The PMCCFILTR characteristics are:
Determines the modes in which the Cycle Counter, PMCCNTR, increments.
AArch32 System register PMCCFILTR bits [31:0] are architecturally mapped to AArch64 System register PMCCFILTR_EL0[31:0].
AArch32 System register PMCCFILTR bits [31:0] are architecturally mapped to External register PMU.PMCCFILTR_EL0[31:0].
This register is present only when AArch32 is supported and FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMCCFILTR are UNDEFINED.
PMCCFILTR is a 32-bit register.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
P | U | NSK | NSU | NSH | RES0 | RLU | RES0 |
Privileged filtering. Controls counting cycles in EL1 and, if EL3 is using AArch32, EL3.
P | Meaning |
---|---|
0b0 |
This mechanism has no effect on filtering of cycles. |
0b1 |
The PE does not count cycles in EL1 and, if EL3 is using AArch32, EL3. |
If Secure and Non-secure states are implemented, then counting cycles in Non-secure EL1 is further controlled by PMCCFILTR.NSK.
The reset behavior of this field is:
User filtering. Controls counting cycles in EL0.
U | Meaning |
---|---|
0b0 |
This mechanism has no effect on filtering of cycles. |
0b1 |
The PE does not count cycles in EL0. |
If Secure and Non-secure states are implemented, then counting cycles in Non-secure EL0 is further controlled by PMCCFILTR.NSU.
If FEAT_RME is implemented, then counting cycles in Realm EL0 is further controlled by PMCCFILTR.RLU.
The reset behavior of this field is:
Non-secure EL1 filtering. Controls counting cycles in Non-secure EL1. If PMCCFILTR.NSK is not equal to PMCCFILTR.P, then the PE does not count cycles in Non-secure EL1. Otherwise, this mechanism has no effect on filtering of cycles in Non-secure EL1.
NSK | Meaning |
---|---|
0b0 | When PMCCFILTR.P == 0, this mechanism has no effect on filtering of cycles. When PMCCFILTR.P == 1, the PE does not count cycles in Non-secure EL1. |
0b1 | When PMCCFILTR.P == 0, the PE does not count cycles in Non-secure EL1. When PMCCFILTR.P == 1, this mechanism has no effect on filtering of cycles. |
The reset behavior of this field is:
Reserved, RES0.
Non-secure EL0 filtering. Controls counting cycles in Non-secure EL0. If PMCCFILTR.NSU is not equal to PMCCFILTR.U, then the PE does not count cycles in Non-secure EL0. Otherwise, this mechanism has no effect on filtering of cycles in Non-secure EL0.
NSU | Meaning |
---|---|
0b0 | When PMCCFILTR.U == 0, this mechanism has no effect on filtering of cycles. When PMCCFILTR.U == 1, the PE does not count cycles in Non-secure EL0. |
0b1 | When PMCCFILTR.U == 0, the PE does not count cycles in Non-secure EL0. When PMCCFILTR.U == 1, this mechanism has no effect on filtering of cycles. |
The reset behavior of this field is:
Reserved, RES0.
EL2 filtering. Controls counting cycles in EL2.
NSH | Meaning |
---|---|
0b0 |
The PE does not count cycles in EL2. |
0b1 |
This mechanism has no effect on filtering of cycles. |
If EL3 is implemented and FEAT_SEL2 is implemented, then counting cycles in Secure EL2 is further controlled by PMCCFILTR.SH.
The reset behavior of this field is:
Reserved, RES0.
Reserved, RES0.
Realm EL0 filtering. Controls counting cycles in Realm EL0. If PMCCFILTR.RLU is not equal to PMCCFILTR.U, then the PE does not count cycles in Realm EL0. Otherwise, this mechanism has no effect on filtering of cycles in Realm EL0.
RLU | Meaning |
---|---|
0b0 | When PMCCFILTR.U == 0, this mechanism has no effect on filtering of cycles. When PMCCFILTR.U == 1, the PE does not count cycles in Realm EL0. |
0b1 | When PMCCFILTR.U == 0, the PE does not count cycles in Realm EL0. When PMCCFILTR.U == 1, this mechanism has no effect on filtering of cycles. |
The reset behavior of this field is:
Reserved, RES0.
Reserved, RES0.
PMCCFILTR can also be accessed by using PMXEVTYPER with PMSELR.SEL set to 0b11111.
Permitted reads and writes of PMCCFILTR are RAZ/WI if all of the following are true:
Permitted writes of PMCCFILTR are ignored if all of the following are true:
Accesses to this register use the following encodings in the System register encoding space:
coproc | opc1 | CRn | CRm | opc2 |
---|---|---|---|---|
0b1111 | 0b000 | 0b1110 | 0b1111 | 0b111 |
if PSTATE.EL == EL0 then if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then UNDEFINED; elsif !ELUsingAArch32(EL1) && (PMUSERENR_EL0.EN == '0' && (!IsFeatureImplemented(FEAT_PMUv3p9) || PMUSERENR_EL0.UEN == '0')) then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); else AArch64.AArch32SystemAccessTrap(EL1, 0x03); elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then AArch32.TakeHypTrapException(0x00); else UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCCFILTR_EL0 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then AArch32.TakeHypTrapException(0x03); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x03); else R[t] = PMCCFILTR; elsif PSTATE.EL == EL1 then if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then AArch32.TakeHypTrapException(0x03); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x03); else R[t] = PMCCFILTR; elsif PSTATE.EL == EL2 then if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then UNDEFINED; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x03); else R[t] = PMCCFILTR; elsif PSTATE.EL == EL3 then R[t] = PMCCFILTR;
coproc | opc1 | CRn | CRm | opc2 |
---|---|---|---|---|
0b1111 | 0b000 | 0b1110 | 0b1111 | 0b111 |
if PSTATE.EL == EL0 then if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then UNDEFINED; elsif !ELUsingAArch32(EL1) && (PMUSERENR_EL0.EN == '0' && (!IsFeatureImplemented(FEAT_PMUv3p9) || PMUSERENR_EL0.UEN == '0')) then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); else AArch64.AArch32SystemAccessTrap(EL1, 0x03); elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then AArch32.TakeHypTrapException(0x00); else UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMCCFILTR_EL0 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then AArch32.TakeHypTrapException(0x03); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x03); else PMCCFILTR = R[t]; elsif PSTATE.EL == EL1 then if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then AArch32.TakeHypTrapException(0x03); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x03); else PMCCFILTR = R[t]; elsif PSTATE.EL == EL2 then if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then UNDEFINED; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x03); else PMCCFILTR = R[t]; elsif PSTATE.EL == EL3 then PMCCFILTR = R[t];
04/07/2023 11:26; 1b994cb0b8c6d1ae5a9a15edbc8bd6ce3b5c7d68
Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.