1# Begin of automatic generation 2 3# Maximal error of functions: 4Function: "acos": 5float: 1 6ldouble: 1 7 8Function: "acos_downward": 9double: 1 10float: 1 11ldouble: 1 12 13Function: "acos_towardzero": 14double: 1 15float: 1 16ldouble: 1 17 18Function: "acos_upward": 19double: 1 20float: 1 21ldouble: 1 22 23Function: "acosh": 24double: 2 25float: 2 26ldouble: 2 27 28Function: "acosh_downward": 29double: 2 30float: 2 31ldouble: 3 32 33Function: "acosh_towardzero": 34double: 2 35float: 2 36ldouble: 2 37 38Function: "acosh_upward": 39double: 2 40float: 2 41ldouble: 2 42 43Function: "asin": 44float: 1 45ldouble: 1 46 47Function: "asin_downward": 48double: 1 49float: 1 50ldouble: 2 51 52Function: "asin_towardzero": 53double: 1 54float: 1 55ldouble: 1 56 57Function: "asin_upward": 58double: 1 59float: 1 60ldouble: 2 61 62Function: "asinh": 63double: 1 64float: 1 65ldouble: 3 66 67Function: "asinh_downward": 68double: 3 69float: 3 70ldouble: 4 71 72Function: "asinh_towardzero": 73double: 2 74float: 2 75ldouble: 2 76 77Function: "asinh_upward": 78double: 3 79float: 3 80ldouble: 4 81 82Function: "atan": 83float: 1 84ldouble: 1 85 86Function: "atan2": 87float: 1 88ldouble: 1 89 90Function: "atan2_downward": 91double: 1 92float: 2 93ldouble: 2 94 95Function: "atan2_towardzero": 96double: 1 97float: 2 98ldouble: 3 99 100Function: "atan2_upward": 101double: 1 102float: 1 103ldouble: 2 104 105Function: "atan_downward": 106double: 1 107float: 2 108ldouble: 2 109 110Function: "atan_towardzero": 111double: 1 112float: 1 113ldouble: 1 114 115Function: "atan_upward": 116double: 1 117float: 2 118ldouble: 2 119 120Function: "atanh": 121double: 2 122float: 2 123ldouble: 3 124 125Function: "atanh_downward": 126double: 3 127float: 3 128ldouble: 4 129 130Function: "atanh_towardzero": 131double: 2 132float: 2 133ldouble: 2 134 135Function: "atanh_upward": 136double: 3 137float: 3 138ldouble: 4 139 140Function: "cabs": 141double: 1 142ldouble: 1 143 144Function: "cabs_downward": 145double: 1 146ldouble: 1 147 148Function: "cabs_towardzero": 149double: 1 150ldouble: 1 151 152Function: "cabs_upward": 153double: 1 154ldouble: 1 155 156Function: Real part of "cacos": 157double: 1 158float: 2 159ldouble: 2 160 161Function: Imaginary part of "cacos": 162double: 2 163float: 2 164ldouble: 2 165 166Function: Real part of "cacos_downward": 167double: 3 168float: 2 169ldouble: 3 170 171Function: Imaginary part of "cacos_downward": 172double: 5 173float: 3 174ldouble: 6 175 176Function: Real part of "cacos_towardzero": 177double: 3 178float: 2 179ldouble: 3 180 181Function: Imaginary part of "cacos_towardzero": 182double: 4 183float: 2 184ldouble: 5 185 186Function: Real part of "cacos_upward": 187double: 2 188float: 2 189ldouble: 3 190 191Function: Imaginary part of "cacos_upward": 192double: 5 193float: 5 194ldouble: 7 195 196Function: Real part of "cacosh": 197double: 2 198float: 2 199ldouble: 2 200 201Function: Imaginary part of "cacosh": 202double: 1 203float: 2 204ldouble: 2 205 206Function: Real part of "cacosh_downward": 207double: 4 208float: 2 209ldouble: 5 210 211Function: Imaginary part of "cacosh_downward": 212double: 3 213float: 3 214ldouble: 4 215 216Function: Real part of "cacosh_towardzero": 217double: 4 218float: 2 219ldouble: 5 220 221Function: