1.file "asinl.s"
2
3
4// Copyright (c) 2001 - 2003, Intel Corporation
5// All rights reserved.
6//
7//
8// Redistribution and use in source and binary forms, with or without
9// modification, are permitted provided that the following conditions are
10// met:
11//
12// * Redistributions of source code must retain the above copyright
13// notice, this list of conditions and the following disclaimer.
14//
15// * Redistributions in binary form must reproduce the above copyright
16// notice, this list of conditions and the following disclaimer in the
17// documentation and/or other materials provided with the distribution.
18//
19// * The name of Intel Corporation may not be used to endorse or promote
20// products derived from this software without specific prior written
21// permission.
22
23// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
27// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
28// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
29// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
31// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
32// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34//
35// Intel Corporation is the author of this code, and requests that all
36// problem reports or change requests be submitted to it directly at
37// http://www.intel.com/software/products/opensource/libraries/num.htm.
38//
39// History
40//==============================================================
41// 08/28/01 New version
42// 05/20/02 Cleaned up namespace and sf0 syntax
43// 02/06/03 Reordered header: .section, .global, .proc, .align
44//
45// API
46//==============================================================
47// long double asinl(long double)
48//
49// Overview of operation
50//==============================================================
51// Background
52//
53// Implementation
54//
55// For |s| in [2^{-4}, sqrt(2)/2]:
56// Let t= 2^k*1.b1 b2..b6 1, where s= 2^k*1.b1 b2.. b52
57// asin(s)= asin(t)+asin(r), where r= s*sqrt(1-t^2)-t*sqrt(1-s^2), i.e.
58// r= (s-t)*sqrt(1-t^2)-t*sqrt(1-t^2)*(sqrt((1-s^2)/(1-t^2))-1)
59// asin(r)-r evaluated as 9-degree polynomial (c3*r^3+c5*r^5+c7*r^7+c9*r^9)
60// The 64-bit significands of sqrt(1-t^2), 1/(1-t^2) are read from the table,
61// along with the high and low parts of asin(t) (stored as two double precision
62// values)
63//
64// |s| in (sqrt(2)/2, sqrt(255/256)):
65// Let t= 2^k*1.b1 b2..b6 1, where (1-s^2)*frsqrta(1-s^2)= 2^k*1.b1 b2..b6..
66// asin(|s|)= pi/2-asin(t)+asin(r), r= s*t-sqrt(1-s^2)*sqrt(1-t^2)
67// To minimize accumulated errors, r is computed as
68// r= (t*s)_s-t^2*y*z+z*y*(t^2-1+s^2)_s+z*y*(1-s^2)_s*x+z'*y*(1-s^2)*PS29+
69// +(t*s-(t*s)_s)+z*y*((t^2-1-(t^2-1+s^2)_s)+s^2)+z*y*(1-s^2-(1-s^2)_s)+
70// +ez*z'*y*(1-s^2)*(1-x),
71// where y= frsqrta(1-s^2), z= (sqrt(1-t^2))_s (rounded to 24 significant bits)
72// z'= sqrt(1-t^2), x= ((1-s^2)*y^2-1)/2
73//
74// |s|<2^{-4}: evaluate as 17-degree polynomial
75// (or simply return s, if|s|<2^{-64})
76//
77// |s| in [sqrt(255/256), 1): asin(|s|)= pi/2-asin(sqrt(1-s^2))
78// use 17-degree polynomial for asin(sqrt(1-s^2)),
79// 9-degree polynomial to evaluate sqrt(1-s^2)
80// High order term is (pi/2)_high-(y*(1-s^2))_high
81//
82
83
84
85// Registers used
86//==============================================================
87// f6-f15, f32-f36
88// r2-r3, r23-r23
89// p6, p7, p8, p12
90//
91
92
93       GR_SAVE_B0= r33
94       GR_SAVE_PFS= r34
95       GR_SAVE_GP= r35 // This reg. can safely be used
96       GR_SAVE_SP= r36
97
98       GR_Parameter_X= r37
99       GR_Parameter_Y= r38
100       GR_Parameter_RESULT= r39
101       GR_Parameter_TAG= r40
102
103       FR_X= f10
104       FR_Y= f1
105       FR_RESULT= f8
106
107
108
109RODATA
110
111.align 16
112
113
114
115LOCAL_OBJECT_START(T_table)
116
117// stores 64-bit significand of 1/(1-t^2), 64-bit significand of sqrt(1-t^2),
118// asin(t)_high (double precision), asin(t)_low (double precision)
119
120data8 0x80828692b71c4391, 0xff7ddcec2d87e879
121data8 0x3fb022bc0ae531a0, 0x3c9f599c7bb42af6
122data8 0x80869f0163d0b082, 0xff79cad2247914d3
123data8 0x3fb062dd26afc320, 0x3ca4eff21bd49c5c
124data8 0x808ac7d5a8690705, 0xff75a89ed6b626b9
125data8 0x3fb0a2ff4a1821e0, 0x3cb7e33b58f164cc
126data8 0x808f0112ad8ad2e0, 0xff7176517c2cc0cb
127data8 0x3fb0e32279319d80, 0x3caee31546582c43
128data8 0x80934abba8a1da0a, 0xff6d33e949b1ed31
129data8 0x3fb12346b8101da0, 0x3cb8bfe463d087cd
130data8 0x8097a4d3dbe63d8f, 0xff68e16571015c63
131data8 0x3fb1636c0ac824e0, 0x3c8870a7c5a3556f
132data8 0x809c0f5e9662b3dd, 0xff647ec520bca0f0
133data8 0x3fb1a392756ed280, 0x3c964f1a927461ae
134data8 0x80a08a5f33fadc66, 0xff600c07846a6830
135data8 0x3fb1e3b9fc19e580, 0x3c69eb3576d56332
136data8 0x80a515d91d71acd4, 0xff5b892bc475affa
137data8 0x3fb223e2a2dfbe80, 0x3c6a4e19fd972fb6
138data8 0x80a9b1cfc86ff7cd, 0xff56f631062cf93d
139data8 0x3fb2640c6dd76260, 0x3c62041160e0849e
140data8 0x80ae5e46b78b0d68, 0xff5253166bc17794
141data8 0x3fb2a43761187c80, 0x3cac61651af678c0
142data8 0x80b31b417a4b756b, 0xff4d9fdb14463dc8
143data8 0x3fb2e46380bb6160, 0x3cb06ef23eeba7a1
144data8 0x80b7e8c3ad33c369, 0xff48dc7e1baf6738
145data8 0x3fb32490d0d910c0, 0x3caa05f480b300d5
146data8 0x80bcc6d0f9c784d6, 0xff4408fe9ad13e37
147data8 0x3fb364bf558b3820, 0x3cb01e7e403aaab9
148data8 0x80c1b56d1692492d, 0xff3f255ba75f5f4e
149data8 0x3fb3a4ef12ec3540, 0x3cb4fe8fcdf5f5f1
150data8 0x80c6b49bc72ec446, 0xff3a319453ebd961
151data8 0x3fb3e5200d171880, 0x3caf2dc089b2b7e2
152data8 0x80cbc460dc4e0ae8, 0xff352da7afe64ac6
153data8 0x3fb425524827a720, 0x3cb75a855e7c6053
154data8 0x80d0e4c033bee9c4, 0xff301994c79afb32
155data8 0x3fb46585c83a5e00, 0x3cb3264981c019ab
156data8 0x80d615bdb87556db, 0xff2af55aa431f291
157data8 0x3fb4a5ba916c73c0, 0x3c994251d94427b5
158data8 0x80db575d6291fd8a, 0xff25c0f84bae0cb9
159data8 0x3fb4e5f0a7dbdb20, 0x3cbee2fcc4c786cb
160data8 0x80e0a9a33769e535, 0xff207c6cc0ec09fd
161data8 0x3fb526280fa74620, 0x3c940656e5549b91
162data8 0x80e60c93498e32cd, 0xff1b27b703a19c98
163data8 0x3fb56660ccee2740, 0x3ca7082374d7b2cd
164data8 0x80eb8031b8d4052d, 0xff15c2d6105c72f8
165data8 0x3fb5a69ae3d0b520, 0x3c7c4d46e09ac68a
166data8 0x80f10482b25c6c8a, 0xff104dc8e0813ed4
167data8 0x3fb5e6d6586fec20, 0x3c9aa84ffd9b4958
168data8 0x80f6998a709c7cfb, 0xff0ac88e6a4ab926
169data8 0x3fb627132eed9140, 0x3cbced2cbbbe7d16
170data8 0x80fc3f4d3b657c44, 0xff053325a0c8a2ec
171data8 0x3fb667516b6c34c0, 0x3c6489c5fc68595a
172data8 0x8101f5cf67ed2af8, 0xfeff8d8d73dec2bb
173data8 0x3fb6a791120f33a0, 0x3cbe12acf159dfad
174data8 0x8107bd1558d6291f, 0xfef9d7c4d043df29
175data8 0x3fb6e7d226fabba0, 0x3ca386d099cd0dc7
176data8 0x810d95237e38766a, 0xfef411ca9f80b5f7
177data8 0x3fb72814ae53cc20, 0x3cb9f35731e71dd6
178data8 0x81137dfe55aa0e29, 0xfeee3b9dc7eef009
179data8 0x3fb76858ac403a00, 0x3c74df3dd959141a
180data8 0x811977aa6a479f0f, 0xfee8553d2cb8122c
181data8 0x3fb7a89e24e6b0e0, 0x3ca6034406ee42bc
182data8 0x811f822c54bd5ef8, 0xfee25ea7add46a91
183data8 0x3fb7e8e51c6eb6a0, 0x3cb82f8f78e68ed7
184data8 0x81259d88bb4ffac1, 0xfedc57dc2809fb1d
185data8 0x3fb8292d9700ad60, 0x3cbebb73c0e653f9
186data8 0x812bc9c451e5a257, 0xfed640d974eb6068
187data8 0x3fb8697798c5d620, 0x3ca2feee76a9701b
188data8 0x813206e3da0f3124, 0xfed0199e6ad6b585
189data8 0x3fb8a9c325e852e0, 0x3cb9e88f2f4d0efe
190data8 0x813854ec231172f9, 0xfec9e229dcf4747d
191data8 0x3fb8ea1042932a00, 0x3ca5ff40d81f66fd
192data8 0x813eb3e209ee858f, 0xfec39a7a9b36538b
193data8 0x3fb92a5ef2f247c0, 0x3cb5e3bece4d6b07
194data8 0x814523ca796f56ce, 0xfebd428f72561efe
195data8 0x3fb96aaf3b3281a0, 0x3cb7b9e499436d7c
196data8 0x814ba4aa6a2d3ff9, 0xfeb6da672bd48fe4
197data8 0x3fb9ab011f819860, 0x3cb9168143cc1a7f
198data8 0x81523686e29bbdd7, 0xfeb062008df81f50
199data8 0x3fb9eb54a40e3ac0, 0x3cb6e544197eb1e1
200data8 0x8158d964f7124614, 0xfea9d95a5bcbd65a
201data8 0x3fba2ba9cd080800, 0x3ca9a717be8f7446
202data8 0x815f8d49c9d639e4, 0xfea34073551e1ac8
203data8 0x3fba6c009e9f9260, 0x3c741e989a60938a
204data8 0x8166523a8b24f626, 0xfe9c974a367f785c
205data8 0x3fbaac591d0661a0, 0x3cb2c1290107e57d
206data8 0x816d283c793e0114, 0xfe95ddddb94166cb
207data8 0x3fbaecb34c6ef600, 0x3c9c7d5fbaec405d
208data8 0x81740f54e06d55bd, 0xfe8f142c93750c50
209data8 0x3fbb2d0f310cca00, 0x3cbc09479a9cbcfb
210data8 0x817b07891b15cd5e, 0xfe883a3577e9fceb
211data8 0x3fbb6d6ccf1455e0, 0x3cb9450bff4ee307
212data8 0x818210de91bba6c8, 0xfe814ff7162cf62f
213data8 0x3fbbadcc2abb1180, 0x3c9227fda12a8d24
214data8 0x81892b5abb0f2bf9, 0xfe7a55701a8697b1
215data8 0x3fbbee2d48377700, 0x3cb6fad72acfe356
216data8 0x819057031bf7760e, 0xfe734a9f2dfa1810
217data8 0x3fbc2e902bc10600, 0x3cb4465b588d16ad
218data8 0x819793dd479d4fbe, 0xfe6c2f82f643f68b
