1# Begin of automatic generation
2
3# Maximal error of functions:
4Function: "acosh":
5double: 1
6float: 1
7ldouble: 1
8
9Function: "acosh_downward":
10double: 1
11float: 1
12ldouble: 1
13
14Function: "acosh_towardzero":
15double: 1
16float: 1
17ldouble: 1
18
19Function: "acosh_upward":
20double: 2
21float: 1
22ldouble: 1
23
24Function: "asinh":
25double: 1
26float: 1
27ldouble: 1
28
29Function: "asinh_downward":
30double: 2
31float: 2
32ldouble: 2
33
34Function: "asinh_towardzero":
35double: 2
36float: 2
37ldouble: 2
38
39Function: "asinh_upward":
40double: 2
41float: 2
42ldouble: 3
43
44Function: "atan2":
45float: 1
46ldouble: 1
47
48Function: "atan2_downward":
49double: 1
50float: 1
51ldouble: 2
52
53Function: "atan2_towardzero":
54double: 1
55float: 1
56ldouble: 2
57
58Function: "atan2_upward":
59double: 1
60float: 1
61ldouble: 2
62
63Function: "atan_downward":
64double: 1
65float: 1
66ldouble: 1
67
68Function: "atan_towardzero":
69float: 1
70ldouble: 1
71
72Function: "atan_upward":
73double: 1
74float: 1
75ldouble: 1
76
77Function: "cabs":
78double: 1
79ldouble: 1
80
81Function: "cabs_downward":
82double: 1
83ldouble: 1
84
85Function: "cabs_towardzero":
86double: 1
87ldouble: 1
88
89Function: "cabs_upward":
90double: 1
91ldouble: 1
92
93Function: Real part of "cacos":
94double: 1
95float: 2
96ldouble: 1
97
98Function: Imaginary part of "cacos":
99double: 1
100float: 1
101ldouble: 2
102
103Function: Real part of "cacos_downward":
104double: 2
105float: 2
106ldouble: 2
107
108Function: Imaginary part of "cacos_downward":
109double: 5
110float: 3
111ldouble: 4
112
113Function: Real part of "cacos_towardzero":
114double: 2
115float: 2
116ldouble: 2
117
118Function: Imaginary part of "cacos_towardzero":
119double: 5
120float: 3
121ldouble: 4
122
123Function: Real part of "cacos_upward":
124double: 2
125float: 2
126ldouble: 3
127
128Function: Imaginary part of "cacos_upward":
129double: 4
130float: 5
131ldouble: 4
132
133Function: Real part of "cacosh":
134double: 1
135float: 1
136ldouble: 2
137
138Function: Imaginary part of "cacosh":
139double: 1
140float: 2
141ldouble: 1
142
143Function: Real part of "cacosh_downward":
144double: 5
145float: 3
146ldouble: 4
147
148Function: Imaginary part of "cacosh_downward":
149double: 2
150float: 2
151ldouble: 2
152
153Function: Real part of "cacosh_towardzero":
154double: 5
155float: 3
156ldouble: 4
157
158Function: Imaginary part of "cacosh_towardzero":
159double: 2
160float: 2
161ldouble: 2
162
163Function: Real part of "cacosh_upward":
164double: 4
165float: 5
166ldouble: 4
167
168Function: Imaginary part of "cacosh_upward":
169double: 2
170float: 2
171ldouble: 3
172
173Function: "carg":
174float: 1
175ldouble: 1
176
177Function: "carg_downward":
178double: 1
179float: 1
180ldouble: 1
181
182Function: "carg_towardzero":
183float: 1
184ldouble: 1
185
186Function: "carg_upward":
187double: 1
188float: 1
189ldouble: 1
190
191Function: Real part of "casin":
192double: 1
193float: 1
194ldouble: 1
195
196Function: Imaginary part of "casin":
197double: 1
198float: 1
199ldouble: 2
200
201Function: Real part of "casin_downward":
202double: 2
203float: 2
204ldouble: 2
205
206Function: Imaginary part of "casin_downward":
207double: 5
208float: 3
209ldouble: 4
210
211Function: Real part of "casin_towardzero":
212double: 1
213float: 2
