1# Begin of automatic generation 2 3# Maximal error of functions: 4Function: "acosh": 5double: 1 6float: 1 7ldouble: 1 8 9Function: "acosh_downward": 10double: 1 11float: 1 12ldouble: 1 13 14Function: "acosh_towardzero": 15double: 1 16float: 1 17ldouble: 1 18 19Function: "acosh_upward": 20double: 2 21float: 1 22ldouble: 1 23 24Function: "asinh": 25double: 1 26float: 1 27ldouble: 1 28 29Function: "asinh_downward": 30double: 2 31float: 2 32ldouble: 2 33 34Function: "asinh_towardzero": 35double: 2 36float: 2 37ldouble: 2 38 39Function: "asinh_upward": 40double: 2 41float: 2 42ldouble: 3 43 44Function: "atan2": 45float: 1 46ldouble: 1 47 48Function: "atan2_downward": 49double: 1 50float: 1 51ldouble: 2 52 53Function: "atan2_towardzero": 54double: 1 55float: 1 56ldouble: 2 57 58Function: "atan2_upward": 59double: 1 60float: 1 61ldouble: 2 62 63Function: "atan_downward": 64double: 1 65float: 1 66ldouble: 1 67 68Function: "atan_towardzero": 69float: 1 70ldouble: 1 71 72Function: "atan_upward": 73double: 1 74float: 1 75ldouble: 1 76 77Function: "cabs": 78double: 1 79ldouble: 1 80 81Function: "cabs_downward": 82double: 1 83ldouble: 1 84 85Function: "cabs_towardzero": 86double: 1 87ldouble: 1 88 89Function: "cabs_upward": 90double: 1 91ldouble: 1 92 93Function: Real part of "cacos": 94double: 1 95float: 2 96ldouble: 1 97 98Function: Imaginary part of "cacos": 99double: 1 100float: 1 101ldouble: 2 102 103Function: Real part of "cacos_downward": 104double: 2 105float: 2 106ldouble: 2 107 108Function: Imaginary part of "cacos_downward": 109double: 5 110float: 3 111ldouble: 4 112 113Function: Real part of "cacos_towardzero": 114double: 2 115float: 2 116ldouble: 2 117 118Function: Imaginary part of "cacos_towardzero": 119double: 5 120float: 3 121ldouble: 4 122 123Function: Real part of "cacos_upward": 124double: 2 125float: 2 126ldouble: 3 127 128Function: Imaginary part of "cacos_upward": 129double: 4 130float: 5 131ldouble: 4 132 133Function: Real part of "cacosh": 134double: 1 135float: 1 136ldouble: 2 137 138Function: Imaginary part of "cacosh": 139double: 1 140float: 2 141ldouble: 1 142 143Function: Real part of "cacosh_downward": 144double: 5 145float: 3 146ldouble: 4 147 148Function: Imaginary part of "cacosh_downward": 149double: 2 150float: 2 151ldouble: 2 152 153Function: Real part of "cacosh_towardzero": 154double: 5 155float: 3 156ldouble: 4 157 158Function: Imaginary part of "cacosh_towardzero": 159double: 2 160float: 2 161ldouble: 2 162 163Function: Real part of "cacosh_upward": 164double: 4 165float: 5 166ldouble: 4 167 168Function: Imaginary part of "cacosh_upward": 169double: 2 170float: 2 171ldouble: 3 172 173Function: "carg": 174float: 1 175ldouble: 1 176 177Function: "carg_downward": 178double: 1 179float: 1 180ldouble: 1 181 182Function: "carg_towardzero": 183float: 1 184ldouble: 1 185 186Function: "carg_upward": 187double: 1 188float: 1 189ldouble: 1 190 191Function: Real part of "casin": 192double: 1 193float: 1 194ldouble: 1 195 196Function: Imaginary part of "casin": 197double: 1 198float: 1 199ldouble: 2 200 201Function: Real part of "casin_downward": 202double: 2 203float: 2 204ldouble: 2 205 206Function: Imaginary part of "casin_downward": 207double: 5 208float: 3 209ldouble: 4 210 211Function: Real part of "casin_towardzero": 212double: 1 213float: 2 