1# Begin of automatic generation
2
3# Maximal error of functions:
4Function: "acos":
5float: 1
6ldouble: 1
7
8Function: "acos_downward":
9double: 1
10float: 1
11ldouble: 1
12
13Function: "acos_towardzero":
14double: 1
15float: 1
16ldouble: 1
17
18Function: "acos_upward":
19double: 1
20float: 1
21ldouble: 1
22
23Function: "acosh":
24double: 2
25float: 2
26ldouble: 2
27
28Function: "acosh_downward":
29double: 2
30float: 2
31ldouble: 3
32
33Function: "acosh_towardzero":
34double: 2
35float: 2
36ldouble: 2
37
38Function: "acosh_upward":
39double: 2
40float: 2
41ldouble: 2
42
43Function: "asin":
44float: 1
45ldouble: 1
46
47Function: "asin_downward":
48double: 1
49float: 1
50ldouble: 2
51
52Function: "asin_towardzero":
53double: 1
54float: 1
55ldouble: 1
56
57Function: "asin_upward":
58double: 1
59float: 1
60ldouble: 2
61
62Function: "asinh":
63double: 1
64float: 1
65ldouble: 3
66
67Function: "asinh_downward":
68double: 3
69float: 3
70ldouble: 4
71
72Function: "asinh_towardzero":
73double: 2
74float: 2
75ldouble: 2
76
77Function: "asinh_upward":
78double: 3
79float: 3
80ldouble: 4
81
82Function: "atan":
83float: 1
84ldouble: 1
85
86Function: "atan2":
87float: 1
88ldouble: 1
89
90Function: "atan2_downward":
91double: 1
92float: 2
93ldouble: 2
94
95Function: "atan2_towardzero":
96double: 1
97float: 2
98ldouble: 3
99
100Function: "atan2_upward":
101double: 1
102float: 1
103ldouble: 2
104
105Function: "atan_downward":
106double: 1
107float: 2
108ldouble: 2
109
110Function: "atan_towardzero":
111double: 1
112float: 1
113ldouble: 1
114
115Function: "atan_upward":
116double: 1
117float: 2
118ldouble: 2
119
120Function: "atanh":
121double: 2
122float: 2
123ldouble: 3
124
125Function: "atanh_downward":
126double: 3
127float: 3
128ldouble: 4
129
130Function: "atanh_towardzero":
131double: 2
132float: 2
133ldouble: 2
134
135Function: "atanh_upward":
136double: 3
137float: 3
138ldouble: 4
139
140Function: "cabs":
141double: 1
142ldouble: 1
143
144Function: "cabs_downward":
145double: 1
146ldouble: 1
147
148Function: "cabs_towardzero":
149double: 1
150ldouble: 1
151
152Function: "cabs_upward":
153double: 1
154ldouble: 1
155
156Function: Real part of "cacos":
157double: 1
158float: 2
159ldouble: 2
160
161Function: Imaginary part of "cacos":
162double: 2
163float: 2
164ldouble: 2
165
166Function: Real part of "cacos_downward":
167double: 3
168float: 2
169ldouble: 3
170
171Function: Imaginary part of "cacos_downward":
172double: 5
173float: 3
174ldouble: 6
175
176Function: Real part of "cacos_towardzero":
177double: 3
178float: 2
179ldouble: 3
180
181Function: Imaginary part of "cacos_towardzero":
182double: 4
183float: 2
184ldouble: 5
185
186Function: Real part of "cacos_upward":
187double: 2
188float: 2
189ldouble: 3
190
191Function: Imaginary part of "cacos_upward":
192double: 5
193float: 5
194ldouble: 7
195
196Function: Real part of "cacosh":
197double: 2
198float: 2
199ldouble: 2
200
201Function: Imaginary part of "cacosh":
202double: 1
203float: 2
204ldouble: 2
205
206Function: Real part of "cacosh_downward":
207double: 4
208float: 2
209ldouble: 5
210
211Function: Imaginary part of "cacosh_downward":
212double: 3
213float: 3
214ldouble: 4
215