219data8 0x3fbc6ef4d9904580, 0x3c8b9ac54823960d
220data8 0x819ee1eedf76367a, 0xfe65041a15d8a92c
221data8 0x3fbcaf5b55dec6a0, 0x3ca2b8d28a954db2
222data8 0x81a6413d934f7a66, 0xfe5dc8632be3477f
223data8 0x3fbcefc3a4e727a0, 0x3c9380da83713ab4
224data8 0x81adb1cf21597d4b, 0xfe567c5cd44431d5
225data8 0x3fbd302dcae51600, 0x3ca995b83421756a
226data8 0x81b533a9563310b8, 0xfe4f2005a78fb50f
227data8 0x3fbd7099cc155180, 0x3caefa2f7a817d5f
228data8 0x81bcc6d20cf4f373, 0xfe47b35c3b0caaeb
229data8 0x3fbdb107acb5ae80, 0x3cb455fc372dd026
230data8 0x81c46b4f2f3d6e68, 0xfe40365f20b316d6
231data8 0x3fbdf177710518c0, 0x3cbee3dcc5b01434
232data8 0x81cc2126b53c1144, 0xfe38a90ce72abf36
233data8 0x3fbe31e91d439620, 0x3cb3e131c950aebd
234data8 0x81d3e85ea5bd8ee2, 0xfe310b6419c9c33a
235data8 0x3fbe725cb5b24900, 0x3c01d3fac6029027
236data8 0x81dbc0fd1637b9c1, 0xfe295d6340932d15
237data8 0x3fbeb2d23e937300, 0x3c6304cc44aeedd1
238data8 0x81e3ab082ad5a0a4, 0xfe219f08e03580b3
239data8 0x3fbef349bc2a77e0, 0x3cac1d2d6abe9c72
240data8 0x81eba6861683cb97, 0xfe19d0537a0946e2
241data8 0x3fbf33c332bbe020, 0x3ca0909dba4e96ca
242data8 0x81f3b37d1afc9979, 0xfe11f1418c0f94e2
243data8 0x3fbf743ea68d5b60, 0x3c937fc12a2a779a
244data8 0x81fbd1f388d4be45, 0xfe0a01d190f09063
245data8 0x3fbfb4bc1be5c340, 0x3cbf51a504b55813
246data8 0x820401efbf87e248, 0xfe020201fff9efea
247data8 0x3fbff53b970d1e80, 0x3ca625444b260078
248data8 0x82106ad2ffdca049, 0xfdf5e3940a49135e
249data8 0x3fc02aff52065460, 0x3c9125d113e22a57
250data8 0x8221343d6ea1d3e2, 0xfde581a45429b0a0
251data8 0x3fc06b84f8e03220, 0x3caccf362295894b
252data8 0x82324434adbf99c2, 0xfdd4de1a001fb775
253data8 0x3fc0ac0ed1fe7240, 0x3cc22f676096b0af
254data8 0x82439aee8d0c7747, 0xfdc3f8e8269d1f03
255data8 0x3fc0ec9cee9e4820, 0x3cca147e2886a628
256data8 0x825538a1d0fcb2f0, 0xfdb2d201a9b1ba66
257data8 0x3fc12d2f6006f0a0, 0x3cc72b36633bc2d4
258data8 0x82671d86345c5cee, 0xfda1695934d723e7
259data8 0x3fc16dc63789de60, 0x3cb11f9c47c7b83f
260data8 0x827949d46a121770, 0xfd8fbee13cbbb823
261data8 0x3fc1ae618682e620, 0x3cce1b59020cef8e
262data8 0x828bbdc61eeab9ba, 0xfd7dd28bff0c9f34
263data8 0x3fc1ef015e586c40, 0x3cafec043e0225ee
264data8 0x829e7995fb6de9e1, 0xfd6ba44b823ee1ca
265data8 0x3fc22fa5d07b90c0, 0x3cba905409caf8e3
266data8 0x82b17d7fa5bbc982, 0xfd5934119557883a
267data8 0x3fc2704eee685da0, 0x3cb5ef21838a823e
268data8 0x82c4c9bfc373d276, 0xfd4681cfcfb2c161
269data8 0x3fc2b0fcc9a5f3e0, 0x3ccc7952c5e0e312
270data8 0x82d85e93fba50136, 0xfd338d7790ca0f41
271data8 0x3fc2f1af73c6ba00, 0x3cbecf5f977d1ca9
272data8 0x82ec3c3af8c76b32, 0xfd2056f9fff97727
273data8 0x3fc33266fe6889a0, 0x3c9d329c022ebdb5
274data8 0x830062f46abf6022, 0xfd0cde480c43b327
275data8 0x3fc373237b34de60, 0x3cc95806d4928adb
276data8 0x8314d30108ea35f0, 0xfcf923526c1562b2
277data8 0x3fc3b3e4fbe10520, 0x3cbc299fe7223d54
278data8 0x83298ca29434df97, 0xfce526099d0737ed
279data8 0x3fc3f4ab922e4a60, 0x3cb59d8bb8fdbccc
280data8 0x833e901bd93c7009, 0xfcd0e65de39f1f7c
281data8 0x3fc435774fea2a60, 0x3c9ec18b43340914
282data8 0x8353ddb0b278aad8, 0xfcbc643f4b106055
283data8 0x3fc4764846ee80a0, 0x3cb90402efd87ed6
284data8 0x836975a60a70c52e, 0xfca79f9da4fab13a
285data8 0x3fc4b71e8921b860, 0xbc58f23449ed6365
286data8 0x837f5841ddfa7a46, 0xfc92986889284148
287data8 0x3fc4f7fa2876fca0, 0xbc6294812bf43acd
288data8 0x839585cb3e839773, 0xfc7d4e8f554ab12f
289data8 0x3fc538db36ee6960, 0x3cb910b773d4c578
290data8 0x83abfe8a5466246f, 0xfc67c2012cb6fa68
291data8 0x3fc579c1c6953cc0, 0x3cc5ede909fc47fc
292data8 0x83c2c2c861474d91, 0xfc51f2acf82041d5
293data8 0x3fc5baade9860880, 0x3cac63cdfc3588e5
294data8 0x83d9d2cfc2813637, 0xfc3be08165519325
295data8 0x3fc5fb9fb1e8e3a0, 0x3cbf7c8466578c29
296data8 0x83f12eebf397daac, 0xfc258b6ce6e6822f
297data8 0x3fc63c9731f39d40, 0x3cb6d2a7ffca3e9e
298data8 0x8408d76990b9296e, 0xfc0ef35db402af94
299data8 0x3fc67d947be9eec0, 0x3cb1980da09e6566
300data8 0x8420cc9659487cd7, 0xfbf81841c8082dc4
301data8 0x3fc6be97a21daf00, 0x3cc2ac8330e59aa5
302data8 0x84390ec132759ecb, 0xfbe0fa06e24cc390
303data8 0x3fc6ffa0b6ef05e0, 0x3ccc1a030fee56c4
304data8 0x84519e3a29df811a, 0xfbc9989a85ce0954
305data8 0x3fc740afcccca000, 0x3cc19692a5301ca6
306data8 0x846a7b527842d61b, 0xfbb1f3e9f8e45dc4
307data8 0x3fc781c4f633e2c0, 0x3cc0e98f3868a508
308data8 0x8483a65c8434b5f0, 0xfb9a0be244f4af45
309data8 0x3fc7c2e045b12140, 0x3cb2a8d309754420
310data8 0x849d1fabe4e97dd7, 0xfb81e070362116d1
311data8 0x3fc80401cddfd120, 0x3ca7a44544aa4ce6
312data8 0x84b6e795650817ea, 0xfb6971805af8411e
313data8 0x3fc84529a16ac020, 0x3c9e3b709c7d6f94
314data8 0x84d0fe6f0589da92, 0xfb50beff0423a2f5
315data8 0x3fc88657d30c49e0, 0x3cc60d65a7f0a278
316data8 0x84eb649000a73014, 0xfb37c8d84414755c
317data8 0x3fc8c78c758e8e80, 0x3cc94b2ee984c2b7
318data8 0x85061a50ccd13781, 0xfb1e8ef7eeaf764b
319data8 0x3fc908c79bcba900, 0x3cc8540ae794a2fe
320data8 0x8521200b1fb8916e, 0xfb05114998f76a83
321data8 0x3fc94a0958ade6c0, 0x3ca127f49839fa9c
322data8 0x853c7619f1618bf6, 0xfaeb4fb898b65d19
323data8 0x3fc98b51bf2ffee0, 0x3c8c9ba7a803909a
324data8 0x85581cd97f45e274, 0xfad14a3004259931
325data8 0x3fc9cca0e25d4ac0, 0x3cba458e91d3bf54
326data8 0x857414a74f8446b4, 0xfab7009ab1945a54
327data8 0x3fca0df6d551fe80, 0x3cc78ea1d329d2b2
328data8 0x85905de2341dea46, 0xfa9c72e3370d2fbc
329data8 0x3fca4f53ab3b6200, 0x3ccf60dca86d57ef
330data8 0x85acf8ea4e423ff8, 0xfa81a0f3e9fa0ee9
331data8 0x3fca90b777580aa0, 0x3ca4c4e2ec8a867e
332data8 0x85c9e62111a92e7d, 0xfa668ab6dec711b1
333data8 0x3fcad2224cf814e0, 0x3c303de5980d071c
334data8 0x85e725e947fbee97, 0xfa4b3015e883dbfe
335data8 0x3fcb13943f7d5f80, 0x3cc29d4eefa5cb1e
336data8 0x8604b8a7144cd054, 0xfa2f90fa9883a543
337data8 0x3fcb550d625bc6a0, 0x3c9e01a746152daf
338data8 0x86229ebff69e2415, 0xfa13ad4e3dfbe1c1
339data8 0x3fcb968dc9195ea0, 0x3ccc091bd73ae518
340data8 0x8640d89acf78858c, 0xf9f784f9e5a1877b
341data8 0x3fcbd815874eb160, 0x3cb5f4b89875e187
342data8 0x865f669fe390c7f5, 0xf9db17e65944eacf
343data8 0x3fcc19a4b0a6f9c0, 0x3cc5c0bc2b0bbf14
344data8 0x867e4938df7dc45f, 0xf9be65fc1f6c2e6e
345data8 0x3fcc5b3b58e061e0, 0x3cc1ca70df8f57e7
346data8 0x869d80d0db7e4c0c, 0xf9a16f237aec427a
347data8 0x3fcc9cd993cc4040, 0x3cbae93acc85eccf
348data8 0x86bd0dd45f4f8265, 0xf98433446a806e70
349data8 0x3fccde7f754f5660, 0x3cb22f70e64568d0
350data8 0x86dcf0b16613e37a, 0xf966b246a8606170
351data8 0x3fcd202d11620fa0, 0x3c962030e5d4c849
352data8 0x86fd29d7624b3d5d, 0xf948ec11a9d4c45b
353data8 0x3fcd61e27c10c0a0, 0x3cc7083c91d59217
354data8 0x871db9b741dbe44a, 0xf92ae08c9eca4941
355data8 0x3fcda39fc97be7c0, 0x3cc9258579e57211
356data8 0x873ea0c3722d6af2, 0xf90c8f9e71633363
357data8 0x3fcde5650dd86d60, 0x3ca4755a9ea582a9
358data8 0x875fdf6fe45529e8, 0xf8edf92dc5875319
359data8 0x3fce27325d6fe520, 0x3cbc1e2b6c1954f9
360data8 0x878176321154e2bc, 0xf8cf1d20f87270b8
361data8 0x3fce6907cca0d060, 0x3cb6ca4804750830
362data8 0x87a36580fe6bccf5, 0xf8affb5e20412199
363data8 0x3fceaae56fdee040, 0x3cad6b310d6fd46c
364data8 0x87c5add5417a5cb9, 0xf89093cb0b7c0233
365data8 0x3fceeccb5bb33900, 0x3cc16e99cedadb20
366data8 0x87e84fa9057914ca, 0xf870e64d40a15036
367data8 0x3fcf2eb9a4bcb600, 0x3cc75ee47c8b09e9
368data8 0x880b4b780f02b709, 0xf850f2c9fdacdf78
369data8 0x3fcf70b05fb02e20, 0x3cad6350d379f41a
370data8 0x882ea1bfc0f228ac, 0xf830b926379e6465
371data8 0x3fcfb2afa158b8a0, 0x3cce0ccd9f829985
372data8 0x885252ff21146108, 0xf810394699fe0e8e
373data8 0x3fcff4b77e97f3e0, 0x3c9b30faa7a4c703
374data8 0x88765fb6dceebbb3, 0xf7ef730f865f6df0
375data8 0x3fd01b6406332540, 0x3cdc5772c9e0b9bd
376data8 0x88ad1f69be2cc730, 0xf7bdc59bc9cfbd97
377data8 0x3fd04cf8ad203480, 0x3caeef44fe21a74a
378data8 0x88f763f70ae2245e, 0xf77a91c868a9c54e
379data8 0x3fd08f23ce0162a0, 0x3cd6290ab3fe5889
380data8 0x89431fc7bc0c2910, 0xf73642973c91298e
381data8 0x3fd0d1610f0c1ec0, 0x3cc67401a01f08cf
382data8 0x8990573407c7738e, 0xf6f0d71d1d7a2dd6
383data8 0x3fd113b0c65d88c0, 0x3cc7aa4020fe546f
384data8 0x89df0eb108594653, 0xf6aa4e6a05cfdef2
385data8 0x3fd156134ada6fe0, 0x3cc87369da09600c
386data8 0x8a2f4ad16e0ed78a, 0xf662a78900c35249
387data8 0x3fd19888f43427a0, 0x3cc62b220f38e49c
388data8 0x8a811046373e0819, 0xf619e180181d97cc
389data8 0x3fd1db121aed7720, 0x3ca3ede7490b52f4
390data8 0x8ad463df6ea0fa2c, 0xf5cffb504190f9a2
391data8 0x3fd21daf185fa360, 0x3caafad98c1d6c1b
392data8 0x8b294a8cf0488daf, 0xf584f3f54b8604e6
393data8 0x3fd2606046bf95a0, 0x3cdb2d704eeb08fa
394data8 0x8b7fc95f35647757, 0xf538ca65c960b582
395data8 0x3fd2a32601231ec0, 0x3cc661619fa2f126
396data8 0x8bd7e588272276f8, 0xf4eb7d92ff39fccb
397data8 0x3fd2e600a3865760, 0x3c8a2a36a99aca4a
398data8 0x8c31a45bf8e9255e, 0xf49d0c68cd09b689
399data8 0x3fd328f08ad12000, 0x3cb9efaf1d7ab552