214ldouble: 2
215
216Function: Imaginary part of "casin_towardzero":
217double: 5
218float: 3
219ldouble: 4
220
221Function: Real part of "casin_upward":
222double: 2
223float: 2
224ldouble: 2
225
226Function: Imaginary part of "casin_upward":
227double: 4
228float: 5
229ldouble: 4
230
231Function: Real part of "casinh":
232double: 1
233float: 1
234ldouble: 2
235
236Function: Imaginary part of "casinh":
237double: 1
238float: 1
239ldouble: 1
240
241Function: Real part of "casinh_downward":
242double: 5
243float: 3
244ldouble: 4
245
246Function: Imaginary part of "casinh_downward":
247double: 2
248float: 2
249ldouble: 2
250
251Function: Real part of "casinh_towardzero":
252double: 5
253float: 3
254ldouble: 4
255
256Function: Imaginary part of "casinh_towardzero":
257double: 1
258float: 2
259ldouble: 2
260
261Function: Real part of "casinh_upward":
262double: 4
263float: 5
264ldouble: 4
265
266Function: Imaginary part of "casinh_upward":
267double: 2
268float: 2
269ldouble: 2
270
271Function: Real part of "catan":
272ldouble: 1
273
274Function: Imaginary part of "catan":
275double: 1
276float: 1
277ldouble: 1
278
279Function: Real part of "catan_downward":
280double: 1
281float: 1
282ldouble: 1
283
284Function: Imaginary part of "catan_downward":
285double: 2
286float: 1
287ldouble: 3
288
289Function: Real part of "catan_towardzero":
290double: 1
291float: 1
292ldouble: 1
293
294Function: Imaginary part of "catan_towardzero":
295double: 2
296float: 1
297ldouble: 3
298
299Function: Real part of "catan_upward":
300double: 1
301float: 1
302ldouble: 1
303
304Function: Imaginary part of "catan_upward":
305double: 2
306float: 3
307ldouble: 3
308
309Function: Real part of "catanh":
310double: 1
311float: 1
312ldouble: 1
313
314Function: Imaginary part of "catanh":
315ldouble: 1
316
317Function: Real part of "catanh_downward":
318double: 2
319float: 1
320ldouble: 3
321
322Function: Imaginary part of "catanh_downward":
323double: 1
324float: 1
325ldouble: 1
326
327Function: Real part of "catanh_towardzero":
328double: 2
329float: 1
330ldouble: 3
331
332Function: Imaginary part of "catanh_towardzero":
333double: 1
334float: 1
335ldouble: 1
336
337Function: Real part of "catanh_upward":
338double: 2
339float: 3
340ldouble: 4
341
342Function: Imaginary part of "catanh_upward":
343double: 1
344float: 1
345ldouble: 1
346
347Function: "cbrt":
348double: 1
349float: 1
350ldouble: 1
351
352Function: "cbrt_downward":
353double: 1
354float: 1
355ldouble: 1
356
357Function: "cbrt_towardzero":
358double: 1
359float: 1
360ldouble: 1
361
362Function: "cbrt_upward":
363double: 1
364float: 1
365ldouble: 1
366
367Function: Real part of "ccos":
368ldouble: 1
369
370Function: Imaginary part of "ccos":
371ldouble: 1
372
373Function: Real part of "ccos_downward":
374double: 1
375ldouble: 2
376
377Function: Imaginary part of "ccos_downward":
378double: 1
379ldouble: 2
380
381Function: Real part of "ccos_towardzero":
382double: 1
383ldouble: 2
384
385Function: Imaginary part of "ccos_towardzero":
386double: 1
387ldouble: 2
388
389Function: Real part of "ccos_upward":
390double: 1
391ldouble: 2
392
393Function: Imaginary part of "ccos_upward":
394double: 1
395ldouble: 2
396
397Function: Imaginary part of "ccosh":
398ldouble: 1
399
400Function: Real part of "ccosh_downward":
401double: 1
402ldouble: 2