214ldouble: 2 215 216Function: Imaginary part of "casin_towardzero": 217double: 5 218float: 3 219ldouble: 4 220 221Function: Real part of "casin_upward": 222double: 2 223float: 2 224ldouble: 2 225 226Function: Imaginary part of "casin_upward": 227double: 4 228float: 5 229ldouble: 4 230 231Function: Real part of "casinh": 232double: 1 233float: 1 234ldouble: 2 235 236Function: Imaginary part of "casinh": 237double: 1 238float: 1 239ldouble: 1 240 241Function: Real part of "casinh_downward": 242double: 5 243float: 3 244ldouble: 4 245 246Function: Imaginary part of "casinh_downward": 247double: 2 248float: 2 249ldouble: 2 250 251Function: Real part of "casinh_towardzero": 252double: 5 253float: 3 254ldouble: 4 255 256Function: Imaginary part of "casinh_towardzero": 257double: 1 258float: 2 259ldouble: 2 260 261Function: Real part of "casinh_upward": 262double: 4 263float: 5 264ldouble: 4 265 266Function: Imaginary part of "casinh_upward": 267double: 2 268float: 2 269ldouble: 2 270 271Function: Real part of "catan": 272ldouble: 1 273 274Function: Imaginary part of "catan": 275double: 1 276float: 1 277ldouble: 1 278 279Function: Real part of "catan_downward": 280double: 1 281float: 1 282ldouble: 1 283 284Function: Imaginary part of "catan_downward": 285double: 2 286float: 1 287ldouble: 3 288 289Function: Real part of "catan_towardzero": 290double: 1 291float: 1 292ldouble: 1 293 294Function: Imaginary part of "catan_towardzero": 295double: 2 296float: 1 297ldouble: 3 298 299Function: Real part of "catan_upward": 300double: 1 301float: 1 302ldouble: 1 303 304Function: Imaginary part of "catan_upward": 305double: 2 306float: 3 307ldouble: 3 308 309Function: Real part of "catanh": 310double: 1 311float: 1 312ldouble: 1 313 314Function: Imaginary part of "catanh": 315ldouble: 1 316 317Function: Real part of "catanh_downward": 318double: 2 319float: 1 320ldouble: 3 321 322Function: Imaginary part of "catanh_downward": 323double: 1 324float: 1 325ldouble: 1 326 327Function: Real part of "catanh_towardzero": 328double: 2 329float: 1 330ldouble: 3 331 332Function: Imaginary part of "catanh_towardzero": 333double: 1 334float: 1 335ldouble: 1 336 337Function: Real part of "catanh_upward": 338double: 2 339float: 3 340ldouble: 4 341 342Function: Imaginary part of "catanh_upward": 343double: 1 344float: 1 345ldouble: 1 346 347Function: "cbrt": 348double: 1 349float: 1 350ldouble: 1 351 352Function: "cbrt_downward": 353double: 1 354float: 1 355ldouble: 1 356 357Function: "cbrt_towardzero": 358double: 1 359float: 1 360ldouble: 1 361 362Function: "cbrt_upward": 363double: 1 364float: 1 365ldouble: 1 366 367Function: Real part of "ccos": 368ldouble: 1 369 370Function: Imaginary part of "ccos": 371ldouble: 1 372 373Function: Real part of "ccos_downward": 374double: 1 375ldouble: 2 376 377Function: Imaginary part of "ccos_downward": 378double: 1 379ldouble: 2 380 381Function: Real part of "ccos_towardzero": 382double: 1 383ldouble: 2 384 385Function: Imaginary part of "ccos_towardzero": 386double: 1 387ldouble: 2 388 389Function: Real part of "ccos_upward": 390double: 1 391ldouble: 2 392 393Function: Imaginary part of "ccos_upward": 394double: 1 395ldouble: 2 396 397Function: Imaginary part of "ccosh": 398ldouble: 1 399 400Function: Real part of "ccosh_downward": 401double: 1 402ldouble: 2 