400data8 0x8c8d0b520a35eb18, 0xf44d75cd993cfad2
401data8 0x3fd36bf614dcc040, 0x3ccacbb590bef70d
402data8 0x8cea2005d068f23d, 0xf3fcb8a23ab4942b
403data8 0x3fd3af11a079a6c0, 0x3cd9775872cf037d
404data8 0x8d48e837c8cd5027, 0xf3aad3c1e2273908
405data8 0x3fd3f2438d754b40, 0x3ca03304f667109a
406data8 0x8da969ce732f3ac7, 0xf357c60202e2fd7e
407data8 0x3fd4358c3ca032e0, 0x3caecf2504ff1a9d
408data8 0x8e0baad75555e361, 0xf3038e323ae9463a
409data8 0x3fd478ec0fd419c0, 0x3cc64bdc3d703971
410data8 0x8e6fb18807ba877e, 0xf2ae2b1c3a6057f7
411data8 0x3fd4bc6369fa40e0, 0x3cbb7122ec245cf2
412data8 0x8ed5843f4bda74d5, 0xf2579b83aa556f0c
413data8 0x3fd4fff2af11e2c0, 0x3c9cfa2dc792d394
414data8 0x8f3d29862c861fef, 0xf1ffde2612ca1909
415data8 0x3fd5439a4436d000, 0x3cc38d46d310526b
416data8 0x8fa6a81128940b2d, 0xf1a6f1bac0075669
417data8 0x3fd5875a8fa83520, 0x3cd8bf59b8153f8a
418data8 0x901206c1686317a6, 0xf14cd4f2a730d480
419data8 0x3fd5cb33f8cf8ac0, 0x3c9502b5c4d0e431
420data8 0x907f4ca5fe9cf739, 0xf0f186784a125726
421data8 0x3fd60f26e847b120, 0x3cc8a1a5e0acaa33
422data8 0x90ee80fd34aeda5e, 0xf09504ef9a212f18
423data8 0x3fd65333c7e43aa0, 0x3cae5b029cb1f26e
424data8 0x915fab35e37421c6, 0xf0374ef5daab5c45
425data8 0x3fd6975b02b8e360, 0x3cd5aa1c280c45e6
426data8 0x91d2d2f0d894d73c, 0xefd86321822dbb51
427data8 0x3fd6db9d05213b20, 0x3cbecf2c093ccd8b
428data8 0x9248000249200009, 0xef7840021aca5a72
429data8 0x3fd71ffa3cc87fc0, 0x3cb8d273f08d00d9
430data8 0x92bf3a7351f081d2, 0xef16e42021d7cbd5
431data8 0x3fd7647318b1ad20, 0x3cbce099d79cdc46
432data8 0x93388a8386725713, 0xeeb44dfce6820283
433data8 0x3fd7a908093fc1e0, 0x3ccb033ec17a30d9
434data8 0x93b3f8aa8e653812, 0xee507c126774fa45
435data8 0x3fd7edb9803e3c20, 0x3cc10aedb48671eb
436data8 0x94318d99d341ade4, 0xedeb6cd32f891afb
437data8 0x3fd83287f0e9cf80, 0x3c994c0c1505cd2a
438data8 0x94b1523e3dedc630, 0xed851eaa3168f43c
439data8 0x3fd87773cff956e0, 0x3cda3b7bce6a6b16
440data8 0x95334fc20577563f, 0xed1d8ffaa2279669
441data8 0x3fd8bc7d93a70440, 0x3cd4922edc792ce2
442data8 0x95b78f8e8f92f274, 0xecb4bf1fd2be72da
443data8 0x3fd901a5b3b9cf40, 0x3cd3fea1b00f9d0d
444data8 0x963e1b4e63a87c3f, 0xec4aaa6d08694cc1
445data8 0x3fd946eca98f2700, 0x3cdba4032d968ff1
446data8 0x96c6fcef314074fc, 0xebdf502d53d65fea
447data8 0x3fd98c52f024e800, 0x3cbe7be1ab8c95c9
448data8 0x97523ea3eab028b2, 0xeb72aea36720793e
449data8 0x3fd9d1d904239860, 0x3cd72d08a6a22b70
450data8 0x97dfeae6f4ee4a9a, 0xeb04c4096a884e94
451data8 0x3fda177f63e8ef00, 0x3cd818c3c1ebfac7
452data8 0x98700c7c6d85d119, 0xea958e90cfe1efd7
453data8 0x3fda5d468f92a540, 0x3cdf45fbfaa080fe
454data8 0x9902ae7487a9caa1, 0xea250c6224aab21a
455data8 0x3fdaa32f090998e0, 0x3cd715a9353cede4
456data8 0x9997dc2e017a9550, 0xe9b33b9ce2bb7638
457data8 0x3fdae939540d3f00, 0x3cc545c014943439
458data8 0x9a2fa158b29b649b, 0xe9401a573f8aa706
459data8 0x3fdb2f65f63f6c60, 0x3cd4a63c2f2ca8e2
460data8 0x9aca09f835466186, 0xe8cba69df9f0bf35
461data8 0x3fdb75b5773075e0, 0x3cda310ce1b217ec
462data8 0x9b672266ab1e0136, 0xe855de74266193d4
463data8 0x3fdbbc28606babc0, 0x3cdc84b75cca6c44
464data8 0x9c06f7579f0b7bd5, 0xe7debfd2f98c060b
465data8 0x3fdc02bf3d843420, 0x3cd225d967ffb922
466data8 0x9ca995db058cabdc, 0xe76648a991511c6e
467data8 0x3fdc497a9c224780, 0x3cde08101c5b825b
468data8 0x9d4f0b605ce71e88, 0xe6ec76dcbc02d9a7
469data8 0x3fdc905b0c10d420, 0x3cb1abbaa3edf120
470data8 0x9df765b9eecad5e6, 0xe6714846bdda7318
471data8 0x3fdcd7611f4b8a00, 0x3cbf6217ae80aadf
472data8 0x9ea2b320350540fe, 0xe5f4bab71494cd6b
473data8 0x3fdd1e8d6a0d56c0, 0x3cb726e048cc235c
474data8 0x9f51023562fc5676, 0xe576cbf239235ecb
475data8 0x3fdd65e082df5260, 0x3cd9e66872bd5250
476data8 0xa002620915c2a2f6, 0xe4f779b15f5ec5a7
477data8 0x3fddad5b02a82420, 0x3c89743b0b57534b
478data8 0xa0b6e21c2caf9992, 0xe476c1a233a7873e
479data8 0x3fddf4fd84bbe160, 0x3cbf7adea9ee3338
480data8 0xa16e9264cc83a6b2, 0xe3f4a16696608191
481data8 0x3fde3cc8a6ec6ee0, 0x3cce46f5a51f49c6
482data8 0xa22983528f3d8d49, 0xe3711694552da8a8
483data8 0x3fde84bd099a6600, 0x3cdc78f6490a2d31
484data8 0xa2e7c5d2e2e69460, 0xe2ec1eb4e1e0a5fb
485data8 0x3fdeccdb4fc685c0, 0x3cdd3aedb56a4825
486data8 0xa3a96b5599bd2532, 0xe265b74506fbe1c9
487data8 0x3fdf15241f23b3e0, 0x3cd440f3c6d65f65
488data8 0xa46e85d1ae49d7de, 0xe1ddddb499b3606f
489data8 0x3fdf5d98202994a0, 0x3cd6c44bd3fb745a
490data8 0xa53727ca3e11b99e, 0xe1548f662951b00d
491data8 0x3fdfa637fe27bf60, 0x3ca8ad1cd33054dd
492data8 0xa6036453bdc20186, 0xe0c9c9aeabe5e481
493data8 0x3fdfef0467599580, 0x3cc0f1ac0685d78a
494data8 0xa6d34f1969dda338, 0xe03d89d5281e4f81
495data8 0x3fe01bff067d6220, 0x3cc0731e8a9ef057
496data8 0xa7a6fc62f7246ff3, 0xdfafcd125c323f54
497data8 0x3fe04092d1ae3b40, 0x3ccabda24b59906d
498data8 0xa87e811a861df9b9, 0xdf20909061bb9760
499data8 0x3fe0653df0fd9fc0, 0x3ce94c8dcc722278
500data8 0xa959f2d2dd687200, 0xde8fd16a4e5f88bd
501data8 0x3fe08a00c1cae320, 0x3ce6b888bb60a274
502data8 0xaa3967cdeea58bda, 0xddfd8cabd1240d22
503data8 0x3fe0aedba3221c00, 0x3ced5941cd486e46
504data8 0xab904fd587263c84, 0xdd1f4472e1cf64ed
505data8 0x3fe0e651e85229c0, 0x3cdb6701042299b1
506data8 0xad686d44dd5a74bb, 0xdbf173e1f6b46e92
507data8 0x3fe1309cbf4cdb20, 0x3cbf1be7bb3f0ec5
508data8 0xaf524e15640ebee4, 0xdabd54896f1029f6
509data8 0x3fe17b4ee1641300, 0x3ce81dd055b792f1
510data8 0xb14eca24ef7db3fa, 0xd982cb9ae2f47e41
511data8 0x3fe1c66b9ffd6660, 0x3cd98ea31eb5ddc7
512data8 0xb35ec807669920ce, 0xd841bd1b8291d0b6
513data8 0x3fe211f66db3a5a0, 0x3ca480c35a27b4a2
514data8 0xb5833e4755e04dd1, 0xd6fa0bd3150b6930
515data8 0x3fe25df2e05b6c40, 0x3ca4bc324287a351
516data8 0xb7bd34c8000b7bd3, 0xd5ab9939a7d23aa1
517data8 0x3fe2aa64b32f7780, 0x3cba67314933077c
518data8 0xba0dc64d126cc135, 0xd4564563ce924481
519data8 0x3fe2f74fc9289ac0, 0x3cec1a1dc0efc5ec
520data8 0xbc76222cbbfa74a6, 0xd2f9eeed501125a8
521data8 0x3fe344b82f859ac0, 0x3ceeef218de413ac
522data8 0xbef78e31985291a9, 0xd19672e2182f78be
523data8 0x3fe392a22087b7e0, 0x3cd2619ba201204c
524data8 0xc19368b2b0629572, 0xd02baca5427e436a
525data8 0x3fe3e11206694520, 0x3cb5d0b3143fe689
526data8 0xc44b2ae8c6733e51, 0xceb975d60b6eae5d
527data8 0x3fe4300c7e945020, 0x3cbd367143da6582
528data8 0xc7206b894212dfef, 0xcd3fa6326ff0ac9a
529data8 0x3fe47f965d201d60, 0x3ce797c7a4ec1d63
530data8 0xca14e1b0622de526, 0xcbbe13773c3c5338
531data8 0x3fe4cfb4b09d1a20, 0x3cedfadb5347143c
532data8 0xcd2a6825eae65f82, 0xca34913d425a5ae9
533data8 0x3fe5206cc637e000, 0x3ce2798b38e54193
534data8 0xd06301095e1351ee, 0xc8a2f0d3679c08c0
535data8 0x3fe571c42e3d0be0, 0x3ccd7cb9c6c2ca68
536data8 0xd3c0d9f50057adda, 0xc70901152d59d16b
537data8 0x3fe5c3c0c108f940, 0x3ceb6c13563180ab
538data8 0xd74650a98cc14789, 0xc5668e3d4cbf8828
539data8 0x3fe61668a46ffa80, 0x3caa9092e9e3c0e5
540data8 0xdaf5f8579dcc8f8f, 0xc3bb61b3eed42d02
541data8 0x3fe669c251ad69e0, 0x3cccf896ef3b4fee
542data8 0xded29f9f9a6171b4, 0xc20741d7f8e8e8af
543data8 0x3fe6bdd49bea05c0, 0x3cdc6b29937c575d
544data8 0xe2df5765854ccdb0, 0xc049f1c2d1b8014b
545data8 0x3fe712a6b76c6e80, 0x3ce1ddc6f2922321
546data8 0xe71f7a9b94fcb4c3, 0xbe833105ec291e91
547data8 0x3fe76840418978a0, 0x3ccda46e85432c3d
548data8 0xeb96b72d3374b91e, 0xbcb2bb61493b28b3
549data8 0x3fe7bea9496d5a40, 0x3ce37b42ec6e17d3
550data8 0xf049183c3f53c39b, 0xbad848720223d3a8
551data8 0x3fe815ea59dab0a0, 0x3cb03ad41bfc415b
552data8 0xf53b11ec7f415f15, 0xb8f38b57c53c9c48
553data8 0x3fe86e0c84010760, 0x3cc03bfcfb17fe1f
554data8 0xfa718f05adbf2c33, 0xb70432500286b185
555data8 0x3fe8c7196b9225c0, 0x3ced99fcc6866ba9
556data8 0xfff200c3f5489608, 0xb509e6454dca33cc
557data8 0x3fe9211b54441080, 0x3cb789cb53515688
558// The following table entries are not used
559//data8 0x82e138a0fac48700, 0xb3044a513a8e6132
560//data8 0x3fe97c1d30f5b7c0, 0x3ce1eb765612d1d0
561//data8 0x85f4cc7fc670d021, 0xb0f2fb2ea6cbbc88
562//data8 0x3fe9d82ab4b5fde0, 0x3ced3fe6f27e8039
563//data8 0x89377c1387d5b908, 0xaed58e9a09014d5c
564//data8 0x3fea355065f87fa0, 0x3cbef481d25f5b58
565//data8 0x8cad7a2c98dec333, 0xacab929ce114d451
566//data8 0x3fea939bb451e2a0, 0x3c8e92b4fbf4560f
567//data8 0x905b7dfc99583025, 0xaa748cc0dbbbc0ec
568//data8 0x3feaf31b11270220, 0x3cdced8c61bd7bd5
569//data8 0x9446d8191f80dd42, 0xa82ff92687235baf
570//data8 0x3feb53de0bcffc20, 0x3cbe1722fb47509e
571//data8 0x98758ba086e4000a, 0xa5dd497a9c184f58
572//data8 0x3febb5f571cb0560, 0x3ce0c7774329a613
573//data8 0x9cee6c7bf18e4e24, 0xa37be3c3cd1de51b
574//data8 0x3fec197373bc7be0, 0x3ce08ebdb55c3177
575//data8 0xa1b944000a1b9440, 0xa10b2101b4f27e03
576//data8 0x3fec7e6bd023da60, 0x3ce5fc5fd4995959
577//data8 0xa6defd8ba04d3e38, 0x9e8a4b93cad088ec
578//data8 0x3fece4f404e29b20, 0x3cea3413401132b5
579//data8 0xac69dd408a10c62d, 0x9bf89d5d17ddae8c
580//data8 0x3fed4d2388f63600, 0x3cd5a7fb0d1d4276