403
404Function: Imaginary part of "ccosh_downward":
405double: 1
406ldouble: 2
407
408Function: Real part of "ccosh_towardzero":
409double: 1
410ldouble: 2
411
412Function: Imaginary part of "ccosh_towardzero":
413double: 1
414ldouble: 2
415
416Function: Real part of "ccosh_upward":
417double: 1
418ldouble: 2
419
420Function: Imaginary part of "ccosh_upward":
421double: 1
422ldouble: 2
423
424Function: Real part of "cexp":
425ldouble: 1
426
427Function: Imaginary part of "cexp":
428ldouble: 1
429
430Function: Real part of "cexp_downward":
431double: 1
432float: 1
433ldouble: 3
434
435Function: Imaginary part of "cexp_downward":
436double: 1
437float: 1
438ldouble: 3
439
440Function: Real part of "cexp_towardzero":
441double: 1
442float: 1
443ldouble: 3
444
445Function: Imaginary part of "cexp_towardzero":
446double: 1
447float: 1
448ldouble: 3
449
450Function: Real part of "cexp_upward":
451double: 1
452ldouble: 2
453
454Function: Imaginary part of "cexp_upward":
455double: 1
456ldouble: 2
457
458Function: Real part of "clog":
459double: 3
460float: 2
461ldouble: 3
462
463Function: Imaginary part of "clog":
464double: 1
465float: 1
466ldouble: 1
467
468Function: Real part of "clog10":
469double: 2
470float: 2
471ldouble: 3
472
473Function: Imaginary part of "clog10":
474double: 1
475float: 1
476ldouble: 2
477
478Function: Real part of "clog10_downward":
479double: 6
480float: 4
481ldouble: 7
482
483Function: Imaginary part of "clog10_downward":
484double: 1
485float: 2
486ldouble: 4
487
488Function: Real part of "clog10_towardzero":
489double: 6
490float: 4
491ldouble: 7
492
493Function: Imaginary part of "clog10_towardzero":
494double: 1
495float: 2
496ldouble: 4
497
498Function: Real part of "clog10_upward":
499double: 7
500float: 5
501ldouble: 6
502
503Function: Imaginary part of "clog10_upward":
504double: 1
505float: 2
506ldouble: 3
507
508Function: Real part of "clog_downward":
509double: 7
510float: 5
511ldouble: 8
512
513Function: Imaginary part of "clog_downward":
514double: 1
515float: 1
516ldouble: 2
517
518Function: Real part of "clog_towardzero":
519double: 7
520float: 5
521ldouble: 9
522
523Function: Imaginary part of "clog_towardzero":
524double: 1
525float: 1
526ldouble: 2
527
528Function: Real part of "clog_upward":
529double: 8
530float: 5
531ldouble: 7
532
533Function: Imaginary part of "clog_upward":
534double: 1
535float: 1
536ldouble: 2
537
538Function: "cos":
539double: 1
540
541Function: Real part of "cpow":
542double: 1
543float: 3
544ldouble: 3
545
546Function: Imaginary part of "cpow":
547float: 5
548ldouble: 1
549
550Function: Real part of "cpow_downward":
551double: 5
552float: 8
553ldouble: 7
554
555Function: Imaginary part of "cpow_downward":
556double: 1
557float: 1
558ldouble: 2
559
560Function: Real part of "cpow_towardzero":
561double: 5
562float: 8
563ldouble: 7
564
565Function: Imaginary part of "cpow_towardzero":
566double: 1
567float: 1
568ldouble: 2
569
570Function: Real part of "cpow_upward":
571double: 4
572float: 1
573ldouble: 2
574
575Function: Imaginary part of "cpow_upward":
576double: 1
577float: 1
578ldouble: 2
579
580Function: Real part of "csin":
581ldouble: 1
582
583Function: Real part of "csin_downward":
584double: 1
585float: 1
586ldouble: 2
587
588Function: Imaginary part of "csin_downward":
589double: 1
590float: 1
