = ICC_RPR; elsif PSTATE.EL == EL2 then if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then UNDEFINED; elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.<IRQ,FIQ> == '11' then UNDEFINED; elsif ICC_HSRE.SRE == '0' then UNDEFINED; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x03); elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.<IRQ,FIQ> == '11' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch32.TakeMonitorTrapException(); else R[t] = ICC_RPR; elsif PSTATE.EL == EL3 then if ICC_MSRE.SRE == '0' then UNDEFINED; else R[t] = ICC_RPR;
04/07/2023 11:22; 1b994cb0b8c6d1ae5a9a15edbc8bd6ce3b5c7d68
Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.