216Function: Real part of "cacosh_towardzero":
217double: 4
218float: 2
219ldouble: 5
220
221Function: Imaginary part of "cacosh_towardzero":
222double: 3
223float: 2
224ldouble: 3
225
226Function: Real part of "cacosh_upward":
227double: 4
228float: 3
229ldouble: 6
230
231Function: Imaginary part of "cacosh_upward":
232double: 3
233float: 2
234ldouble: 4
235
236Function: "carg":
237float: 1
238ldouble: 2
239
240Function: "carg_downward":
241double: 1
242float: 2
243ldouble: 2
244
245Function: "carg_towardzero":
246double: 1
247float: 2
248ldouble: 3
249
250Function: "carg_upward":
251double: 1
252float: 1
253ldouble: 2
254
255Function: Real part of "casin":
256double: 1
257float: 1
258ldouble: 2
259
260Function: Imaginary part of "casin":
261double: 2
262float: 2
263ldouble: 2
264
265Function: Real part of "casin_downward":
266double: 3
267float: 2
268ldouble: 3
269
270Function: Imaginary part of "casin_downward":
271double: 5
272float: 3
273ldouble: 6
274
275Function: Real part of "casin_towardzero":
276double: 3
277float: 1
278ldouble: 3
279
280Function: Imaginary part of "casin_towardzero":
281double: 4
282float: 2
283ldouble: 5
284
285Function: Real part of "casin_upward":
286double: 3
287float: 2
288ldouble: 3
289
290Function: Imaginary part of "casin_upward":
291double: 5
292float: 5
293ldouble: 7
294
295Function: Real part of "casinh":
296double: 2
297float: 2
298ldouble: 2
299
300Function: Imaginary part of "casinh":
301double: 1
302float: 1
303ldouble: 2
304
305Function: Real part of "casinh_downward":
306double: 5
307float: 3
308ldouble: 6
309
310Function: Imaginary part of "casinh_downward":
311double: 3
312float: 2
313ldouble: 3
314
315Function: Real part of "casinh_towardzero":
316double: 4
317float: 2
318ldouble: 5
319
320Function: Imaginary part of "casinh_towardzero":
321double: 3
322float: 1
323ldouble: 3
324
325Function: Real part of "casinh_upward":
326double: 5
327float: 5
328ldouble: 7
329
330Function: Imaginary part of "casinh_upward":
331double: 3
332float: 2
333ldouble: 3
334
335Function: Real part of "catan":
336double: 1
337float: 1
338ldouble: 1
339
340Function: Imaginary part of "catan":
341double: 1
342float: 1
343ldouble: 1
344
345Function: Real part of "catan_downward":
346double: 1
347float: 2
348ldouble: 2
349
350Function: Imaginary part of "catan_downward":
351double: 2
352float: 2
353ldouble: 2
354
355Function: Real part of "catan_towardzero":
356double: 1
357float: 2
358ldouble: 2
359
360Function: Imaginary part of "catan_towardzero":
361double: 2
362float: 2
363ldouble: 2
364
365Function: Real part of "catan_upward":
366double: 1
367float: 1
368ldouble: 2
369
370Function: Imaginary part of "catan_upward":
371double: 2
372float: 2
373ldouble: 3
374
375Function: Real part of "catanh":
376double: 1
377float: 1
378ldouble: 1
379
380Function: Imaginary part of "catanh":
381double: 1
382float: 1
383ldouble: 1
384
385Function: Real part of "catanh_downward":
386double: 2
387float: 2
388ldouble: 2
389
390Function: Imaginary part of "catanh_downward":
391double: 1
392float: 2
393ldouble: 2
394
395Function: Real part of "catanh_towardzero":
396double: 2
397float: 2
398ldouble: 2
399
400Function: Imaginary part of "catanh_towardzero":