591ldouble: 1
592
593Function: Real part of "csin_towardzero":
594double: 1
595float: 1
596ldouble: 2
597
598Function: Imaginary part of "csin_towardzero":
599double: 1
600float: 1
601ldouble: 1
602
603Function: Real part of "csin_upward":
604double: 1
605float: 1
606ldouble: 2
607
608Function: Imaginary part of "csin_upward":
609double: 1
610float: 1
611ldouble: 1
612
613Function: Real part of "csinh":
614ldouble: 1
615
616Function: Real part of "csinh_downward":
617double: 1
618float: 1
619ldouble: 1
620
621Function: Imaginary part of "csinh_downward":
622double: 1
623float: 1
624ldouble: 2
625
626Function: Real part of "csinh_towardzero":
627double: 1
628float: 1
629ldouble: 1
630
631Function: Imaginary part of "csinh_towardzero":
632double: 1
633float: 1
634ldouble: 2
635
636Function: Real part of "csinh_upward":
637double: 1
638float: 1
639ldouble: 1
640
641Function: Imaginary part of "csinh_upward":
642double: 1
643float: 1
644ldouble: 2
645
646Function: Real part of "csqrt":
647double: 1
648float: 1
649ldouble: 2
650
651Function: Imaginary part of "csqrt":
652double: 1
653float: 1
654ldouble: 2
655
656Function: Real part of "csqrt_downward":
657double: 1
658float: 2
659ldouble: 4
660
661Function: Imaginary part of "csqrt_downward":
662double: 1
663float: 2
664ldouble: 3
665
666Function: Real part of "csqrt_towardzero":
667double: 1
668float: 1
669ldouble: 4
670
671Function: Imaginary part of "csqrt_towardzero":
672double: 1
673float: 2
674ldouble: 3
675
676Function: Real part of "csqrt_upward":
677double: 1
678float: 2
679ldouble: 5
680
681Function: Imaginary part of "csqrt_upward":
682double: 2
683float: 2
684ldouble: 3
685
686Function: Real part of "ctan":
687double: 1
688float: 1
689ldouble: 2
690
691Function: Imaginary part of "ctan":
692double: 1
693float: 1
694ldouble: 2
695
696Function: Real part of "ctan_downward":
697double: 2
698float: 2
699ldouble: 2
700
701Function: Imaginary part of "ctan_downward":
702double: 3
703float: 2
704ldouble: 2
705
706Function: Real part of "ctan_towardzero":
707double: 1
708float: 2
709ldouble: 2
710
711Function: Imaginary part of "ctan_towardzero":
712double: 3
713float: 2
714ldouble: 4
715
716Function: Real part of "ctan_upward":
717double: 1
718float: 3
719ldouble: 5
720
721Function: Imaginary part of "ctan_upward":
722double: 1
723float: 1
724ldouble: 7
725
726Function: Real part of "ctanh":
727double: 1
728float: 1
729ldouble: 2
730
731Function: Imaginary part of "ctanh":
732double: 1
733float: 2
734ldouble: 2
735
736Function: Real part of "ctanh_downward":
737double: 3
738float: 2
739ldouble: 2
740
741Function: Imaginary part of "ctanh_downward":
742double: 2
743float: 2
744ldouble: 2
745
746Function: Real part of "ctanh_towardzero":
747double: 3
748float: 2
749ldouble: 4
750
751Function: Imaginary part of "ctanh_towardzero":
752double: 1
753float: 1
754ldouble: 2
755
756Function: Real part of "ctanh_upward":
757double: 1
758float: 2
759ldouble: 7
760
761Function: Imaginary part of "ctanh_upward":
762double: 1
763float: 3
764ldouble: 5
765
766Function: "erf":
767float: 1
768ldouble: 1
769
770Function: "erf_downward":
771float: 1
772
773Function: "erf_towardzero":
774ldouble: 1
775
776Function: "erf_upward":
777float: 1
778ldouble: 1
779
780Function: "erfc":
781float: 1
782ldouble: 2
783
784Function: "erfc_downward":