403 404Function: Imaginary part of "ccosh_downward": 405double: 1 406ldouble: 2 407 408Function: Real part of "ccosh_towardzero": 409double: 1 410ldouble: 2 411 412Function: Imaginary part of "ccosh_towardzero": 413double: 1 414ldouble: 2 415 416Function: Real part of "ccosh_upward": 417double: 1 418ldouble: 2 419 420Function: Imaginary part of "ccosh_upward": 421double: 1 422ldouble: 2 423 424Function: Real part of "cexp": 425ldouble: 1 426 427Function: Imaginary part of "cexp": 428ldouble: 1 429 430Function: Real part of "cexp_downward": 431double: 1 432float: 1 433ldouble: 3 434 435Function: Imaginary part of "cexp_downward": 436double: 1 437float: 1 438ldouble: 3 439 440Function: Real part of "cexp_towardzero": 441double: 1 442float: 1 443ldouble: 3 444 445Function: Imaginary part of "cexp_towardzero": 446double: 1 447float: 1 448ldouble: 3 449 450Function: Real part of "cexp_upward": 451double: 1 452ldouble: 2 453 454Function: Imaginary part of "cexp_upward": 455double: 1 456ldouble: 2 457 458Function: Real part of "clog": 459double: 3 460float: 2 461ldouble: 3 462 463Function: Imaginary part of "clog": 464double: 1 465float: 1 466ldouble: 1 467 468Function: Real part of "clog10": 469double: 2 470float: 2 471ldouble: 3 472 473Function: Imaginary part of "clog10": 474double: 1 475float: 1 476ldouble: 2 477 478Function: Real part of "clog10_downward": 479double: 6 480float: 4 481ldouble: 7 482 483Function: Imaginary part of "clog10_downward": 484double: 1 485float: 2 486ldouble: 4 487 488Function: Real part of "clog10_towardzero": 489double: 6 490float: 4 491ldouble: 7 492 493Function: Imaginary part of "clog10_towardzero": 494double: 1 495float: 2 496ldouble: 4 497 498Function: Real part of "clog10_upward": 499double: 7 500float: 5 501ldouble: 6 502 503Function: Imaginary part of "clog10_upward": 504double: 1 505float: 2 506ldouble: 3 507 508Function: Real part of "clog_downward": 509double: 7 510float: 5 511ldouble: 8 512 513Function: Imaginary part of "clog_downward": 514double: 1 515float: 1 516ldouble: 2 517 518Function: Real part of "clog_towardzero": 519double: 7 520float: 5 521ldouble: 9 522 523Function: Imaginary part of "clog_towardzero": 524double: 1 525float: 1 526ldouble: 2 527 528Function: Real part of "clog_upward": 529double: 8 530float: 5 531ldouble: 7 532 533Function: Imaginary part of "clog_upward": 534double: 1 535float: 1 536ldouble: 2 537 538Function: "cos": 539double: 1 540 541Function: Real part of "cpow": 542double: 1 543float: 3 544ldouble: 3 545 546Function: Imaginary part of "cpow": 547float: 5 548ldouble: 1 549 550Function: Real part of "cpow_downward": 551double: 5 552float: 8 553ldouble: 7 554 555Function: Imaginary part of "cpow_downward": 556double: 1 557float: 1 558ldouble: 2 559 560Function: Real part of "cpow_towardzero": 561double: 5 562float: 8 563ldouble: 7 564 565Function: Imaginary part of "cpow_towardzero": 566double: 1 567float: 1 568ldouble: 2 569 570Function: Real part of "cpow_upward": 571double: 4 572float: 1 573ldouble: 2 574 575Function: Imaginary part of "cpow_upward": 576double: 1 577float: 1 578ldouble: 2 579 580Function: Real part of "csin": 581ldouble: 1 582 583Function: Real part of "csin_downward": 584double: 1 585float: 1 586ldouble: 2 587 588Function: Imaginary part of "csin_downward": 589double: 1 590float: 