401double: 1
402float: 2
403ldouble: 2
404
405Function: Real part of "catanh_upward":
406double: 4
407float: 4
408ldouble: 4
409
410Function: Imaginary part of "catanh_upward":
411double: 1
412float: 1
413ldouble: 2
414
415Function: "cbrt":
416double: 3
417float: 1
418ldouble: 1
419
420Function: "cbrt_downward":
421double: 4
422float: 1
423ldouble: 1
424
425Function: "cbrt_towardzero":
426double: 3
427float: 1
428ldouble: 1
429
430Function: "cbrt_upward":
431double: 5
432float: 1
433ldouble: 1
434
435Function: Real part of "ccos":
436double: 1
437float: 1
438ldouble: 1
439
440Function: Imaginary part of "ccos":
441double: 1
442float: 1
443ldouble: 1
444
445Function: Real part of "ccos_downward":
446double: 1
447float: 1
448ldouble: 2
449
450Function: Imaginary part of "ccos_downward":
451double: 2
452float: 3
453ldouble: 2
454
455Function: Real part of "ccos_towardzero":
456double: 1
457float: 2
458ldouble: 2
459
460Function: Imaginary part of "ccos_towardzero":
461double: 2
462float: 3
463ldouble: 2
464
465Function: Real part of "ccos_upward":
466double: 1
467float: 2
468ldouble: 3
469
470Function: Imaginary part of "ccos_upward":
471double: 2
472float: 2
473ldouble: 2
474
475Function: Real part of "ccosh":
476double: 1
477float: 1
478ldouble: 1
479
480Function: Imaginary part of "ccosh":
481double: 1
482float: 1
483ldouble: 1
484
485Function: Real part of "ccosh_downward":
486double: 1
487float: 2
488ldouble: 2
489
490Function: Imaginary part of "ccosh_downward":
491double: 2
492float: 3
493ldouble: 2
494
495Function: Real part of "ccosh_towardzero":
496double: 1
497float: 3
498ldouble: 2
499
500Function: Imaginary part of "ccosh_towardzero":
501double: 2
502float: 3
503ldouble: 2
504
505Function: Real part of "ccosh_upward":
506double: 1
507float: 2
508ldouble: 3
509
510Function: Imaginary part of "ccosh_upward":
511double: 2
512float: 2
513ldouble: 2
514
515Function: Real part of "cexp":
516double: 2
517float: 1
518ldouble: 1
519
520Function: Imaginary part of "cexp":
521double: 1
522float: 2
523ldouble: 1
524
525Function: Real part of "cexp_downward":
526double: 1
527float: 2
528ldouble: 2
529
530Function: Imaginary part of "cexp_downward":
531double: 1
532float: 3
533ldouble: 2
534
535Function: Real part of "cexp_towardzero":
536double: 1
537float: 2
538ldouble: 2
539
540Function: Imaginary part of "cexp_towardzero":
541double: 1
542float: 3
543ldouble: 2
544
545Function: Real part of "cexp_upward":
546double: 1
547float: 2
548ldouble: 3
549
550Function: Imaginary part of "cexp_upward":
551double: 1
552float: 2
553ldouble: 3
554
555Function: Real part of "clog":
556double: 3
557float: 3
558ldouble: 2
559
560Function: Imaginary part of "clog":
561float: 1
562ldouble: 1
563
564Function: Real part of "clog10":
565double: 3
566float: 4
567ldouble: 2
568
569Function: Imaginary part of "clog10":
570double: 2
571float: 2
572ldouble: 2
573
574Function: Real part of "clog10_downward":
575double: 5
576float: 5
577ldouble: 3
578
579Function: Imaginary part of "clog10_downward":
580double: 2
581float: 4
582ldouble: 3
583
584Function: Real part of "clog10_towardzero":
585double: 5
586float: 5
587ldouble: 4
588