785double: 1
786float: 3
787ldouble: 4
788
789Function: "erfc_towardzero":
790double: 1
791float: 1
792ldouble: 4
793
794Function: "erfc_upward":
795double: 1
796float: 3
797ldouble: 3
798
799Function: "exp2":
800double: 1
801
802Function: "gamma":
803float: 1
804ldouble: 2
805
806Function: "gamma_downward":
807double: 1
808float: 1
809ldouble: 3
810
811Function: "gamma_towardzero":
812double: 1
813float: 1
814ldouble: 3
815
816Function: "gamma_upward":
817double: 1
818float: 1
819ldouble: 2
820
821Function: "hypot":
822double: 1
823ldouble: 1
824
825Function: "hypot_downward":
826double: 1
827ldouble: 1
828
829Function: "hypot_towardzero":
830double: 1
831ldouble: 1
832
833Function: "hypot_upward":
834double: 1
835ldouble: 1
836
837Function: "j0":
838double: 1
839float: 2
840ldouble: 2
841
842Function: "j0_downward":
843double: 4
844float: 3
845ldouble: 4
846
847Function: "j0_towardzero":
848double: 1
849float: 1
850ldouble: 5
851
852Function: "j0_upward":
853double: 2
854float: 3
855ldouble: 5
856
857Function: "j1":
858float: 2
859ldouble: 1
860
861Function: "j1_downward":
862double: 1
863float: 4
864ldouble: 5
865
866Function: "j1_towardzero":
867double: 1
868float: 2
869ldouble: 4
870
871Function: "j1_upward":
872double: 1
873float: 3
874ldouble: 3
875
876Function: "jn":
877double: 2
878float: 2
879ldouble: 4
880
881Function: "jn_downward":
882double: 2
883float: 4
884ldouble: 5
885
886Function: "jn_towardzero":
887double: 2
888float: 3
889ldouble: 5
890
891Function: "jn_upward":
892double: 2
893float: 3
894ldouble: 5
895
896Function: "lgamma":
897float: 1
898ldouble: 2
899
900Function: "lgamma_downward":
901double: 1
902float: 1
903ldouble: 3
904
905Function: "lgamma_towardzero":
906double: 1
907float: 1
908ldouble: 3
909
910Function: "lgamma_upward":
911double: 1
912float: 1
913ldouble: 2
914
915Function: "pow":
916double: 1
917float: 7
918ldouble: 9
919
920Function: "pow_downward":
921double: 1
922float: 7
923ldouble: 9
924
925Function: "pow_towardzero":
926double: 1
927float: 4
928ldouble: 4
929
930Function: "pow_upward":
931double: 1
932float: 2
933ldouble: 8
934
935Function: "sin":
936double: 1
937
938Function: "tgamma":
939double: 1
940float: 4
941ldouble: 9
942
943Function: "tgamma_downward":
944double: 2
945float: 3
946ldouble: 9
947
948Function: "tgamma_towardzero":
949double: 2
950float: 4
951ldouble: 9
952
953Function: "tgamma_upward":
954double: 1
955float: 4
956ldouble: 9
957
958Function: "y0":
959double: 1
960float: 1
961ldouble: 1
962
963Function: "y0_downward":
964double: 1
965float: 3
966ldouble: 6
967
968Function: "y0_towardzero":
969double: 1
970float: 2
971ldouble: 5
972
973Function: "y0_upward":
974double: 1
975float: 3
976ldouble: 3
977
978Function: "y1":
979double: 1
980float: 3
981ldouble: 2
982
983Function: "y1_downward":
984double: 4
985float: 3
986ldouble: 6
987
988Function: "y1_towardzero":
989double: 2
990float: 3
991ldouble: 5
992
993Function: "y1_upward":
994double: 2
995float: 2
996ldouble: 7
997
998Function: "yn":
999double: 2
1000float: 3
1001ldouble: 4
1002
1003Function: "yn_downward":
1004double: 2
1005float: 3
1006ldouble: 6
1007
1008Function: "yn_towardzero":
1009double: 3
1010float: 3
1011ldouble: 5
1012
1013Function: "yn_upward":
1014double: 3
1015float: 3
1016ldouble: 4
1017
1018# end of automatic generation
1019