1 591ldouble: 1 592 593Function: Real part of "csin_towardzero": 594double: 1 595float: 1 596ldouble: 2 597 598Function: Imaginary part of "csin_towardzero": 599double: 1 600float: 1 601ldouble: 1 602 603Function: Real part of "csin_upward": 604double: 1 605float: 1 606ldouble: 2 607 608Function: Imaginary part of "csin_upward": 609double: 1 610float: 1 611ldouble: 1 612 613Function: Real part of "csinh": 614ldouble: 1 615 616Function: Real part of "csinh_downward": 617double: 1 618float: 1 619ldouble: 1 620 621Function: Imaginary part of "csinh_downward": 622double: 1 623float: 1 624ldouble: 2 625 626Function: Real part of "csinh_towardzero": 627double: 1 628float: 1 629ldouble: 1 630 631Function: Imaginary part of "csinh_towardzero": 632double: 1 633float: 1 634ldouble: 2 635 636Function: Real part of "csinh_upward": 637double: 1 638float: 1 639ldouble: 1 640 641Function: Imaginary part of "csinh_upward": 642double: 1 643float: 1 644ldouble: 2 645 646Function: Real part of "csqrt": 647double: 1 648float: 1 649ldouble: 2 650 651Function: Imaginary part of "csqrt": 652double: 1 653float: 1 654ldouble: 2 655 656Function: Real part of "csqrt_downward": 657double: 1 658float: 2 659ldouble: 4 660 661Function: Imaginary part of "csqrt_downward": 662double: 1 663float: 2 664ldouble: 3 665 666Function: Real part of "csqrt_towardzero": 667double: 1 668float: 1 669ldouble: 4 670 671Function: Imaginary part of "csqrt_towardzero": 672double: 1 673float: 2 674ldouble: 3 675 676Function: Real part of "csqrt_upward": 677double: 1 678float: 2 679ldouble: 5 680 681Function: Imaginary part of "csqrt_upward": 682double: 2 683float: 2 684ldouble: 3 685 686Function: Real part of "ctan": 687double: 1 688float: 1 689ldouble: 2 690 691Function: Imaginary part of "ctan": 692double: 1 693float: 1 694ldouble: 2 695 696Function: Real part of "ctan_downward": 697double: 2 698float: 2 699ldouble: 2 700 701Function: Imaginary part of "ctan_downward": 702double: 3 703float: 2 704ldouble: 2 705 706Function: Real part of "ctan_towardzero": 707double: 1 708float: 2 709ldouble: 2 710 711Function: Imaginary part of "ctan_towardzero": 712double: 3 713float: 2 714ldouble: 4 715 716Function: Real part of "ctan_upward": 717double: 1 718float: 3 719ldouble: 5 720 721Function: Imaginary part of "ctan_upward": 722double: 1 723float: 1 724ldouble: 7 725 726Function: Real part of "ctanh": 727double: 1 728float: 1 729ldouble: 2 730 731Function: Imaginary part of "ctanh": 732double: 1 733float: 2 734ldouble: 2 735 736Function: Real part of "ctanh_downward": 737double: 3 738float: 2 739ldouble: 2 740 741Function: Imaginary part of "ctanh_downward": 742double: 2 743float: 2 744ldouble: 2 745 746Function: Real part of "ctanh_towardzero": 747double: 3 748float: 2 749ldouble: 4 750 751Function: Imaginary part of "ctanh_towardzero": 752double: 1 753float: 1 754ldouble: 2 755 756Function: Real part of "ctanh_upward": 757double: 1 758float: 2 759ldouble: 7 760 761Function: Imaginary part of "ctanh_upward": 762double: 1 763float: 3 764ldouble: 5 765 766Function: "erf": 767float: 1 768ldouble: 1 769 770Function: "erf_downward": 771float: 1 772 773Function: "erf_towardzero": 774ldouble: 1 775 776Function: "erf_upward": 777float: 1 778ldouble: 1 779 780Function: "erfc": 781float: 1 782ldouble: 2 783 784Function: "erfc_downward": 