589Function: Imaginary part of "clog10_towardzero":
590double: 2
591float: 4
592ldouble: 3
593
594Function: Real part of "clog10_upward":
595double: 6
596float: 5
597ldouble: 4
598
599Function: Imaginary part of "clog10_upward":
600double: 2
601float: 4
602ldouble: 3
603
604Function: Real part of "clog_downward":
605double: 4
606float: 3
607ldouble: 3
608
609Function: Imaginary part of "clog_downward":
610double: 1
611float: 2
612ldouble: 2
613
614Function: Real part of "clog_towardzero":
615double: 4
616float: 4
617ldouble: 3
618
619Function: Imaginary part of "clog_towardzero":
620double: 1
621float: 3
622ldouble: 2
623
624Function: Real part of "clog_upward":
625double: 4
626float: 3
627ldouble: 4
628
629Function: Imaginary part of "clog_upward":
630double: 1
631float: 2
632ldouble: 2
633
634Function: "cos":
635double: 1
636ldouble: 1
637
638Function: "cos_downward":
639double: 1
640ldouble: 3
641
642Function: "cos_towardzero":
643double: 1
644ldouble: 1
645
646Function: "cos_upward":
647double: 1
648ldouble: 2
649
650Function: "cosh":
651double: 1
652float: 1
653ldouble: 1
654
655Function: "cosh_downward":
656double: 1
657float: 1
658ldouble: 2
659
660Function: "cosh_towardzero":
661double: 1
662float: 1
663ldouble: 2
664
665Function: "cosh_upward":
666double: 1
667float: 2
668ldouble: 3
669
670Function: Real part of "cpow":
671double: 2
672float: 5
673ldouble: 4
674
675Function: Imaginary part of "cpow":
676float: 2
677ldouble: 1
678
679Function: Real part of "cpow_downward":
680double: 4
681float: 8
682ldouble: 6
683
684Function: Imaginary part of "cpow_downward":
685double: 1
686float: 2
687ldouble: 2
688
689Function: Real part of "cpow_towardzero":
690double: 4
691float: 8
692ldouble: 6
693
694Function: Imaginary part of "cpow_towardzero":
695double: 1
696float: 2
697ldouble: 2
698
699Function: Real part of "cpow_upward":
700double: 4
701float: 1
702ldouble: 3
703
704Function: Imaginary part of "cpow_upward":
705double: 1
706float: 2
707ldouble: 2
708
709Function: Real part of "csin":
710double: 1
711float: 1
712ldouble: 1
713
714Function: Imaginary part of "csin":
715ldouble: 1
716
717Function: Real part of "csin_downward":
718double: 2
719float: 3
720ldouble: 2
721
722Function: Imaginary part of "csin_downward":
723double: 1
724float: 1
725ldouble: 2
726
727Function: Real part of "csin_towardzero":
728double: 2
729float: 3
730ldouble: 2
731
732Function: Imaginary part of "csin_towardzero":
733double: 1
734float: 1
735ldouble: 2
736
737Function: Real part of "csin_upward":
738double: 2
739float: 2
740ldouble: 2
741
742Function: Imaginary part of "csin_upward":
743double: 1
744float: 2
745ldouble: 3
746
747Function: Real part of "csinh":
748float: 1
749ldouble: 1
750
751Function: Imaginary part of "csinh":
752double: 1
753float: 1
754ldouble: 1
755
756Function: Real part of "csinh_downward":
757double: 2
758float: 1
759ldouble: 2
760
761Function: Imaginary part of "csinh_downward":
762double: 2
763float: 3
764ldouble: 2
765
766Function: Real part of "csinh_towardzero":
767double: 2
768float: 2
769ldouble: 2
770
771Function: Imaginary part of "csinh_towardzero":
772double: 2
773float: 3
774ldouble: 2
775
776Function: Real part of "csinh_upward":
