SMCR_EL1, SME Control Register (EL1)

The SMCR_EL1 characteristics are:

Purpose

This register controls aspects of Streaming SVE that are visible at Exception levels EL1 and EL0.

Configuration

This register is present only when FEAT_SME is implemented. Otherwise, direct accesses to SMCR_EL1 are UNDEFINED.

This register has no effect if the PE is not in Streaming SVE mode.

When HCR_EL2.{E2H, TGE} == {1, 1} and EL2 is enabled in the current Security state, this register has no effect on execution at EL0 and EL1.

Attributes

SMCR_EL1 is a 64-bit register.

Field descriptions

6362616059585756555453525150494847464544434241403938373635343332
313029282726252423222120191817161514131211109876543210
RES0
FA64EZT0RES0RAZ/WILEN

Bits [63:32]

Reserved, RES0.

FA64, bit [31]
When FEAT_SME_FA64 is implemented:

Controls whether execution of an A64 instruction is considered legal when the PE is in Streaming SVE mode.

FA64Meaning
0b0

This control does not cause any instruction to be treated as legal in Streaming SVE mode.

0b1

This control causes all implemented A64 instructions to be treated as legal in Streaming SVE mode at EL1 and EL0, if they are treated as legal at more privileged Exception levels in the current Security state.

Arm recommends that portable SME software should not rely on this optional feature, and that operating systems should provide a means to test for compliance with this recommendation.

The reset behavior of this field is:


Otherwise:

Reserved, RES0.

EZT0, bit [30]
When FEAT_SME2 is implemented:

Traps execution at EL1 and EL0 of the LDR, LUTI2, LUTI4, MOVT, STR, and ZERO instructions that access the ZT0 register to EL1, or to EL2 when EL2 is implemented and enabled in the current Security state and HCR_EL2.TGE is 1.

The exception is reported using ESR_EL1.EC or ESR_EL2.EC value 0x1D, with an ISS code of 0x0000004, at a lower priority than a trap due to PSTATE.SM or PSTATE.ZA.

EZT0Meaning
0b0

This control causes execution of these instructions at EL1 and EL0 to be trapped.

0b1

This control does not cause execution of any instruction to be trapped.

Changes to this field only affect whether instructions that access ZT0 are trapped. They do not affect the contents of ZT0, which remain valid so long as PSTATE.ZA is 1.

The reset behavior of this field is:


Otherwise:

Reserved, RES0.

Bits [29:9]

Reserved, RES0.

Bits [8:4]

Reserved, RAZ/WI.

LEN, bits [3:0]

Requests an Effective Streaming SVE vector length (SVL) at EL1 of (LEN+1)*128 bits. This field also defines the Effective Streaming SVE vector length at EL0 when EL2 is not implemented, or EL2 is not enabled in the current Security state, or HCR_EL2.{E2H,TGE} is not {1,1}.

The Streaming SVE vector length can be any power of two from 128 bits to 2048 bits inclusive. An implementation can support any subset of the architecturally permitted lengths.

When the PE is in Streaming SVE mode, the Effective SVE vector length (VL) is equal to SVL.

When FEAT_SVE is implemented, and the PE is not in Streaming SVE mode, VL is equal to the Effective Non-streaming SVE vector length. See ZCR_EL1.

For all purposes other than returning the result of a direct read of SMCR_EL1, the PE selects the Effective Streaming SVE vector length by performing checks in the following order:

  1. If the requested length is less than the minimum implemented Streaming SVE vector length, then the Effective length is the minimum implemented Streaming SVE vector length.

  2. If EL2 is implemented and enabled in the current Security state, and the requested length is greater than the Effective length at EL2, then the Effective length at EL2 is used.

  3. If EL3 is implemented and the requested length is greater than the Effective length at EL3, then the Effective length at EL3 is used.

  4. Otherwise, the Effective length is the highest supported Streaming SVE vector length that is less than or equal to the requested length.

An indirect read of SMCR_EL1.LEN appears to occur in program order relative to a direct write of the same register, without the need for explicit synchronization.