581//data8 0xb265c39cbd80f97a, 0x99553d969fec7beb
582//data8 0x3fedb714101e0a00, 0x3cdbda21f01193f2
583//data8 0xb8e081a16ae4ae73, 0x969f3e3ed2a0516c
584//data8 0x3fee22e1da97bb00, 0x3ce7231177f85f71
585//data8 0xbfea427678945732, 0x93d5990f9ee787af
586//data8 0x3fee90ac13b18220, 0x3ce3c8a5453363a5
587//data8 0xc79611399b8c90c5, 0x90f72bde80febc31
588//data8 0x3fef009542b712e0, 0x3ce218fd79e8cb56
589//data8 0xcffa8425040624d7, 0x8e02b4418574ebed
590//data8 0x3fef72c3d2c57520, 0x3cd32a717f82203f
591//data8 0xd93299cddcf9cf23, 0x8af6ca48e9c44024
592//data8 0x3fefe762b77744c0, 0x3ce53478a6bbcf94
593//data8 0xe35eda760af69ad9, 0x87d1da0d7f45678b
594//data8 0x3ff02f511b223c00, 0x3ced6e11782c28fc
595//data8 0xeea6d733421da0a6, 0x84921bbe64ae029a
596//data8 0x3ff06c5c6f8ce9c0, 0x3ce71fc71c1ffc02
597//data8 0xfb3b2c73fc6195cc, 0x813589ba3a5651b6
598//data8 0x3ff0aaf2613700a0, 0x3cf2a72d2fd94ef3
599//data8 0x84ac1fcec4203245, 0xfb73a828893df19e
600//data8 0x3ff0eb367c3fd600, 0x3cf8054c158610de
601//data8 0x8ca50621110c60e6, 0xf438a14c158d867c
602//data8 0x3ff12d51caa6b580, 0x3ce6bce9748739b6
603//data8 0x95b8c2062d6f8161, 0xecb3ccdd37b369da
604//data8 0x3ff1717418520340, 0x3ca5c2732533177c
605//data8 0xa0262917caab4ad1, 0xe4dde4ddc81fd119
606//data8 0x3ff1b7d59dd40ba0, 0x3cc4c7c98e870ff5
607//data8 0xac402c688b72f3f4, 0xdcae469be46d4c8d
608//data8 0x3ff200b93cc5a540, 0x3c8dd6dc1bfe865a
609//data8 0xba76968b9eabd9ab, 0xd41a8f3df1115f7f
610//data8 0x3ff24c6f8f6affa0, 0x3cf1acb6d2a7eff7
611//data8 0xcb63c87c23a71dc5, 0xcb161074c17f54ec
612//data8 0x3ff29b5b338b7c80, 0x3ce9b5845f6ec746
613//data8 0xdfe323b8653af367, 0xc19107d99ab27e42
614//data8 0x3ff2edf6fac7f5a0, 0x3cf77f961925fa02
615//data8 0xf93746caaba3e1f1, 0xb777744a9df03bff
616//data8 0x3ff344df237486c0, 0x3cf6ddf5f6ddda43
617//data8 0x8ca77052f6c340f0, 0xacaf476f13806648
618//data8 0x3ff3a0dfa4bb4ae0, 0x3cfee01bbd761bff
619//data8 0xa1a48604a81d5c62, 0xa11575d30c0aae50
620//data8 0x3ff4030b73c55360, 0x3cf1cf0e0324d37c
621//data8 0xbe45074b05579024, 0x9478e362a07dd287
622//data8 0x3ff46ce4c738c4e0, 0x3ce3179555367d12
623//data8 0xe7a08b5693d214ec, 0x8690e3575b8a7c3b
624//data8 0x3ff4e0a887c40a80, 0x3cfbd5d46bfefe69
625//data8 0x94503d69396d91c7, 0xedd2ce885ff04028
626//data8 0x3ff561ebd9c18cc0, 0x3cf331bd176b233b
627//data8 0xced1d96c5bb209e6, 0xc965278083808702
628//data8 0x3ff5f71d7ff42c80, 0x3ce3301cc0b5a48c
629//data8 0xabac2cee0fc24e20, 0x9c4eb1136094cbbd
630//data8 0x3ff6ae4c63222720, 0x3cf5ff46874ee51e
631//data8 0x8040201008040201, 0xb4d7ac4d9acb1bf4
632//data8 0x3ff7b7d33b928c40, 0x3cfacdee584023bb
633LOCAL_OBJECT_END(T_table)
634
635
636
637.align 16
638
639LOCAL_OBJECT_START(poly_coeffs)
640       // C_3
641data8 0xaaaaaaaaaaaaaaab, 0x0000000000003ffc
642       // C_5
643data8 0x999999999999999a, 0x0000000000003ffb
644       // C_7, C_9
645data8 0x3fa6db6db6db6db7, 0x3f9f1c71c71c71c8
646       // pi/2 (low, high)
647data8 0x3C91A62633145C07, 0x3FF921FB54442D18
648       // C_11, C_13
649data8 0x3f96e8ba2e8ba2e9, 0x3f91c4ec4ec4ec4e
650       // C_15, C_17
651data8 0x3f8c99999999999a, 0x3f87a87878787223
652LOCAL_OBJECT_END(poly_coeffs)
653
654
655R_DBL_S = r21
656R_EXP0 = r22
657R_EXP = r15
658R_SGNMASK = r23
659R_TMP = r24
660R_TMP2 = r25
661R_INDEX = r26
662R_TMP3 = r27
663R_TMP03 = r27
664R_TMP4 = r28
665R_TMP5 = r23
666R_TMP6 = r22
667R_TMP7 = r21
668R_T = r29
669R_BIAS = r20
670
671F_T = f6
672F_1S2 = f7
673F_1S2_S = f9
674F_INV_1T2 = f10
675F_SQRT_1T2 = f11
676F_S2T2 = f12
677F_X = f13
678F_D = f14
679F_2M64 = f15
680
681F_CS2 = f32
682F_CS3 = f33
683F_CS4 = f34
684F_CS5 = f35
685F_CS6 = f36
686F_CS7 = f37
687F_CS8 = f38
688F_CS9 = f39
689F_S23 = f40
690F_S45 = f41
691F_S67 = f42
692F_S89 = f43
693F_S25 = f44
694F_S69 = f45
695F_S29 = f46
696F_X2 = f47
697F_X4 = f48
698F_TSQRT = f49
699F_DTX = f50
700F_R = f51
701F_R2 = f52
702F_R3 = f53
703F_R4 = f54
704
705F_C3 = f55
706F_C5 = f56
707F_C7 = f57
708F_C9 = f58
709F_P79 = f59
710F_P35 = f60
711F_P39 = f61
712
713F_ATHI = f62
714F_ATLO = f63
715
716F_T1 = f64
717F_Y = f65
718F_Y2 = f66
719F_ANDMASK = f67
720F_ORMASK = f68
721F_S = f69
722F_05 = f70
723F_SQRT_1S2 = f71
724F_DS = f72
725F_Z = f73
726F_1T2 = f74
727F_DZ = f75
728F_ZE = f76
729F_YZ = f77
730F_Y1S2 = f78
731F_Y1S2X = f79
732F_1X = f80
733F_ST = f81
734F_1T2_ST = f82
735F_TSS = f83
736F_Y1S2X2 = f84
737F_DZ_TERM = f85
738F_DTS = f86
739F_DS2X = f87
740F_T2 = f88
741F_ZY1S2S = f89
742F_Y1S2_1X = f90
743F_TS = f91
744F_PI2_LO = f92
745F_PI2_HI = f93
746F_S19 = f94
747F_INV1T2_2 = f95
748F_CORR = f96
749F_DZ0 = f97
750
751F_C11 = f98
752F_C13 = f99
753F_C15 = f100
754F_C17 = f101
755F_P1113 = f102
756F_P1517 = f103
757F_P1117 = f104
758F_P317 = f105
759F_R8 = f106
760F_HI = f107
761F_1S2_HI = f108
762F_DS2 = f109
763F_Y2_2 = f110
764F_S2 = f111
765F_S_DS2 = f112
766F_S_1S2S = f113
767F_XL = f114
768F_2M128 = f115
769
770
771.section .text
772GLOBAL_LIBM_ENTRY(asinl)
773
774{.mfi
775       // get exponent, mantissa (rounded to double precision) of s
776       getf.d R_DBL_S = f8
777       // 1-s^2
778       fnma.s1 F_1S2 = f8, f8, f1
779       // r2 = pointer to T_table
780       addl r2 = @ltoff(T_table), gp
781}
782
783{.mfi
784       // sign mask
785       mov R_SGNMASK = 0x20000
786       nop.f 0
787       // bias-63-1
788       mov R_TMP03 = 0xffff-64;;
789}
790
791
792{.mfi
793       // get exponent of s
794       getf.exp R_EXP = f8
795       nop.f 0
796       // R_TMP4 = 2^45
797       shl R_TMP4 = R_SGNMASK, 45-17
798}
799
800{.mlx
801       // load bias-4
802       mov R_TMP = 0xffff-4
803       // load RU(sqrt(2)/2) to integer register (in double format, shifted left by 1)
804       movl R_TMP2 = 0x7fcd413cccfe779a;;
805}
806
807
808{.mfi
809       // load 2^{-64} in FP register
810       setf.exp F_2M64 = R_TMP03
811       nop.f 0
812       // index = (0x7-exponent)|b1 b2.. b6
813       extr.u R_INDEX = R_DBL_S, 46, 9
814}
815
816{.mfi
817       // get t = sign|exponent|b1 b2.. b6 1 x.. x
818       or R_T = R_DBL_S, R_TMP4
819       nop.f 0
820       // R_TMP4 = 2^45-1
821       sub R_TMP4 = R_TMP4, r0, 1;;
822}
823
824
825{.mfi
826       // get t = sign|exponent|b1 b2.. b6 1 0.. 0
827       andcm R_T = R_T, R_TMP4
828       nop.f 0
829       // eliminate sign from R_DBL_S (shift left by 1)
830       shl R_TMP3 = R_DBL_S, 1
831}
832
833{.mfi
834       // R_BIAS = 3*2^6
835       mov R_BIAS = 0xc0
836       nop.f 0
837       // eliminate sign from R_EXP
838       andcm R_EXP0 = R_EXP, R_SGNMASK;;
839}
840
841
842
843{.mfi
844       // load start address for T_table
845       ld8 r2 = [r2]
846       nop.f 0
847       // p8 = 1 if |s|> = sqrt(2)/2
848       cmp.geu p8, p0 = R_TMP3, R_TMP2
849}
850
851{.mlx
852       // p7 = 1 if |s|<2^{-4} (exponent of s<bias-4)
853       cmp.lt p7, p0 = R_EXP0, R_TMP
854       // sqrt coefficient cs8 = -33*13/128
855       movl R_TMP2 = 0xc0568000;;
856}
857
858
859
860{.mbb
861       // load t in FP register
862       setf.d F_T = R_T
863       // if |s|<2^{-4}, take alternate path
864 (p7) br.cond.spnt SMALL_S
865       // if |s|> = sqrt(2)/2, take alternate path
866 (p8) br.cond.sptk LARGE_S
867}
868
869{.mlx
870       // index = (4-exponent)|b1 b2.. b6
871       sub R_INDEX = R_INDEX, R_BIAS
872       // sqrt coefficient cs9 = 55*13/128
873       movl R_TMP = 0x40b2c000;;
874}
875
876
877{.mfi
878       // sqrt coefficient cs8 = -33*13/128
879       setf.s F_CS8 = R_TMP2
880       nop.f 0
881       // shift R_INDEX by 5
882       shl R_INDEX = R_INDEX, 5
883}
884
885{.mfi
886       // sqrt coefficient cs3 = 0.5 (set exponent = bias-1)
887       mov R_TMP4 = 0xffff - 1
888       nop.f 0
889       // sqrt coefficient cs6 = -21/16
890       mov R_TMP6 = 0xbfa8;;
891}
892
893
894{.mlx
895       // table index
896       add r2 = r2, R_INDEX
897       // sqrt coefficient cs7 = 33/16
898       movl R_TMP2 = 0x40040000;;
899}
900
901
902{.mmi
903       // load cs9 = 55*13/128
904       setf.s F_CS9 = R_TMP
905       // sqrt coefficient cs5 = 7/8
906       mov R_TMP3 = 0x3f60
907       // sqrt coefficient cs6 = 21/16
908       shl R_TMP6 = R_TMP6, 16;;
909}
910
911
912{.mmi
913       // load significand of 1/(1-t^2)
914       ldf8 F_INV_1T2 = [r2], 8
915       // sqrt coefficient cs7 = 33/16
916       setf.s F_CS7 = R_TMP2
917       // sqrt coefficient cs4 = -5/8
918       mov R_TMP5 = 0xbf20;;
919}
920
921
922{.mmi
923       // load significand of sqrt(1-t^2)
924       ldf8 F_SQRT_1T2 = [r2], 8
925       // sqrt coefficient cs6 = 21/16
926       setf.s F_CS6 = R_TMP6
927       // sqrt coefficient cs5 = 7/8
928       shl R_TMP3 = R_TMP3, 16;;
929}
930
931
932{.mmi
933       // sqrt coefficient cs3 = 0.5 (set exponent = bias-1)