777double: 1
778float: 2
779ldouble: 3
780
781Function: Imaginary part of "csinh_upward":
782double: 2
783float: 2
784ldouble: 2
785
786Function: Real part of "csqrt":
787double: 2
788float: 2
789ldouble: 2
790
791Function: Imaginary part of "csqrt":
792double: 2
793float: 2
794ldouble: 2
795
796Function: Real part of "csqrt_downward":
797double: 5
798float: 4
799ldouble: 4
800
801Function: Imaginary part of "csqrt_downward":
802double: 4
803float: 3
804ldouble: 3
805
806Function: Real part of "csqrt_towardzero":
807double: 4
808float: 3
809ldouble: 3
810
811Function: Imaginary part of "csqrt_towardzero":
812double: 4
813float: 3
814ldouble: 3
815
816Function: Real part of "csqrt_upward":
817double: 5
818float: 4
819ldouble: 4
820
821Function: Imaginary part of "csqrt_upward":
822double: 3
823float: 3
824ldouble: 3
825
826Function: Real part of "ctan":
827double: 1
828float: 1
829ldouble: 3
830
831Function: Imaginary part of "ctan":
832double: 2
833float: 2
834ldouble: 3
835
836Function: Real part of "ctan_downward":
837double: 6
838float: 5
839ldouble: 4
840
841Function: Imaginary part of "ctan_downward":
842double: 2
843float: 2
844ldouble: 5
845
846Function: Real part of "ctan_towardzero":
847double: 5
848float: 2
849ldouble: 4
850
851Function: Imaginary part of "ctan_towardzero":
852double: 1
853float: 2
854ldouble: 5
855
856Function: Real part of "ctan_upward":
857double: 2
858float: 4
859ldouble: 5
860
861Function: Imaginary part of "ctan_upward":
862double: 2
863float: 2
864ldouble: 5
865
866Function: Real part of "ctanh":
867double: 2
868float: 2
869ldouble: 3
870
871Function: Imaginary part of "ctanh":
872double: 2
873float: 2
874ldouble: 3
875
876Function: Real part of "ctanh_downward":
877double: 4
878float: 2
879ldouble: 5
880
881Function: Imaginary part of "ctanh_downward":
882double: 6
883float: 5
884ldouble: 4
885
886Function: Real part of "ctanh_towardzero":
887double: 2
888float: 2
889ldouble: 5
890
891Function: Imaginary part of "ctanh_towardzero":
892double: 5
893float: 2
894ldouble: 3
895
896Function: Real part of "ctanh_upward":
897double: 2
898float: 2
899ldouble: 5
900
901Function: Imaginary part of "ctanh_upward":
902double: 2
903float: 3
904ldouble: 5
905
906Function: "erf":
907double: 1
908float: 1
909ldouble: 1
910
911Function: "erf_downward":
912double: 1
913float: 1
914ldouble: 2
915
916Function: "erf_towardzero":
917double: 1
918float: 1
919ldouble: 1
920
921Function: "erf_upward":
922double: 1
923float: 1
924ldouble: 2
925
926Function: "erfc":
927double: 3
928float: 2
929ldouble: 2
930
931Function: "erfc_downward":
932double: 3
933float: 4
934ldouble: 5
935
936Function: "erfc_towardzero":
937double: 3
938float: 3
939ldouble: 4
940
941Function: "erfc_upward":
942double: 3
943float: 4
944ldouble: 5
945
946Function: "exp":
947ldouble: 1
948
949Function: "exp10":
950double: 2
951ldouble: 2
952
953Function: "exp10_downward":
954double: 2
955float: 1
956ldouble: 3
957
958Function: "exp10_towardzero":
959double: 2
960float: 1
961ldouble: 3
962
963Function: "exp10_upward":
964double: 2
965float: 1
966ldouble: 3
967
968Function: "exp2":
969double: 1
970ldouble: 1
971
972Function: "exp2_downward":
973double: 1
