MAIR_EL2, Memory Attribute Indirection Register (EL2)

The MAIR_EL2 characteristics are:

Purpose

Provides the memory attribute encodings corresponding to the possible AttrIndx values in a Long-descriptor format translation table entry for stage 1 translations at EL2.

Configuration

AArch64 System register MAIR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HMAIR0[31:0].

AArch64 System register MAIR_EL2 bits [63:32] are architecturally mapped to AArch32 System register HMAIR1[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

MAIR_EL2 is a 64-bit register.

Field descriptions

6362616059585756555453525150494847464544434241403938373635343332
313029282726252423222120191817161514131211109876543210
Attr7Attr6Attr5Attr4
Attr3Attr2Attr1Attr0

MAIR_EL2 is permitted to be cached in a TLB.

Attr<n>, bits [8n+7:8n], for n = 7 to 0

Memory Attribute encoding.

When FEAT_AIE is implemented and stage 1 Attributes Index Extension is enabled and AttrIndx[3] in a Long descriptor format translation table entry is 0, or when FEAT_AIE is not implemented, AttrIndx[2:0] gives the value of <n> in Attr<n>.

When FEAT_AIE is implemented and stage 1 Attributes Index Extension is enabled and AttrIndx[3] in a Long descriptor format translation table entry is 1, see MAIR2_ELx.Attr

Attr is encoded as follows:

AttrMeaning
0b0000dd00Device memory. See encoding of 'dd' for the type of Device memory.
0b0000dd01If FEAT_XS is implemented: Device memory with the XS attribute set to 0. See encoding of 'dd' for the type of Device memory. Otherwise, UNPREDICTABLE.
0b0000dd1xUNPREDICTABLE.
0booooiiii, (oooo != 0000 and iiii != 0000)Normal memory. See encoding of 'oooo' and 'iiii' for the type of Normal Memory.
0b01000000If FEAT_XS is implemented: Normal Inner Non-cacheable, Outer Non-cacheable memory with the XS attribute set to 0. Otherwise, UNPREDICTABLE.
0b10100000If FEAT_XS is implemented: Normal Inner Write-through Cacheable, Outer Write-through Cacheable, Read-Allocate, No-Write Allocate, Non-transient memory with the XS attribute set to 0. Otherwise, UNPREDICTABLE.
0b11110000If FEAT_MTE2 is implemented: Tagged Normal Inner Write-Back, Outer Write-Back, Read-Allocate, Write-Allocate Non-transient memory. Otherwise, UNPREDICTABLE.
0bxxxx0000, where xxxx != 0000 and xxxx != 0100 and xxxx != 1010 and xxxx != 1111UNPREDICTABLE.

'dd' is encoded as follows:

ddMeaning
0b00Device-nGnRnE memory
0b01Device-nGnRE memory
0b10Device-nGRE memory
0b11Device-GRE memory

'oooo' is encoded as follows:

'oooo'Meaning
0b0000See encoding of Attr
0b00RW, RW not 0b00Normal memory, Outer Write-Through Transient
0b0100Normal memory, Outer Non-cacheable
0b01RW, RW not 0b00Normal memory, Outer Write-Back Transient
0b10RWNormal memory, Outer Write-Through Non-transient
0b11RWNormal memory, Outer Write-Back Non-transient

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

'iiii' is encoded as follows:

'iiii'Meaning
0b0000See encoding of Attr
0b00RW, RW not 0b00Normal memory, Inner Write-Through Transient
0b0100Normal memory, Inner Non-cacheable
0b01RW, RW not 0b00Normal memory, Inner Write-Back Transient
0b10RWNormal memory, Inner Write-Through Non-transient
0b11RWNormal memory, Inner Write-Back Non-transient

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in 'oooo' and 'iiii' fields have the following meanings:

R or WMeaning
0b0No Allocate
0b1Allocate

When FEAT_XS is implemented, stage 1 Inner Write-Back Cacheable, Outer Write-Back Cacheable memory types have the XS attribute set to 0.

The reset behavior of this field is:

Accessing MAIR_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic MAIR_EL2 or MAIR_EL1 is not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MAIR_EL2

op0op1CRnCRmop2
0b110b1000b10100b00100b000

if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EL2Enabled() && HCR_EL2.NV == '1' then AArch64.SystemAccessTrap(EL2, 0x18); else UNDEFINED; elsif PSTATE.EL == EL2 then X[t, 64] = MAIR_EL2; elsif PSTATE.EL == EL3 then X[t, 64] = MAIR_EL2;

MSR MAIR_EL2, <Xt>

op0op1CRnCRmop2
0b110b1000b10100b00100b000

if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EL2Enabled() && HCR_EL2.NV == '1' then AArch64.SystemAccessTrap(EL2, 0x18); else UNDEFINED; elsif PSTATE.EL == EL2 then MAIR_EL2 = X[t, 64]; elsif PSTATE.EL == EL3 then MAIR_EL2 = X[t, 64];

MRS <Xt>, MAIR_EL1

op0op1CRnCRmop2
0b110b0000b10100b00100b000

if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EL2Enabled() && HCR_EL2.TRVM == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.MAIR_EL1 == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then X[t, 64] = NVMem[0x140]; else X[t, 64] = MAIR_EL1; elsif PSTATE.EL == EL2 then if HCR_EL2.E2H == '1' then X[t, 64] = MAIR_EL2; else X[t, 64] = MAIR_EL1; elsif PSTATE.EL == EL3 then X[t, 64] = MAIR_EL1;

MSR MAIR_EL1, <Xt>

op0op1CRnCRmop2
0b110b0000b10100b00100b000

if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EL2Enabled() && HCR_EL2.TVM == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.MAIR_EL1 == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then NVMem[0x140] = X[t, 64]; else MAIR_EL1 = X[t, 64]; elsif PSTATE.EL == EL2 then if HCR_EL2.E2H == '1' then MAIR_EL2 = X[t, 64]; else MAIR_EL1 = X[t, 64]; elsif PSTATE.EL == EL3 then MAIR_EL1 = X[t, 64];


04/07/2023 11:26; 1b994cb0b8c6d1ae5a9a15edbc8bd6ce3b5c7d68

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.