The reset behavior of this field is:

Accessing SMCR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic SMCR_EL1 or SMCR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SMCR_EL1

op0op1CRnCRmop2
0b110b0000b00010b00100b110

if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.ESM == '0' then UNDEFINED; elsif CPACR_EL1.SMEN == 'x0' then AArch64.SystemAccessTrap(EL1, 0x1D); elsif EL2Enabled() && HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then AArch64.SystemAccessTrap(EL2, 0x1D); elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then AArch64.SystemAccessTrap(EL2, 0x1D); elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x1D); elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then X[t, 64] = NVMem[0x1F0]; else X[t, 64] = SMCR_EL1; elsif PSTATE.EL == EL2 then if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.ESM == '0' then UNDEFINED; elsif HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then AArch64.SystemAccessTrap(EL2, 0x1D); elsif HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then AArch64.SystemAccessTrap(EL2, 0x1D); elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x1D); elsif HCR_EL2.E2H == '1' then X[t, 64] = SMCR_EL2; else X[t, 64] = SMCR_EL1; elsif PSTATE.EL == EL3 then if CPTR_EL3.ESM == '0' then AArch64.SystemAccessTrap(EL3, 0x1D); else X[t, 64] = SMCR_EL1;

MSR SMCR_EL1, <Xt>

op0op1CRnCRmop2
0b110b0000b00010b00100b110

if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.ESM == '0' then UNDEFINED; elsif CPACR_EL1.SMEN == 'x0' then AArch64.SystemAccessTrap(EL1, 0x1D); elsif EL2Enabled() && HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then AArch64.SystemAccessTrap(EL2, 0x1D); elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then AArch64.SystemAccessTrap(EL2, 0x1D); elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x1D); elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then NVMem[0x1F0] = X[t, 64]; else SMCR_EL1 = X[t, 64]; elsif PSTATE.EL == EL2 then if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.ESM == '0' then UNDEFINED; elsif HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then AArch64.SystemAccessTrap(EL2, 0x1D); elsif HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then AArch64.SystemAccessTrap(EL2, 0x1D); elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x1D); elsif HCR_EL2.E2H == '1' then SMCR_EL2 = X[t, 64]; else SMCR_EL1 = X[t, 64]; elsif PSTATE.EL == EL3 then if CPTR_EL3.ESM == '0' then AArch64.SystemAccessTrap(EL3, 0x1D); else SMCR_EL1 = X[t, 64];

MRS <Xt>, SMCR_EL12

op0op1CRnCRmop2
0b110b1010b00010b00100b110

if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then X[t, 64] = NVMem[0x1F0]; elsif EL2Enabled() && HCR_EL2.NV == '1' then AArch64.SystemAccessTrap(EL2, 0x18); else UNDEFINED; elsif PSTATE.EL == EL2 then if HCR_EL2.E2H == '1' then if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.ESM == '0' then UNDEFINED; elsif CPTR_EL2.SMEN == 'x0' then AArch64.SystemAccessTrap(EL2, 0x1D); elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x1D); else X[t, 64] = SMCR_EL1; else UNDEFINED; elsif PSTATE.EL == EL3 then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then if CPTR_EL3.ESM == '0' then AArch64.SystemAccessTrap(EL3, 0x1D); else X[t, 64] = SMCR_EL1; else UNDEFINED;

MSR SMCR_EL12, <Xt>

op0op1CRnCRmop2
0b110b1010b00010b00100b110

if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then NVMem[0x1F0] = X[t, 64]; elsif EL2Enabled() && HCR_EL2.NV == '1' then AArch64.SystemAccessTrap(EL2, 0x18); else UNDEFINED; elsif PSTATE.EL == EL2 then if HCR_EL2.E2H == '1' then if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.ESM == '0' then UNDEFINED; elsif CPTR_EL2.SMEN == 'x0' then AArch64.SystemAccessTrap(EL2, 0x1D); elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x1D); else SMCR_EL1 = X[t, 64]; else UNDEFINED; elsif PSTATE.EL == EL3 then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then if CPTR_EL3.ESM == '0' then AArch64.SystemAccessTrap(EL3, 0x1D); else SMCR_EL1 = X[t, 64]; else UNDEFINED;


04/07/2023 11:27; 1b994cb0b8c6d1ae5a9a15edbc8bd6ce3b5c7d68

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.