974ldouble: 1
975
976Function: "exp2_towardzero":
977double: 1
978ldouble: 1
979
980Function: "exp2_upward":
981double: 1
982float: 1
983ldouble: 2
984
985Function: "exp_downward":
986double: 1
987float: 1
988
989Function: "exp_towardzero":
990double: 1
991float: 1
992
993Function: "exp_upward":
994double: 1
995float: 1
996
997Function: "expm1":
998double: 1
999float: 1
1000ldouble: 1
1001
1002Function: "expm1_downward":
1003double: 1
1004float: 1
1005ldouble: 2
1006
1007Function: "expm1_towardzero":
1008double: 1
1009float: 2
1010ldouble: 4
1011
1012Function: "expm1_upward":
1013double: 1
1014float: 1
1015ldouble: 3
1016
1017Function: "gamma":
1018double: 4
1019float: 3
1020ldouble: 5
1021
1022Function: "gamma_downward":
1023double: 4
1024float: 4
1025ldouble: 8
1026
1027Function: "gamma_towardzero":
1028double: 4
1029float: 3
1030ldouble: 5
1031
1032Function: "gamma_upward":
1033double: 4
1034float: 5
1035ldouble: 8
1036
1037Function: "hypot":
1038double: 1
1039ldouble: 1
1040
1041Function: "hypot_downward":
1042double: 1
1043ldouble: 1
1044
1045Function: "hypot_towardzero":
1046double: 1
1047ldouble: 1
1048
1049Function: "hypot_upward":
1050double: 1
1051ldouble: 1
1052
1053Function: "j0":
1054double: 2
1055float: 2
1056ldouble: 2
1057
1058Function: "j0_downward":
1059double: 2
1060float: 4
1061ldouble: 4
1062
1063Function: "j0_towardzero":
1064double: 2
1065float: 1
1066ldouble: 2
1067
1068Function: "j0_upward":
1069double: 3
1070float: 2
1071ldouble: 5
1072
1073Function: "j1":
1074double: 1
1075float: 2
1076ldouble: 4
1077
1078Function: "j1_downward":
1079double: 3
1080float: 2
1081ldouble: 4
1082
1083Function: "j1_towardzero":
1084double: 3
1085float: 2
1086ldouble: 4
1087
1088Function: "j1_upward":
1089double: 3
1090float: 4
1091ldouble: 3
1092
1093Function: "jn":
1094double: 4
1095float: 4
1096ldouble: 7
1097
1098Function: "jn_downward":
1099double: 4
1100float: 5
1101ldouble: 8
1102
1103Function: "jn_towardzero":
1104double: 4
1105float: 5
1106ldouble: 8
1107
1108Function: "jn_upward":
1109double: 5
1110float: 4
1111ldouble: 7
1112
1113Function: "lgamma":
1114double: 4
1115float: 3
1116ldouble: 5
1117
1118Function: "lgamma_downward":
1119double: 4
1120float: 4
1121ldouble: 8
1122
1123Function: "lgamma_towardzero":
1124double: 4
1125float: 3
1126ldouble: 5
1127
1128Function: "lgamma_upward":
1129double: 4
1130float: 5
1131ldouble: 8
1132
1133Function: "log":
1134ldouble: 1
1135
1136Function: "log10":
1137double: 2
1138float: 2
1139ldouble: 1
1140
1141Function: "log10_downward":
1142double: 2
1143float: 3
1144ldouble: 1
1145
1146Function: "log10_towardzero":
1147double: 2
1148float: 1
1149ldouble: 1
1150
1151Function: "log10_upward":
1152double: 2
1153float: 2
1154ldouble: 1
1155
1156Function: "log1p":
1157double: 1
1158float: 1
1159ldouble: 2
1160
1161Function: "log1p_downward":
1162double: 1
1163float: 2
1164ldouble: 3
1165
1166Function: "log1p_towardzero":
1167double: 2
1168float: 2
1169ldouble: 3
1170
1171Function: "log1p_upward":
1172double: 2
1173float: 2
1174ldouble: 2
1175
1176Function: "log2":
1177double: 2
1178float: 1
1179ldouble: 2
1180
1181Function: "log2_downward":
1182double: 3
1183ldouble: 3
1184
1185Function: "log2_towardzero":