934       setf.exp F_CS3 = R_TMP4
935       // r3 = pointer to polynomial coefficients
936       addl r3 = @ltoff(poly_coeffs), gp
937       // sqrt coefficient cs4 = -5/8
938       shl R_TMP5 = R_TMP5, 16;;
939}
940
941
942{.mfi
943       // sqrt coefficient cs5 = 7/8
944       setf.s F_CS5 = R_TMP3
945       // d = s-t
946       fms.s1 F_D = f8, f1, F_T
947       // set p6 = 1 if s<0, p11 = 1 if s> = 0
948       cmp.ge p6, p11 = R_EXP, R_DBL_S
949}
950
951{.mfi
952       // r3 = load start address to polynomial coefficients
953       ld8 r3 = [r3]
954       // s+t
955       fma.s1 F_S2T2 = f8, f1, F_T
956       nop.i 0;;
957}
958
959
960{.mfi
961       // sqrt coefficient cs4 = -5/8
962       setf.s F_CS4 = R_TMP5
963       // s^2-t^2
964       fma.s1 F_S2T2 = F_S2T2, F_D, f0
965       nop.i 0;;
966}
967
968
969{.mfi
970       // load C3
971       ldfe F_C3 = [r3], 16
972       // 0.5/(1-t^2) = 2^{-64}*(2^63/(1-t^2))
973       fma.s1 F_INV_1T2 = F_INV_1T2, F_2M64, f0
974       nop.i 0;;
975}
976
977{.mfi
978       // load C_5
979       ldfe F_C5 = [r3], 16
980       // set correct exponent for sqrt(1-t^2)
981       fma.s1 F_SQRT_1T2 = F_SQRT_1T2, F_2M64, f0
982       nop.i 0;;
983}
984
985
986{.mfi
987       // load C_7, C_9
988       ldfpd F_C7, F_C9 = [r3]
989       // x = -(s^2-t^2)/(1-t^2)/2
990       fnma.s1 F_X = F_INV_1T2, F_S2T2, f0
991       nop.i 0;;
992}
993
994
995{.mfi
996       // load asin(t)_high, asin(t)_low
997       ldfpd F_ATHI, F_ATLO = [r2]
998       // t*sqrt(1-t^2)
999       fma.s1 F_TSQRT = F_T, F_SQRT_1T2, f0
1000       nop.i 0;;
1001}
1002
1003
1004{.mfi
1005       nop.m 0
1006       // cs9*x+cs8
1007       fma.s1 F_S89 = F_CS9, F_X, F_CS8
1008       nop.i 0
1009}
1010
1011{.mfi
1012       nop.m 0
1013       // cs7*x+cs6
1014       fma.s1 F_S67 = F_CS7, F_X, F_CS6
1015       nop.i 0;;
1016}
1017
1018{.mfi
1019       nop.m 0
1020       // cs5*x+cs4
1021       fma.s1 F_S45 = F_CS5, F_X, F_CS4
1022       nop.i 0
1023}
1024
1025{.mfi
1026       nop.m 0
1027       // x*x
1028       fma.s1 F_X2 = F_X, F_X, f0
1029       nop.i 0;;
1030}
1031
1032
1033{.mfi
1034       nop.m 0
1035       // (s-t)-t*x
1036       fnma.s1 F_DTX = F_T, F_X, F_D
1037       nop.i 0
1038}
1039
1040{.mfi
1041       nop.m 0
1042       // cs3*x+cs2 (cs2 = -0.5 = -cs3)
1043       fms.s1 F_S23 = F_CS3, F_X, F_CS3
1044       nop.i 0;;
1045}
1046
1047
1048{.mfi
1049       nop.m 0
1050       // cs9*x^3+cs8*x^2+cs7*x+cs6
1051       fma.s1 F_S69 = F_S89, F_X2, F_S67
1052       nop.i 0
1053}
1054
1055{.mfi
1056       nop.m 0
1057       // x^4
1058       fma.s1 F_X4 = F_X2, F_X2, f0
1059       nop.i 0;;
1060}
1061
1062
1063{.mfi
1064       nop.m 0
1065       // t*sqrt(1-t^2)*x^2
1066       fma.s1 F_TSQRT = F_TSQRT, F_X2, f0
1067       nop.i 0
1068}
1069
1070{.mfi
1071       nop.m 0
1072       // cs5*x^3+cs4*x^2+cs3*x+cs2
1073       fma.s1 F_S25 = F_S45, F_X2, F_S23
1074       nop.i 0;;
1075}
1076
1077
1078{.mfi
1079       nop.m 0
1080       // ((s-t)-t*x)*sqrt(1-t^2)
1081       fma.s1 F_DTX = F_DTX, F_SQRT_1T2, f0
1082       nop.i 0;;
1083}
1084
1085
1086{.mfi
1087       nop.m 0
1088       // if sign is negative, negate table values: asin(t)_low
1089 (p6) fnma.s1 F_ATLO = F_ATLO, f1, f0
1090       nop.i 0
1091}
1092
1093{.mfi
1094       nop.m 0
1095       // PS29 = cs9*x^7+..+cs5*x^3+cs4*x^2+cs3*x+cs2
1096       fma.s1 F_S29 = F_S69, F_X4, F_S25
1097       nop.i 0;;
1098}
1099
1100
1101{.mfi
1102       nop.m 0
1103       // if sign is negative, negate table values: asin(t)_high
1104 (p6) fnma.s1 F_ATHI = F_ATHI, f1, f0
1105       nop.i 0
1106}
1107
1108{.mfi
1109       nop.m 0
1110       // R = ((s-t)-t*x)*sqrt(1-t^2)-t*sqrt(1-t^2)*x^2*PS29
1111       fnma.s1 F_R = F_S29, F_TSQRT, F_DTX
1112       nop.i 0;;
1113}
1114
1115
1116{.mfi
1117       nop.m 0
1118       // R^2
1119       fma.s1 F_R2 = F_R, F_R, f0
1120       nop.i 0;;
1121}
1122
1123
1124{.mfi
1125       nop.m 0
1126       // c7+c9*R^2
1127       fma.s1 F_P79 = F_C9, F_R2, F_C7
1128       nop.i 0
1129}
1130
1131{.mfi
1132       nop.m 0
1133       // c3+c5*R^2
1134       fma.s1 F_P35 = F_C5, F_R2, F_C3
1135       nop.i 0;;
1136}
1137
1138{.mfi
1139       nop.m 0
1140       // R^3
1141       fma.s1 F_R4 = F_R2, F_R2, f0
1142       nop.i 0;;
1143}
1144
1145{.mfi
1146       nop.m 0
1147       // R^3
1148       fma.s1 F_R3 = F_R2, F_R, f0
1149       nop.i 0;;
1150}
1151
1152
1153
1154{.mfi
1155       nop.m 0
1156       // c3+c5*R^2+c7*R^4+c9*R^6
1157       fma.s1 F_P39 = F_P79, F_R4, F_P35
1158       nop.i 0;;
1159}
1160
1161
1162{.mfi
1163       nop.m 0
1164       // asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6)
1165       fma.s1 F_P39 = F_P39, F_R3, F_ATLO
1166       nop.i 0;;
1167}
1168
1169
1170{.mfi
1171       nop.m 0
1172       // R+asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6)
1173       fma.s1 F_P39 = F_P39, f1, F_R
1174       nop.i 0;;
1175}
1176
1177
1178{.mfb
1179       nop.m 0
1180       // result = asin(t)_high+R+asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6)
1181       fma.s0 f8 = F_ATHI, f1, F_P39
1182       // return
1183       br.ret.sptk b0;;
1184}
1185
1186
1187
1188
1189LARGE_S:
1190
1191{.mfi
1192       // bias-1
1193       mov R_TMP3 = 0xffff - 1
1194       // y ~ 1/sqrt(1-s^2)
1195       frsqrta.s1 F_Y, p7 = F_1S2
1196       // c9 = 55*13*17/128
1197       mov R_TMP4 = 0x10af7b
1198}
1199
1200{.mlx
1201       // c8 = -33*13*15/128
1202       mov R_TMP5 = 0x184923
1203       movl R_TMP2 = 0xff00000000000000;;
1204}
1205
1206{.mfi
1207       // set p6 = 1 if s<0, p11 = 1 if s>0
1208       cmp.ge p6, p11 = R_EXP, R_DBL_S
1209       // 1-s^2
1210       fnma.s1 F_1S2 = f8, f8, f1
1211       // set p9 = 1
1212       cmp.eq p9, p0 = r0, r0;;
1213}
1214
1215
1216{.mfi
1217       // load 0.5
1218       setf.exp F_05 = R_TMP3
1219       // (1-s^2) rounded to single precision
1220       fnma.s.s1 F_1S2_S = f8, f8, f1
1221       // c9 = 55*13*17/128
1222       shl R_TMP4 = R_TMP4, 10
1223}
1224
1225{.mlx
1226       // AND mask for getting t ~ sqrt(1-s^2)
1227       setf.sig F_ANDMASK = R_TMP2
1228       // OR mask
1229       movl R_TMP2 = 0x0100000000000000;;
1230}
1231
1232
1233{.mfi
1234       nop.m 0
1235       // (s^2)_s
1236       fma.s.s1 F_S2 = f8, f8, f0
1237       nop.i 0;;
1238}
1239
1240
1241{.mmi
1242       // c9 = 55*13*17/128
1243       setf.s F_CS9 = R_TMP4
1244       // c7 = 33*13/16
1245       mov R_TMP4 = 0x41d68
1246       // c8 = -33*13*15/128
1247       shl R_TMP5 = R_TMP5, 11;;
1248}
1249
1250
1251{.mfi
1252       setf.sig F_ORMASK = R_TMP2
1253       // y^2
1254       fma.s1 F_Y2 = F_Y, F_Y, f0
1255       // c7 = 33*13/16
1256       shl R_TMP4 = R_TMP4, 12
1257}
1258
1259{.mfi
1260       // c6 = -33*7/16
1261       mov R_TMP6 = 0xc1670
1262       // y' ~ sqrt(1-s^2)
1263       fma.s1 F_T1 = F_Y, F_1S2, f0
1264       // c5 = 63/8
1265       mov R_TMP7 = 0x40fc;;
1266}
1267
1268
1269{.mlx
1270       // load c8 = -33*13*15/128
1271       setf.s F_CS8 = R_TMP5
1272       // c4 = -35/8
1273       movl R_TMP5 = 0xc08c0000;;
1274}
1275
1276{.mfi
1277       // r3 = pointer to polynomial coefficients
1278       addl r3 = @ltoff(poly_coeffs), gp
1279       // 1-(1-s^2)_s
1280       fnma.s1 F_DS = F_1S2_S, f1, f1
1281       // p9 = 0 if p7 = 1 (p9 = 1 for special cases only)
1282 (p7) cmp.ne p9, p0 = r0, r0
1283}
1284
1285{.mlx
1286       // load c7 = 33*13/16
1287       setf.s F_CS7 = R_TMP4
1288       // c3 = 5/2
1289       movl R_TMP4 = 0x40200000;;
1290}
1291
1292
1293{.mfi
1294       nop.m 0
1295       // 1-(s^2)_s
1296       fnma.s1 F_S_1S2S = F_S2, f1, f1
1297       nop.i 0
1298}
1299
1300{.mlx
1301       // load c4 = -35/8
1302       setf.s F_CS4 = R_TMP5
1303       // c2 = -3/2
1304       movl R_TMP5 = 0xbfc00000;;
1305}
1306
1307
1308{.mfi
1309       // load c3 = 5/2
1310       setf.s F_CS3 = R_TMP4
1311       // x = (1-s^2)_s*y^2-1
1312       fms.s1 F_X = F_1S2_S, F_Y2, f1
1313       // c6 = -33*7/16
1314       shl R_TMP6 = R_TMP6, 12
1315}
1316
1317{.mfi
1318       nop.m 0
1319       // y^2/2
1320       fma.s1 F_Y2_2 = F_Y2, F_05, f0
1321       nop.i 0;;
1322}
1323
1324
1325{.mfi
1326       // load c6 = -33*7/16
1327       setf.s F_CS6 = R_TMP6
1328       // eliminate lower bits from y'
1329       fand F_T = F_T1, F_ANDMASK
1330       // c5 = 63/8
1331       shl R_TMP7 = R_TMP7, 16
1332}
1333
1334{.mfb
1335       // r3 = load start address to polynomial coefficients
1336       ld8 r3 = [r3]
1337       // 1-(1-s^2)_s-s^2
1338       fnma.s1 F_DS = f8, f8, F_DS
1339       // p9 = 1 if s is a special input (NaN, or |s|> = 1)
1340 (p9) br.cond.spnt ASINL_SPECIAL_CASES;;
1341}
1342
1343{.mmf
1344       // get exponent, significand of y' (in single prec.)
