1 /* Single-precision e^x function.
2    Copyright (C) 2017-2021 Free Software Foundation, Inc.
3    This file is part of the GNU C Library.
4 
5    The GNU C Library is free software; you can redistribute it and/or
6    modify it under the terms of the GNU Lesser General Public
7    License as published by the Free Software Foundation; either
8    version 2.1 of the License, or (at your option) any later version.
9 
10    The GNU C Library is distributed in the hope that it will be useful,
11    but WITHOUT ANY WARRANTY; without even the implied warranty of
12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13    Lesser General Public License for more details.
14 
15    You should have received a copy of the GNU Lesser General Public
16    License along with the GNU C Library; if not, see
17    <https://www.gnu.org/licenses/>.  */
18 
19 #ifdef __expf
20 # undef libm_hidden_proto
21 # define libm_hidden_proto(ignored)
22 #endif
23 
24 #include <math.h>
25 #include <math-narrow-eval.h>
26 #include <stdint.h>
27 #include <libm-alias-finite.h>
28 #include <libm-alias-float.h>
29 #include "math_config.h"
30 
31 /*
32 EXP2F_TABLE_BITS = 5
33 EXP2F_POLY_ORDER = 3
34 
35 ULP error: 0.502 (nearest rounding.)
36 Relative error: 1.69 * 2^-34 in [-ln2/64, ln2/64] (before rounding.)
37 Wrong count: 170635 (all nearest rounding wrong results with fma.)
38 Non-nearest ULP error: 1 (rounded ULP error)
39 */
40 
41 #define N (1 << EXP2F_TABLE_BITS)
42 #define InvLn2N __exp2f_data.invln2_scaled
43 #define T __exp2f_data.tab
44 #define C __exp2f_data.poly_scaled
45 
46 static inline uint32_t
top12(float x)47 top12 (float x)
48 {
49   return asuint (x) >> 20;
50 }
51 
52 float
__expf(float x)53 __expf (float x)
54 {
55   uint32_t abstop;
56   uint64_t ki, t;
57   /* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */
58   double_t kd, xd, z, r, r2, y, s;
59 
60   xd = (double_t) x;
61   abstop = top12 (x) & 0x7ff;
62   if (__glibc_unlikely (abstop >= top12 (88.0f)))
63     {
64       /* |x| >= 88 or x is nan.  */
65       if (asuint (x) == asuint (-INFINITY))
66 	return 0.0f;
67       if (abstop >= top12 (INFINITY))
68 	return x + x;
69       if (x > 0x1.62e42ep6f) /* x > log(0x1p128) ~= 88.72 */
70 	return __math_oflowf (0);
71       if (x < -0x1.9fe368p6f) /* x < log(0x1p-150) ~= -103.97 */
72 	return __math_uflowf (0);
73 #if WANT_ERRNO_UFLOW
74       if (x < -0x1.9d1d9ep6f) /* x < log(0x1p-149) ~= -103.28 */
75 	return __math_may_uflowf (0);
76 #endif
77     }
78 
79   /* x*N/Ln2 = k + r with r in [-1/2, 1/2] and int k.  */
80   z = InvLn2N * xd;
81 
82   /* Round and convert z to int, the result is in [-150*N, 128*N] and
83      ideally ties-to-even rule is used, otherwise the magnitude of r
84      can be bigger which gives larger approximation error.  */
85 #if TOINT_INTRINSICS
86   kd = roundtoint (z);
87   ki = converttoint (z);
88 #else
89 # define SHIFT __exp2f_data.shift
90   kd = math_narrow_eval ((double) (z + SHIFT)); /* Needs to be double.  */
91   ki = asuint64 (kd);
92   kd -= SHIFT;
93 #endif
94   r = z - kd;
95 
96   /* exp(x) = 2^(k/N) * 2^(r/N) ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */
97   t = T[ki % N];
98   t += ki << (52 - EXP2F_TABLE_BITS);
99   s = asdouble (t);
100   z = C[0] * r + C[1];
101   r2 = r * r;
102   y = C[2] * r + 1;
103   y = z * r2 + y;
104   y = y * s;
105   return (float) y;
106 }
107 
108 #ifndef __expf
109 hidden_def (__expf)
110 strong_alias (__expf, __ieee754_expf)
111 libm_alias_finite (__ieee754_expf, __expf)
112 versioned_symbol (libm, __expf, expf, GLIBC_2_27);
113 libm_alias_float_other (__exp, exp)
114 #endif
115