785double: 1 786float: 3 787ldouble: 4 788 789Function: "erfc_towardzero": 790double: 1 791float: 1 792ldouble: 4 793 794Function: "erfc_upward": 795double: 1 796float: 3 797ldouble: 3 798 799Function: "exp2": 800double: 1 801 802Function: "gamma": 803float: 1 804ldouble: 2 805 806Function: "gamma_downward": 807double: 1 808float: 1 809ldouble: 3 810 811Function: "gamma_towardzero": 812double: 1 813float: 1 814ldouble: 3 815 816Function: "gamma_upward": 817double: 1 818float: 1 819ldouble: 2 820 821Function: "hypot": 822double: 1 823ldouble: 1 824 825Function: "hypot_downward": 826double: 1 827ldouble: 1 828 829Function: "hypot_towardzero": 830double: 1 831ldouble: 1 832 833Function: "hypot_upward": 834double: 1 835ldouble: 1 836 837Function: "j0": 838double: 1 839float: 2 840ldouble: 2 841 842Function: "j0_downward": 843double: 4 844float: 3 845ldouble: 4 846 847Function: "j0_towardzero": 848double: 1 849float: 1 850ldouble: 5 851 852Function: "j0_upward": 853double: 2 854float: 3 855ldouble: 5 856 857Function: "j1": 858float: 2 859ldouble: 1 860 861Function: "j1_downward": 862double: 1 863float: 4 864ldouble: 5 865 866Function: "j1_towardzero": 867double: 1 868float: 2 869ldouble: 4 870 871Function: "j1_upward": 872double: 1 873float: 3 874ldouble: 3 875 876Function: "jn": 877double: 2 878float: 2 879ldouble: 4 880 881Function: "jn_downward": 882double: 2 883float: 4 884ldouble: 5 885 886Function: "jn_towardzero": 887double: 2 888float: 3 889ldouble: 5 890 891Function: "jn_upward": 892double: 2 893float: 3 894ldouble: 5 895 896Function: "lgamma": 897float: 1 898ldouble: 2 899 900Function: "lgamma_downward": 901double: 1 902float: 1 903ldouble: 3 904 905Function: "lgamma_towardzero": 906double: 1 907float: 1 908ldouble: 3 909 910Function: "lgamma_upward": 911double: 1 912float: 1 913ldouble: 2 914 915Function: "pow": 916double: 1 917float: 7 918ldouble: 9 919 920Function: "pow_downward": 921double: 1 922float: 7 923ldouble: 9 924 925Function: "pow_towardzero": 926double: 1 927float: 4 928ldouble: 4 929 930Function: "pow_upward": 931double: 1 932float: 2 933ldouble: 8 934 935Function: "sin": 936double: 1 937 938Function: "tgamma": 939double: 1 940float: 4 941ldouble: 9 942 943Function: "tgamma_downward": 944double: 2 945float: 3 946ldouble: 9 947 948Function: "tgamma_towardzero": 949double: 2 950float: 4 951ldouble: 9 952 953Function: "tgamma_upward": 954double: 1 955float: 4 956ldouble: 9 957 958Function: "y0": 959double: 1 960float: 1 961ldouble: 1 962 963Function: "y0_downward": 964double: 1 965float: 3 966ldouble: 6 967 968Function: "y0_towardzero": 969double: 1 970float: 2 971ldouble: 5 972 973Function: "y0_upward": 974double: 1 975float: 3 976ldouble: 3 977 978Function: "y1": 979double: 1 980float: 3 981ldouble: 2 982 983Function: "y1_downward": 984double: 4 985float: 3 986ldouble: 6 987 988Function: "y1_towardzero": 989double: 2 990float: 3 991ldouble: 5 992 993Function: "y1_upward": 994double: 2 995float: 2 996ldouble: 7 997 998Function: "yn": 999double: 2 1000float: 3 1001ldouble: 4 1002 1003Function: "yn_downward": 1004double: 2 1005float: 3 1006ldouble: 6 1007 1008Function: "yn_towardzero": 1009double: 3 1010float: 3 1011ldouble: 5 1012 1013Function: "yn_upward": 1014double: 3 1015float: 3 1016ldouble: 4 1017 1018# end of automatic generation 1019