1345       getf.s R_TMP = F_T1
1346       // load c3 = -3/2
1347       setf.s F_CS2 = R_TMP5
1348       // y*(1-s^2)
1349       fma.s1 F_Y1S2 = F_Y, F_1S2, f0;;
1350}
1351
1352
1353{.mfi
1354       nop.m 0
1355       // x' = (y^2/2)*(1-(s^2)_s)-0.5
1356       fms.s1 F_XL = F_Y2_2, F_S_1S2S, F_05
1357       nop.i 0
1358}
1359
1360{.mfi
1361       nop.m 0
1362       // s^2-(s^2)_s
1363       fms.s1 F_S_DS2 = f8, f8, F_S2
1364       nop.i 0;;
1365}
1366
1367
1368{.mfi
1369       nop.m 0
1370       // if s<0, set s = -s
1371 (p6) fnma.s1 f8 = f8, f1, f0
1372       nop.i 0;;
1373}
1374
1375{.mfi
1376       // load c5 = 63/8
1377       setf.s F_CS5 = R_TMP7
1378       // x = (1-s^2)_s*y^2-1+(1-(1-s^2)_s-s^2)*y^2
1379       fma.s1 F_X = F_DS, F_Y2, F_X
1380       // for t = 2^k*1.b1 b2.., get 7-k|b1.. b6
1381       extr.u R_INDEX = R_TMP, 17, 9;;
1382}
1383
1384
1385{.mmi
1386       // index = (4-exponent)|b1 b2.. b6
1387       sub R_INDEX = R_INDEX, R_BIAS
1388       nop.m 0
1389       // get exponent of y
1390       shr.u R_TMP2 = R_TMP, 23;;
1391}
1392
1393{.mmi
1394       // load C3
1395       ldfe F_C3 = [r3], 16
1396       // set p8 = 1 if y'<2^{-4}
1397       cmp.gt p8, p0 = 0x7b, R_TMP2
1398       // shift R_INDEX by 5
1399       shl R_INDEX = R_INDEX, 5;;
1400}
1401
1402
1403{.mfb
1404       // get table index for sqrt(1-t^2)
1405       add r2 = r2, R_INDEX
1406       // get t = 2^k*1.b1 b2.. b7 1
1407       for F_T = F_T, F_ORMASK
1408 (p8) br.cond.spnt VERY_LARGE_INPUT;;
1409}
1410
1411
1412
1413{.mmf
1414       // load C5
1415       ldfe F_C5 = [r3], 16
1416       // load 1/(1-t^2)
1417       ldfp8 F_INV_1T2, F_SQRT_1T2 = [r2], 16
1418       // x = ((1-s^2)*y^2-1)/2
1419       fma.s1 F_X = F_X, F_05, f0;;
1420}
1421
1422
1423
1424{.mmf
1425       nop.m 0
1426       // C7, C9
1427       ldfpd F_C7, F_C9 = [r3], 16
1428       // set correct exponent for t
1429       fmerge.se F_T = F_T1, F_T;;
1430}
1431
1432
1433
1434{.mfi
1435       // pi/2 (low, high)
1436       ldfpd F_PI2_LO, F_PI2_HI = [r3]
1437       // c9*x+c8
1438       fma.s1 F_S89 = F_X, F_CS9, F_CS8
1439       nop.i 0
1440}
1441
1442{.mfi
1443       nop.m 0
1444       // x^2
1445       fma.s1 F_X2 = F_X, F_X, f0
1446       nop.i 0;;
1447}
1448
1449
1450{.mfi
1451       nop.m 0
1452       // y*(1-s^2)*x
1453       fma.s1 F_Y1S2X = F_Y1S2, F_X, f0
1454       nop.i 0
1455}
1456
1457{.mfi
1458       nop.m 0
1459       // c7*x+c6
1460       fma.s1 F_S67 = F_X, F_CS7, F_CS6
1461       nop.i 0;;
1462}
1463
1464
1465{.mfi
1466       nop.m 0
1467       // 1-x
1468       fnma.s1 F_1X = F_X, f1, f1
1469       nop.i 0
1470}
1471
1472{.mfi
1473       nop.m 0
1474       // c3*x+c2
1475       fma.s1 F_S23 = F_X, F_CS3, F_CS2
1476       nop.i 0;;
1477}
1478
1479
1480{.mfi
1481       nop.m 0
1482       // 1-t^2
1483       fnma.s1 F_1T2 = F_T, F_T, f1
1484       nop.i 0
1485}
1486
1487{.mfi
1488       // load asin(t)_high, asin(t)_low
1489       ldfpd F_ATHI, F_ATLO = [r2]
1490       // c5*x+c4
1491       fma.s1 F_S45 = F_X, F_CS5, F_CS4
1492       nop.i 0;;
1493}
1494
1495
1496
1497{.mfi
1498       nop.m 0
1499       // t*s
1500       fma.s1 F_TS = F_T, f8, f0
1501       nop.i 0
1502}
1503
1504{.mfi
1505       nop.m 0
1506       // 0.5/(1-t^2)
1507       fma.s1 F_INV_1T2 = F_INV_1T2, F_2M64, f0
1508       nop.i 0;;
1509}
1510
1511{.mfi
1512       nop.m 0
1513       // z~sqrt(1-t^2), rounded to 24 significant bits
1514       fma.s.s1 F_Z = F_SQRT_1T2, F_2M64, f0
1515       nop.i 0
1516}
1517
1518{.mfi
1519       nop.m 0
1520       // sqrt(1-t^2)
1521       fma.s1 F_SQRT_1T2 = F_SQRT_1T2, F_2M64, f0
1522       nop.i 0;;
1523}
1524
1525
1526{.mfi
1527       nop.m 0
1528       // y*(1-s^2)*x^2
1529       fma.s1 F_Y1S2X2 = F_Y1S2, F_X2, f0
1530       nop.i 0
1531}
1532
1533{.mfi
1534       nop.m 0
1535       // x^4
1536       fma.s1 F_X4 = F_X2, F_X2, f0
1537       nop.i 0;;
1538}
1539
1540
1541{.mfi
1542       nop.m 0
1543       // s*t rounded to 24 significant bits
1544       fma.s.s1 F_TSS = F_T, f8, f0
1545       nop.i 0
1546}
1547
1548{.mfi
1549       nop.m 0
1550       // c9*x^3+..+c6
1551       fma.s1 F_S69 = F_X2, F_S89, F_S67
1552       nop.i 0;;
1553}
1554
1555
1556{.mfi
1557       nop.m 0
1558       // ST = (t^2-1+s^2) rounded to 24 significant bits
1559       fms.s.s1 F_ST = f8, f8, F_1T2
1560       nop.i 0
1561}
1562
1563{.mfi
1564       nop.m 0
1565       // c5*x^3+..+c2
1566       fma.s1 F_S25 = F_X2, F_S45, F_S23
1567       nop.i 0;;
1568}
1569
1570
1571{.mfi
1572       nop.m 0
1573       // 0.25/(1-t^2)
1574       fma.s1 F_INV1T2_2 = F_05, F_INV_1T2, f0
1575       nop.i 0
1576}
1577
1578{.mfi
1579       nop.m 0
1580       // t*s-sqrt(1-t^2)*(1-s^2)*y
1581       fnma.s1 F_TS = F_Y1S2, F_SQRT_1T2, F_TS
1582       nop.i 0;;
1583}
1584
1585
1586{.mfi
1587       nop.m 0
1588       // z*0.5/(1-t^2)
1589       fma.s1 F_ZE = F_INV_1T2, F_SQRT_1T2, f0
1590       nop.i 0
1591}
1592
1593{.mfi
1594       nop.m 0
1595       // z^2+t^2-1
1596       fms.s1 F_DZ0 = F_Z, F_Z, F_1T2
1597       nop.i 0;;
1598}
1599
1600
1601{.mfi
1602       nop.m 0
1603       // (1-s^2-(1-s^2)_s)*x
1604       fma.s1 F_DS2X = F_X, F_DS, f0
1605       nop.i 0;;
1606}
1607
1608
1609{.mfi
1610       nop.m 0
1611       // t*s-(t*s)_s
1612       fms.s1 F_DTS = F_T, f8, F_TSS
1613       nop.i 0
1614}
1615
1616{.mfi
1617       nop.m 0
1618       // c9*x^7+..+c2
1619       fma.s1 F_S29 = F_X4, F_S69, F_S25
1620       nop.i 0;;
1621}
1622
1623
1624{.mfi
1625       nop.m 0
1626       // y*z
1627       fma.s1 F_YZ = F_Z, F_Y, f0
1628       nop.i 0
1629}
1630
1631{.mfi
1632       nop.m 0
1633       // t^2
1634       fma.s1 F_T2 = F_T, F_T, f0
1635       nop.i 0;;
1636}
1637
1638
1639{.mfi
1640       nop.m 0
1641       // 1-t^2+ST
1642       fma.s1 F_1T2_ST = F_ST, f1, F_1T2
1643       nop.i 0;;
1644}
1645
1646
1647{.mfi
1648       nop.m 0
1649       // y*(1-s^2)(1-x)
1650       fma.s1 F_Y1S2_1X = F_Y1S2, F_1X, f0
1651       nop.i 0
1652}
1653
1654{.mfi
1655       nop.m 0
1656       // dz ~ sqrt(1-t^2)-z
1657       fma.s1 F_DZ = F_DZ0, F_ZE, f0
1658       nop.i 0;;
1659}
1660
1661
1662{.mfi
1663       nop.m 0
1664       // -1+correction for sqrt(1-t^2)-z
1665       fnma.s1 F_CORR = F_INV1T2_2, F_DZ0, f0
1666       nop.i 0;;
1667}
1668
1669
1670{.mfi
1671       nop.m 0
1672       // (PS29*x^2+x)*y*(1-s^2)
1673       fma.s1 F_S19 = F_Y1S2X2, F_S29, F_Y1S2X
1674       nop.i 0;;
1675}
1676
1677
1678{.mfi
1679       nop.m 0
1680       // z*y*(1-s^2)_s
1681       fma.s1 F_ZY1S2S = F_YZ, F_1S2_S, f0
1682       nop.i 0
1683}
1684
1685{.mfi
1686       nop.m 0
1687       // s^2-(1-t^2+ST)
1688       fms.s1 F_1T2_ST = f8, f8, F_1T2_ST
1689       nop.i 0;;
1690}
1691
1692
1693{.mfi
1694       nop.m 0
1695       // (t*s-(t*s)_s)+z*y*(1-s^2-(1-s^2)_s)*x
1696       fma.s1 F_DTS = F_YZ, F_DS2X, F_DTS
1697       nop.i 0
1698}
1699
1700{.mfi
1701       nop.m 0
1702       // dz*y*(1-s^2)*(1-x)
1703       fma.s1 F_DZ_TERM = F_DZ, F_Y1S2_1X, f0
1704       nop.i 0;;
1705}
1706
1707
1708{.mfi
1709       nop.m 0
1710       // R = t*s-sqrt(1-t^2)*(1-s^2)*y+sqrt(1-t^2)*(1-s^2)*y*PS19
1711       // (used for polynomial evaluation)
1712       fma.s1 F_R = F_S19, F_SQRT_1T2, F_TS
1713       nop.i 0;;
1714}
1715
1716
1717{.mfi
1718       nop.m 0
1719       // (PS29*x^2)*y*(1-s^2)
1720       fma.s1 F_S29 = F_Y1S2X2, F_S29, f0
1721       nop.i 0
1722}
1723
1724{.mfi
1725       nop.m 0
1726       // apply correction to dz*y*(1-s^2)*(1-x)
1727       fma.s1 F_DZ_TERM = F_DZ_TERM, F_CORR, F_DZ_TERM
1728       nop.i 0;;
1729}
1730
1731
1732{.mfi
1733       nop.m 0
1734       // R^2
1735       fma.s1 F_R2 = F_R, F_R, f0
1736       nop.i 0;;
1737}
1738
1739
1740{.mfi
1741       nop.m 0
1742       // (t*s-(t*s)_s)+z*y*(1-s^2-(1-s^2)_s)*x+dz*y*(1-s^2)*(1-x)
1743       fma.s1 F_DZ_TERM = F_DZ_TERM, f1, F_DTS
1744       nop.i 0;;
1745}
1746
1747
1748{.mfi
1749       nop.m 0
1750       // c7+c9*R^2
1751       fma.s1 F_P79 = F_C9, F_R2, F_C7
1752       nop.i 0
1753}
1754
1755{.mfi