1186double: 2
1187ldouble: 1
1188
1189Function: "log2_upward":
1190double: 3
1191ldouble: 1
1192
1193Function: "log_downward":
1194ldouble: 1
1195
1196Function: "log_towardzero":
1197ldouble: 2
1198
1199Function: "log_upward":
1200double: 1
1201ldouble: 1
1202
1203Function: "pow":
1204double: 1
1205ldouble: 2
1206
1207Function: "pow_downward":
1208double: 1
1209float: 1
1210ldouble: 2
1211
1212Function: "pow_towardzero":
1213double: 1
1214float: 1
1215ldouble: 2
1216
1217Function: "pow_upward":
1218double: 1
1219float: 1
1220ldouble: 2
1221
1222Function: "sin":
1223double: 1
1224ldouble: 1
1225
1226Function: "sin_downward":
1227double: 1
1228ldouble: 3
1229
1230Function: "sin_towardzero":
1231double: 1
1232ldouble: 2
1233
1234Function: "sin_upward":
1235double: 1
1236ldouble: 3
1237
1238Function: "sincos":
1239double: 1
1240ldouble: 1
1241
1242Function: "sincos_downward":
1243double: 1
1244ldouble: 3
1245
1246Function: "sincos_towardzero":
1247double: 1
1248ldouble: 2
1249
1250Function: "sincos_upward":
1251double: 1
1252ldouble: 3
1253
1254Function: "sinh":
1255double: 2
1256float: 2
1257ldouble: 2
1258
1259Function: "sinh_downward":
1260double: 3
1261float: 3
1262ldouble: 3
1263
1264Function: "sinh_towardzero":
1265double: 2
1266float: 2
1267ldouble: 3
1268
1269Function: "sinh_upward":
1270double: 3
1271float: 3
1272ldouble: 4
1273
1274Function: "tan":
1275float: 1
1276ldouble: 1
1277
1278Function: "tan_downward":
1279double: 1
1280float: 2
1281ldouble: 1
1282
1283Function: "tan_towardzero":
1284double: 1
1285float: 1
1286ldouble: 1
1287
1288Function: "tan_upward":
1289double: 1
1290float: 1
1291ldouble: 1
1292
1293Function: "tanh":
1294double: 2
1295float: 2
1296ldouble: 2
1297
1298Function: "tanh_downward":
1299double: 3
1300float: 3
1301ldouble: 4
1302
1303Function: "tanh_towardzero":
1304double: 2
1305float: 2
1306ldouble: 3
1307
1308Function: "tanh_upward":
1309double: 3
1310float: 3
1311ldouble: 3
1312
1313Function: "tgamma":
1314double: 5
1315float: 4
1316ldouble: 4
1317
1318Function: "tgamma_downward":
1319double: 5
1320float: 5
1321ldouble: 5
1322
1323Function: "tgamma_towardzero":
1324double: 5
1325float: 4
1326ldouble: 5
1327
1328Function: "tgamma_upward":
1329double: 4
1330float: 4
1331ldouble: 4
1332
1333Function: "y0":
1334double: 2
1335float: 1
1336ldouble: 3
1337
1338Function: "y0_downward":
1339double: 3
1340float: 4
1341ldouble: 4
1342
1343Function: "y0_towardzero":
1344double: 3
1345float: 3
1346ldouble: 3
1347
1348Function: "y0_upward":
1349double: 2
1350float: 5
1351ldouble: 3
1352
1353Function: "y1":
1354double: 3
1355float: 2
1356ldouble: 2
1357
1358Function: "y1_downward":
1359double: 3
1360float: 2
1361ldouble: 4
1362
1363Function: "y1_towardzero":
1364double: 3
1365float: 2
1366ldouble: 2
1367
1368Function: "y1_upward":
1369double: 5
1370float: 2
1371ldouble: 5
1372
1373Function: "yn":
1374double: 3
1375float: 3
1376ldouble: 5
1377
1378Function: "yn_downward":
1379double: 3
1380float: 4
1381ldouble: 5
1382
1383Function: "yn_towardzero":
1384double: 3
1385float: 3
1386ldouble: 5
1387
1388Function: "yn_upward":
1389double: 4
1390float: 5
1391ldouble: 5
1392
1393# end of automatic generation
1394