1756       nop.m 0
1757       // c3+c5*R^2
1758       fma.s1 F_P35 = F_C5, F_R2, F_C3
1759       nop.i 0;;
1760}
1761
1762{.mfi
1763       nop.m 0
1764       // asin(t)_low-(pi/2)_low
1765       fms.s1 F_ATLO = F_ATLO, f1, F_PI2_LO
1766       nop.i 0
1767}
1768
1769{.mfi
1770       nop.m 0
1771       // R^4
1772       fma.s1 F_R4 = F_R2, F_R2, f0
1773       nop.i 0;;
1774}
1775
1776{.mfi
1777       nop.m 0
1778       // R^3
1779       fma.s1 F_R3 = F_R2, F_R, f0
1780       nop.i 0;;
1781}
1782
1783
1784{.mfi
1785       nop.m 0
1786       // (t*s)_s-t^2*y*z
1787       fnma.s1 F_TSS = F_T2, F_YZ, F_TSS
1788       nop.i 0
1789}
1790
1791{.mfi
1792       nop.m 0
1793       // d(ts)+z*y*d(1-s^2)*x+dz*y*(1-s^2)*(1-x)+z*y*(s^2-1+t^2-ST)
1794       fma.s1 F_DZ_TERM = F_YZ, F_1T2_ST, F_DZ_TERM
1795       nop.i 0;;
1796}
1797
1798
1799{.mfi
1800       nop.m 0
1801       // (pi/2)_hi-asin(t)_hi
1802       fms.s1 F_ATHI = F_PI2_HI, f1, F_ATHI
1803       nop.i 0
1804}
1805
1806{.mfi
1807       nop.m 0
1808       // c3+c5*R^2+c7*R^4+c9*R^6
1809       fma.s1 F_P39 = F_P79, F_R4, F_P35
1810       nop.i 0;;
1811}
1812
1813
1814{.mfi
1815       nop.m 0
1816       // d(ts)+z*y*d(1-s^2)*x+dz*y*(1-s^2)*(1-x)+z*y*(s^2-1+t^2-ST)+
1817       // + sqrt(1-t^2)*y*(1-s^2)*x^2*PS29
1818       fma.s1 F_DZ_TERM = F_SQRT_1T2, F_S29, F_DZ_TERM
1819       nop.i 0;;
1820}
1821
1822
1823{.mfi
1824       nop.m 0
1825       // (t*s)_s-t^2*y*z+z*y*ST
1826       fma.s1 F_TSS = F_YZ, F_ST, F_TSS
1827       nop.i 0
1828}
1829
1830{.mfi
1831       nop.m 0
1832       // -asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6)
1833       fms.s1 F_P39 = F_P39, F_R3, F_ATLO
1834       nop.i 0;;
1835}
1836
1837
1838{.mfi
1839       nop.m 0
1840       // if s<0, change sign of F_ATHI
1841 (p6) fnma.s1 F_ATHI = F_ATHI, f1, f0
1842       nop.i 0
1843}
1844
1845{.mfi
1846       nop.m 0
1847       // d(ts)+z*y*d(1-s^2)*x+dz*y*(1-s^2)*(1-x)+z*y*(s^2-1+t^2-ST) +
1848       // + sqrt(1-t^2)*y*(1-s^2)*x^2*PS29 +
1849       // - asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6)
1850       fma.s1 F_DZ_TERM = F_P39, f1, F_DZ_TERM
1851       nop.i 0;;
1852}
1853
1854
1855{.mfi
1856       nop.m 0
1857       // d(ts)+z*y*d(1-s^2)*x+dz*y*(1-s^2)*(1-x)+z*y*(s^2-1+t^2-ST) +
1858       // + sqrt(1-t^2)*y*(1-s^2)*x^2*PS29 + z*y*(1-s^2)_s*x +
1859       // - asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6)
1860       fma.s1 F_DZ_TERM = F_ZY1S2S, F_X, F_DZ_TERM
1861       nop.i 0;;
1862}
1863
1864
1865{.mfi
1866       nop.m 0
1867       // d(ts)+z*y*d(1-s^2)*x+dz*y*(1-s^2)*(1-x)+z*y*(s^2-1+t^2-ST) +
1868       // + sqrt(1-t^2)*y*(1-s^2)*x^2*PS29 + z*y*(1-s^2)_s*x +
1869       // - asin(t)_low+R^3*(c3+c5*R^2+c7*R^4+c9*R^6) +
1870       // + (t*s)_s-t^2*y*z+z*y*ST
1871       fma.s1 F_DZ_TERM = F_TSS, f1, F_DZ_TERM
1872       nop.i 0;;
1873}
1874
1875
1876.pred.rel "mutex", p6, p11
1877{.mfi
1878       nop.m 0
1879       // result: add high part of pi/2-table value
1880       // s>0 in this case
1881 (p11) fma.s0 f8 = F_DZ_TERM, f1, F_ATHI
1882       nop.i 0
1883}
1884
1885{.mfb
1886       nop.m 0
1887       // result: add high part of pi/2-table value
1888       // if s<0
1889 (p6) fnma.s0 f8 = F_DZ_TERM, f1, F_ATHI
1890       br.ret.sptk b0;;
1891}
1892
1893
1894
1895
1896
1897
1898SMALL_S:
1899
1900       // use 15-term polynomial approximation
1901
1902{.mmi
1903       // r3 = pointer to polynomial coefficients
1904       addl r3 = @ltoff(poly_coeffs), gp;;
1905       // load start address for coefficients
1906       ld8 r3 = [r3]
1907       mov R_TMP = 0x3fbf;;
1908}
1909
1910
1911{.mmi
1912       add r2 = 64, r3
1913       ldfe F_C3 = [r3], 16
1914       // p7 = 1 if |s|<2^{-64} (exponent of s<bias-64)
1915       cmp.lt p7, p0 = R_EXP0, R_TMP;;
1916}
1917
1918{.mmf
1919       ldfe F_C5 = [r3], 16
1920       ldfpd F_C11, F_C13 = [r2], 16
1921	   // 2^{-128}
1922       fma.s1 F_2M128 = F_2M64, F_2M64, f0;;
1923}
1924
1925{.mmf
1926       ldfpd F_C7, F_C9 = [r3]
1927       ldfpd F_C15, F_C17 = [r2]
1928       // if |s|<2^{-64}, return s+2^{-128}*s
1929 (p7) fma.s0 f8 = f8, F_2M128, f8;;
1930}
1931
1932
1933
1934{.mfb
1935       nop.m 0
1936       // s^2
1937       fma.s1 F_R2 = f8, f8, f0
1938       // if |s|<2^{-64}, return s
1939 (p7) br.ret.spnt b0;;
1940}
1941
1942
1943{.mfi
1944       nop.m 0
1945       // s^3
1946       fma.s1 F_R3 = f8, F_R2, f0
1947       nop.i 0
1948}
1949
1950{.mfi
1951       nop.m 0
1952       // s^4
1953       fma.s1 F_R4 = F_R2, F_R2, f0
1954       nop.i 0;;
1955}
1956
1957
1958{.mfi
1959       nop.m 0
1960       // c3+c5*s^2
1961       fma.s1 F_P35 = F_C5, F_R2, F_C3
1962       nop.i 0
1963}
1964
1965{.mfi
1966       nop.m 0
1967       // c11+c13*s^2
1968       fma.s1 F_P1113 = F_C13, F_R2, F_C11
1969       nop.i 0;;
1970}
1971
1972
1973{.mfi
1974       nop.m 0
1975       // c7+c9*s^2
1976       fma.s1 F_P79 = F_C9, F_R2, F_C7
1977       nop.i 0
1978}
1979
1980{.mfi
1981       nop.m 0
1982       // c15+c17*s^2
1983       fma.s1 F_P1517 = F_C17, F_R2, F_C15
1984       nop.i 0;;
1985}
1986
1987
1988{.mfi
1989       nop.m 0
1990       // s^8
1991       fma.s1 F_R8 = F_R4, F_R4, f0
1992       nop.i 0;;
1993}
1994
1995
1996{.mfi
1997       nop.m 0
1998       // c3+c5*s^2+c7*s^4+c9*s^6
1999       fma.s1 F_P39 = F_P79, F_R4, F_P35
2000       nop.i 0
2001}
2002
2003{.mfi
2004       nop.m 0
2005       // c11+c13*s^2+c15*s^4+c17*s^6
2006       fma.s1 F_P1117 = F_P1517, F_R4, F_P1113
2007       nop.i 0;;
2008}
2009
2010
2011{.mfi
2012       nop.m 0
2013       // c3+..+c17*s^14
2014       fma.s1 F_P317 = F_R8, F_P1117, F_P39
2015       nop.i 0;;
2016}
2017
2018
2019{.mfb
2020       nop.m 0
2021       // result
2022       fma.s0 f8 = F_P317, F_R3, f8
2023       br.ret.sptk b0;;
2024}
2025
2026
2027{.mfb
2028       nop.m 0
2029       fma.s0 f8 = F_P317, F_R3, f0//F_P317, F_R3, F_S29
2030       // nop.f 0//fma.s0 f8 = f13, f6, f0
2031       br.ret.sptk b0;;
2032}
2033
2034
2035
2036
2037
2038       VERY_LARGE_INPUT:
2039
2040{.mfi
2041       nop.m 0
2042       // s rounded to 24 significant bits
2043       fma.s.s1 F_S = f8, f1, f0
2044       nop.i 0
2045}
2046
2047{.mfi
2048       // load C5
2049       ldfe F_C5 = [r3], 16
2050       // x = ((1-(s^2)_s)*y^2-1)/2-(s^2-(s^2)_s)*y^2/2
2051       fnma.s1 F_X = F_S_DS2, F_Y2_2, F_XL
2052       nop.i 0;;
2053}
2054
2055
2056
2057{.mmf
2058       nop.m 0
2059       // C7, C9
2060       ldfpd F_C7, F_C9 = [r3], 16
2061       nop.f 0;;
2062}
2063
2064
2065
2066{.mfi
2067       // pi/2 (low, high)
2068       ldfpd F_PI2_LO, F_PI2_HI = [r3], 16
2069       // c9*x+c8
2070       fma.s1 F_S89 = F_X, F_CS9, F_CS8
2071       nop.i 0
2072}
2073
2074{.mfi
2075       nop.m 0
2076       // x^2
2077       fma.s1 F_X2 = F_X, F_X, f0
2078       nop.i 0;;
2079}
2080
2081
2082{.mfi
2083       nop.m 0
2084       // y*(1-s^2)*x
2085       fma.s1 F_Y1S2X = F_Y1S2, F_X, f0
2086       nop.i 0
2087}
2088
2089{.mfi
2090       // C11, C13
2091       ldfpd F_C11, F_C13 = [r3], 16
2092       // c7*x+c6
2093       fma.s1 F_S67 = F_X, F_CS7, F_CS6
2094       nop.i 0;;
2095}
2096
2097
2098{.mfi
2099       // C15, C17
2100       ldfpd F_C15, F_C17 = [r3], 16
2101       // c3*x+c2
2102       fma.s1 F_S23 = F_X, F_CS3, F_CS2
2103       nop.i 0;;
2104}
2105
2106
2107{.mfi
2108       nop.m 0
2109       // c5*x+c4
2110       fma.s1 F_S45 = F_X, F_CS5, F_CS4
2111       nop.i 0;;
2112}
2113
2114
2115{.mfi
2116       nop.m 0
2117       // (s_s)^2
2118       fma.s1 F_DS = F_S, F_S, f0
2119       nop.i 0
2120}
2121
2122{.mfi
2123       nop.m 0
2124       // 1-(s_s)^2
2125       fnma.s1 F_1S2_S = F_S, F_S, f1
2126       nop.i 0;;
2127}
2128
2129
2130{.mfi
2131       nop.m 0
2132       // y*(1-s^2)*x^2
2133       fma.s1 F_Y1S2X2 = F_Y1S2, F_X2, f0
2134       nop.i 0
2135}
2136
2137{.mfi
2138       nop.m 0
2139       // x^4
2140       fma.s1 F_X4 = F_X2, F_X2, f0
2141       nop.i 0;;
2142}
2143
2144
2145{.mfi
2146       nop.m 0
2147       // c9*x^3+..+c6
2148       fma.s1 F_S69 = F_X2, F_S89, F_S67
2149       nop.i 0;;
2150}
2151
2152
2153{.mfi
2154       nop.m 0
2155       // c5*x^3+..+c2
2156       fma.s1 F_S25 = F_X2, F_S45, F_S23
2157       nop.i 0;;
2158}
2159
2160
2161{.mfi
2162       nop.m 0
2163       // ((s_s)^2-s^2)
2164       fnma.s1 F_DS = f8, f8, F_DS
2165       nop.i 0
2166}
2167
2168{.mfi
2169       nop.m 0
2170       // (pi/2)_high-y*(1-(s_s)^2)
2171       fnma.s1 F_HI = F_Y, F_1S2_S, F_PI2_HI
2172       nop.i 0;;
2173}
2174
2175
2176{.mfi
2177       nop.m 0
2178       // c9*x^7+..+c2
2179       fma.s1 F_S29 = F_X4, F_S69, F_S25
2180       nop.i 0;;
2181}
2182
2183
2184{.mfi
2185       nop.m 0
2186       // -(y*(1-(s_s)^2))_high
2187       fms.s1 F_1S2_HI = F_HI, f1, F_PI2_HI
2188       nop.i 0;;
2189}
2190
2191
2192{.mfi
2193       nop.m 0
2194       // (PS29*x^2+x)*y*(1-s^2)
2195       fma.s1 F_S19 = F_Y1S2X2, F_S29, F_Y1S2X
2196       nop.i 0;;
2197}
2198
2199
2200{.mfi
2201       nop.m 0
2202       // y*(1-(s_s)^2)-(y*(1-s^2))_high
2203       fma.s1 F_DS2 = F_Y, F_1S2_S, F_1S2_HI
2204       nop.i 0;;
2205}
2206
2207
2208
2209{.mfi
2210       nop.m 0
2211       // R ~ sqrt(1-s^2)
2212       // (used for polynomial evaluation)
2213       fnma.s1 F_R = F_S19, f1, F_Y1S2
2214       nop.i 0;;
2215}
2216
2217
2218{.mfi
2219       nop.m 0
2220       // y*(1-s^2)-(y*(1-s^2))_high
2221       fma.s1 F_DS2 = F_Y, F_DS, F_DS2
2222       nop.i 0
2223}
2224
2225{.mfi
2226       nop.m 0
2227       // (pi/2)_low+(PS29*x^2)*y*(1-s^2)
2228       fma.s1 F_S29 = F_Y1S2X2, F_S29, F_PI2_LO
2229       nop.i 0;;
2230}
2231
2232
2233
2234{.mfi
2235       nop.m 0
2236       // R^2
2237       fma.s1 F_R2 = F_R, F_R, f0
2238       nop.i 0;;
2239}
2240
2241
2242{.mfi
2243       nop.m 0
2244       // (pi/2)_low+(PS29*x^2)*y*(1-s^2)-(y*(1-s^2)-(y*(1-s^2))_high)
2245       fms.s1 F_S29 = F_S29, f1, F_DS2
2246       nop.i 0;;
2247}
2248
2249
2250{.mfi
2251       nop.m 0
2252       // c7+c9*R^2
2253       fma.s1 F_P79 = F_C9, F_R2, F_C7
2254       nop.i 0
2255}
2256
2257{.mfi
2258       nop.m 0
2259       // c3+c5*R^2
2260       fma.s1 F_P35 = F_C5, F_R2, F_C3
2261       nop.i 0;;
2262}
2263
2264
2265
2266{.mfi
2267       nop.m 0
2268       // R^4
2269       fma.s1 F_R4 = F_R2, F_R2, f0
2270       nop.i 0
2271}
2272
2273{.mfi
2274       nop.m 0
2275       // R^3
2276       fma.s1 F_R3 = F_R2, F_R, f0
2277       nop.i 0;;
2278}
2279
2280
2281{.mfi
2282       nop.m 0
2283       // c11+c13*R^2
2284       fma.s1 F_P1113 = F_C13, F_R2, F_C11
2285       nop.i 0
2286}
2287
2288{.mfi
2289       nop.m 0
2290       // c15+c17*R^2
2291       fma.s1 F_P1517 = F_C17, F_R2, F_C15
2292       nop.i 0;;
2293}
2294
2295
2296{.mfi
2297       nop.m 0
2298       // (pi/2)_low+(PS29*x^2)*y*(1-s^2)-(y*(1-s^2)-(y*(1-s^2))_high)+y*(1-s^2)*x
2299       fma.s1 F_S29 = F_Y1S2, F_X, F_S29
2300       nop.i 0;;
2301}
2302
2303
2304{.mfi
2305       nop.m 0
2306       // c11+c13*R^2+c15*R^4+c17*R^6
2307       fma.s1 F_P1117 = F_P1517, F_R4, F_P1113
2308       nop.i 0
2309}
2310
2311{.mfi
2312       nop.m 0
2313       // c3+c5*R^2+c7*R^4+c9*R^6
2314       fma.s1 F_P39 = F_P79, F_R4, F_P35
2315       nop.i 0;;
2316}
2317
2318
2319{.mfi
2320       nop.m 0
2321       // R^8
2322       fma.s1 F_R8 = F_R4, F_R4, f0
2323       nop.i 0;;
2324}
2325
2326
2327{.mfi
2328       nop.m 0
2329       // c3+c5*R^2+c7*R^4+c9*R^6+..+c17*R^14
2330       fma.s1 F_P317 = F_P1117, F_R8, F_P39
2331       nop.i 0;;
2332}
2333
2334
2335{.mfi
2336       nop.m 0
2337       // (pi/2)_low-(PS29*x^2)*y*(1-s^2)-(y*(1-s^2)-
2338       // -(y*(1-s^2))_high)+y*(1-s^2)*x - P3, 17
2339       fnma.s1 F_S29 = F_P317, F_R3, F_S29
2340       nop.i 0;;
2341}
2342
2343{.mfi
2344       nop.m 0
2345       // set sign
2346  (p6) fnma.s1 F_S29 = F_S29, f1, f0
2347       nop.i 0
2348}
2349
2350{.mfi
2351       nop.m 0
2352  (p6) fnma.s1 F_HI = F_HI, f1, f0
2353       nop.i 0;;
2354}
2355
2356
2357{.mfb
2358       nop.m 0
2359       // Result:
2360       // (pi/2)_low-(PS29*x^2)*y*(1-s^2)-(y*(1-s^2)-
2361       // -(y*(1-s^2))_high)+y*(1-s^2)*x - P3, 17
2362       // +(pi/2)_high-(y*(1-s^2))_high
2363       fma.s0 f8 = F_S29, f1, F_HI
2364       br.ret.sptk b0;;
2365}
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375       ASINL_SPECIAL_CASES:
2376
2377{.mfi
2378       alloc r32 = ar.pfs, 1, 4, 4, 0
2379       // check if the input is a NaN, or unsupported format
2380       // (i.e. not infinity or normal/denormal)
2381       fclass.nm p7, p8 = f8, 0x3f
2382       // pointer to pi/2
2383       add r3 = 48, r3;;
2384}
2385
2386
2387{.mfi
2388       // load pi/2
2389       ldfpd F_PI2_HI, F_PI2_LO = [r3]
2390       // get |s|
2391       fmerge.s F_S = f0, f8
2392       nop.i 0
2393}
2394
2395{.mfb
2396       nop.m 0
2397       // if NaN, quietize it, and return
2398 (p7) fma.s0 f8 = f8, f1, f0
2399 (p7) br.ret.spnt b0;;
2400}
2401
2402
2403{.mfi
2404       nop.m 0
2405       // |s| = 1 ?
2406       fcmp.eq.s0 p9, p0 = F_S, f1
2407       nop.i 0
2408}
2409
2410{.mfi
2411       nop.m 0
2412       // load FR_X
2413       fma.s1 FR_X = f8, f1, f0
2414       // load error tag
2415       mov GR_Parameter_TAG = 60;;
2416}
2417
2418
2419{.mfb
2420       nop.m 0
2421       // change sign if s = -1
2422 (p6)  fnma.s1 F_PI2_HI = F_PI2_HI, f1, f0
2423       nop.b 0
2424}
2425
2426{.mfb
2427       nop.m 0
2428       // change sign if s = -1
2429 (p6)  fnma.s1 F_PI2_LO = F_PI2_LO, f1, f0
2430       nop.b 0;;
2431}
2432
2433{.mfb
2434       nop.m 0
2435       // if s = 1, result is pi/2
2436 (p9) fma.s0 f8 = F_PI2_HI, f1, F_PI2_LO
2437       // return if |s| = 1
2438 (p9) br.ret.sptk b0;;
2439}
2440
2441
2442{.mfi
2443       nop.m 0
2444       // get Infinity
2445       frcpa.s1 FR_RESULT, p0 = f1, f0
2446       nop.i 0;;
2447}
2448
2449
2450{.mfi
2451       nop.m 0
2452       // return QNaN indefinite (0*Infinity)
2453       fma.s0 FR_RESULT = f0, FR_RESULT, f0
2454       nop.i 0;;
2455}
2456
2457
2458GLOBAL_LIBM_END(asinl)
2459libm_alias_ldouble_other (asin, asin)
2460
2461
2462
2463LOCAL_LIBM_ENTRY(__libm_error_region)
2464.prologue
2465// (1)
2466{ .mfi
2467        add   GR_Parameter_Y=-32,sp             // Parameter 2 value
2468        nop.f 0
2469.save   ar.pfs,GR_SAVE_PFS
2470        mov  GR_SAVE_PFS=ar.pfs                 // Save ar.pfs
2471}
2472{ .mfi
2473.fframe 64
2474        add sp=-64,sp                          // Create new stack
2475        nop.f 0
2476        mov GR_SAVE_GP=gp                      // Save gp
2477};;
2478
2479
2480// (2)
2481{ .mmi
2482        stfe [GR_Parameter_Y] = f1,16         // Store Parameter 2 on stack
2483        add GR_Parameter_X = 16,sp            // Parameter 1 address
2484.save   b0, GR_SAVE_B0
2485        mov GR_SAVE_B0=b0                     // Save b0
2486};;
2487
2488.body
2489// (3)
2490{ .mib
2491        stfe [GR_Parameter_X] = FR_X              // Store Parameter 1 on stack
2492        add   GR_Parameter_RESULT = 0,GR_Parameter_Y
2493        nop.b 0                                 // Parameter 3 address
2494}
2495{ .mib
2496        stfe [GR_Parameter_Y] = FR_RESULT             // Store Parameter 3 on stack
2497        add   GR_Parameter_Y = -16,GR_Parameter_Y
2498        br.call.sptk b0=__libm_error_support#   // Call error handling function
2499};;
2500{ .mmi
2501        nop.m 0
2502        nop.m 0
2503        add   GR_Parameter_RESULT = 48,sp
2504};;
2505
2506// (4)
2507{ .mmi
2508        ldfe  f8 = [GR_Parameter_RESULT]       // Get return result off stack
2509.restore sp
2510        add   sp = 64,sp                       // Restore stack pointer
2511        mov   b0 = GR_SAVE_B0                  // Restore return address
2512};;
2513
2514{ .mib
2515        mov   gp = GR_SAVE_GP                  // Restore gp
2516        mov   ar.pfs = GR_SAVE_PFS             // Restore ar.pfs
2517        br.ret.sptk     b0                     // Return
2518};;
2519
2520LOCAL_LIBM_END(__libm_error_region)
2521
2522.type   __libm_error_support#,@function
2523.global __libm_error_support#
2524