Imaginary part of "cacosh_towardzero": 222double: 3 223float: 2 224ldouble: 3 225 226Function: Real part of "cacosh_upward": 227double: 4 228float: 3 229ldouble: 6 230 231Function: Imaginary part of "cacosh_upward": 232double: 3 233float: 2 234ldouble: 4 235 236Function: "carg": 237float: 1 238ldouble: 2 239 240Function: "carg_downward": 241double: 1 242float: 2 243ldouble: 2 244 245Function: "carg_towardzero": 246double: 1 247float: 2 248ldouble: 3 249 250Function: "carg_upward": 251double: 1 252float: 1 253ldouble: 2 254 255Function: Real part of "casin": 256double: 1 257float: 1 258ldouble: 2 259 260Function: Imaginary part of "casin": 261double: 2 262float: 2 263ldouble: 2 264 265Function: Real part of "casin_downward": 266double: 3 267float: 2 268ldouble: 3 269 270Function: Imaginary part of "casin_downward": 271double: 5 272float: 3 273ldouble: 6 274 275Function: Real part of "casin_towardzero": 276double: 3 277float: 1 278ldouble: 3 279 280Function: Imaginary part of "casin_towardzero": 281double: 4 282float: 2 283ldouble: 5 284 285Function: Real part of "casin_upward": 286double: 3 287float: 2 288ldouble: 3 289 290Function: Imaginary part of "casin_upward": 291double: 5 292float: 5 293ldouble: 7 294 295Function: Real part of "casinh": 296double: 2 297float: 2 298ldouble: 2 299 300Function: Imaginary part of "casinh": 301double: 1 302float: 1 303ldouble: 2 304 305Function: Real part of "casinh_downward": 306double: 5 307float: 3 308ldouble: 6 309 310Function: Imaginary part of "casinh_downward": 311double: 3 312float: 2 313ldouble: 3 314 315Function: Real part of "casinh_towardzero": 316double: 4 317float: 2 318ldouble: 5 319 320Function: Imaginary part of "casinh_towardzero": 321double: 3 322float: 1 323ldouble: 3 324 325Function: Real part of "casinh_upward": 326double: 5 327float: 5 328ldouble: 7 329 330Function: Imaginary part of "casinh_upward": 331double: 3 332float: 2 333ldouble: 3 334 335Function: Real part of "catan": 336double: 1 337float: 1 338ldouble: 1 339 340Function: Imaginary part of "catan": 341double: 1 342float: 1 343ldouble: 1 344 345Function: Real part of "catan_downward": 346double: 1 347float: 2 348ldouble: 2 349 350Function: Imaginary part of "catan_downward": 351double: 2 352float: 2 353ldouble: 2 354 355Function: Real part of "catan_towardzero": 356double: 1 357float: 2 358ldouble: 2 359 360Function: Imaginary part of "catan_towardzero": 361double: 2 362float: 2 363ldouble: 2 364 365Function: Real part of "catan_upward": 366double: 1 367float: 1 368ldouble: 2 369 370Function: Imaginary part of "catan_upward": 371double: 2 372float: 2 373ldouble: 3 374 375Function: Real part of "catanh": 376double: 1 377float: 1 378ldouble: 1 379 380Function: Imaginary part of "catanh": 381double: 1 382float: 1 383ldouble: 1 384 385Function: Real part of "catanh_downward": 386double: 2 387float: 2 388ldouble: 2 389 390Function: Imaginary part of "catanh_downward": 391double: 1 392float: 2 393ldouble: 2 394 395Function: Real part of "catanh_towardzero": 396double: 2 397float: 2 398ldouble: 2 399 400Function: Imaginary part of "catanh_towardzero": 401double: 1 402float: 2 403ldouble: 2 404 405Function: Real part of "catanh_upward": 406double: 4 407float: 4 408ldouble: 4 409 410Function: Imaginary part of "catanh_upward": 411double: 1 412float: 1 413ldouble: 2 414 415Function: "cbrt": 416double: 3 417float: 1 418ldouble: 1 419 420Function: "cbrt_downward": 421double: 4 422float: 1 423ldouble: 1 424 425Function: "cbrt_towardzero": 426double: 3 427float: 1 428ldouble: 1 429 430Function: "cbrt_upward": 431double: 5 432float: 1 433ldouble: 1 434 435Function: Real part of "ccos": 436double: 1 437float: 1 438ldouble: 1 439 440Function: Imaginary part of "ccos": 441double: 1 442float: 1 443ldouble: 1 444 445Function: Real part of "ccos_downward": 446double: 1 447float: 1 448ldouble: 2 449 450Function: Imaginary part of "ccos_downward": 451double: 2 452float: 3 453ldouble: 2 454 455Function: Real part of "ccos_towardzero": 456double: 1 457float: 2 458ldouble: 2 459 460Function: Imaginary part of "ccos_towardzero": 461double: 2 462float: 3 463ldouble: 2 464 465Function: Real part of "ccos_upward": 466double: 1 467float: 2 468ldouble: 3 469 470Function: Imaginary part of "ccos_upward": 471double: 2 472float: 2 473ldouble: 2 474 475Function: Real part of "ccosh": 476double: 1 477float: 1 478ldouble: 1 479 480Function: Imaginary part of "ccosh": 481double: 1 482float: 1 483ldouble: 1 484 485Function: Real part of "ccosh_downward": 486double: 1 487float: 2 488ldouble: 2 489 490Function: Imaginary part of "ccosh_downward": 491double: 2 492float: 3 493ldouble: 2 494 495Function: Real part of "ccosh_towardzero": 496double: 1 497float: 3 498ldouble: 2 499 500Function: Imaginary part of "ccosh_towardzero": 501double: 2 502float: 3 503ldouble: 2 504 505Function: Real part of "ccosh_upward": 506double: 1 507float: 2 508ldouble: 3 509 510Function: Imaginary part of "ccosh_upward": 511double: 2 512float: 2 513ldouble: 2 514 515Function: Real part of "cexp": 516double: 2 517float: 1 518ldouble: 1 519 520Function: Imaginary part of "cexp": 521double: 1 522float: 2 523ldouble: 1 524 525Function: Real part of "cexp_downward": 526double: 1 527float: 2 528ldouble: 2 529 530Function: Imaginary part of "cexp_downward": 531double: 1 532float: 3 533ldouble: 2 534 535Function: Real part of "cexp_towardzero": 536double: 1 537float: 2 538ldouble: 2 539 540Function: Imaginary part of "cexp_towardzero": 541double: 1 542float: 3 543ldouble: 2 544 545Function: Real part of "cexp_upward": 546double: 1 547float: 2 548ldouble: 3 549 550Function: Imaginary part of "cexp_upward": 551double: 1 552float: 2 553ldouble: 3 554 555Function: Real part of "clog": 556double: 3 557float: 3 558ldouble: 2 559 560Function: Imaginary part of "clog": 561float: 1 562ldouble: 1 563 564Function: Real part of "clog10": 565double: 3 566float: 4 567ldouble: 2 568 569Function: Imaginary part of "clog10": 570double: 2 571float: 2 572ldouble: 2 573 574Function: Real part of "clog10_downward": 575double: 5 576float: 5 577ldouble: 3 578 579Function: Imaginary part of "clog10_downward": 580double: 2 581float: 4 582ldouble: 3 583 584Function: Real part of "clog10_towardzero": 585double: 5 586float: 5 587ldouble: 4 588 589Function: Imaginary part of "clog10_towardzero": 590double: 2 591float: 4 592ldouble: 3 593 594Function: Real part of "clog10_upward": 595double: 6 596float: 5 597ldouble: 4 598 599Function: Imaginary part of "clog10_upward": 600double: 2 601float: 4 602ldouble: 3 603 604Function: Real part of "clog_downward": 605double: 4 606float: 3 607ldouble: 3 608 609Function: Imaginary part of "clog_downward": 610double: 1 611float: 2 612ldouble: 2 613 614Function: Real part of "clog_towardzero": 615double: 4 616float: 4 617ldouble: 3 618 619Function: Imaginary part of "clog_towardzero": 620double: 1 621float: 3 622ldouble: 2 623 624Function: Real part of "clog_upward": 625double: 4 626float: 3 627ldouble: 4 628 629Function: Imaginary part of "clog_upward": 630double: 1 631float: 2 632ldouble: 2 633 634Function: "cos": 635double: 1 636ldouble: 1 637 638Function: "cos_downward": 639double: 1 640ldouble: 3 641 642Function: "cos_towardzero": 643double: 1 644ldouble: 1 645 646Function: "cos_upward": 647double: 1 648ldouble: 2 649 650Function: "cosh": 651double: 1 652float: 1 653ldouble: 1 654 655Function: "cosh_downward": 656double: 1 657float: 1 658ldouble: 2 659 660Function: "cosh_towardzero": 661double: 1 662float: 1 663ldouble: 2 664 665Function: "cosh_upward": 666double: 1 667float: 2 668ldouble: 3 669 670Function: Real part of "cpow": 671double: 2 672float: 5 673ldouble: 4 674 675Function: Imaginary part of "cpow": 676float: 2 677ldouble: 1 678 679Function: Real part of "cpow_downward": 680double: 4 681float: 8 682ldouble: 6 683 684Function: Imaginary part of "cpow_downward": 685double: 1 686float: 2 687ldouble: 2 688 689Function: Real part of "cpow_towardzero": 690double: 4 691float: 8 692ldouble: 6 693 694Function: Imaginary part of "cpow_towardzero": 695double: 1 696float: 2 697ldouble: 2 698 699Function: Real part of "cpow_upward": 700double: 4 701float: 1 702ldouble: 3 703 704Function: Imaginary part of "cpow_upward": 705double: 1 706float: 2 707ldouble: 2 708 709Function: Real part of "csin": 710double: 1 711float: 1 712ldouble: 1 713 714Function: Imaginary part of "csin": 715ldouble: 1 716 717Function: Real part of "csin_downward": 718double: 2 719float: 3 720ldouble: 2 721 722Function: Imaginary part of "csin_downward": 723double: 1 724float: 1 725ldouble: 2 726 727Function: Real part of "csin_towardzero": 728double: 2 729float: 3 730ldouble: 2 731 732Function: Imaginary part of "csin_towardzero": 733double: 1 734float: 1 735ldouble: 2 736 737Function: Real part of "csin_upward": 738double: 2 739float: 2 740ldouble: 2 741 742Function: Imaginary part of "csin_upward": 743double: 1 744float: 2 745ldouble: 3 746 747Function: Real part of "csinh": 748float: 1 749ldouble: 1 750 751Function: Imaginary part of "csinh": 752double: 1 753float: 1 754ldouble: 1 755 756Function: Real part of "csinh_downward": 757double: 2 758float: 1 759ldouble: 2 760 761Function: Imaginary part of "csinh_downward": 762double: 2 763float: 3 764ldouble: 2 765 766Function: Real part of "csinh_towardzero": 767double: 2 768float: 2 769ldouble: 2 770 771Function: Imaginary part of "csinh_towardzero": 772double: 2 773float: 3 774ldouble: 2 775 776Function: Real part of "csinh_upward": 777double: 1 778float: 2 779ldouble: 3 780 781Function: Imaginary part of "csinh_upward": 782double: 2 783float: 2 784ldouble: 2 785 786Function: Real part of "csqrt": 787double: 2 788float: 2 789ldouble: 2 790 791Function: Imaginary part of "csqrt": 792double: 2 793float: 2 794ldouble: 2 795 796Function: Real part of "csqrt_downward": 797double: 5 798float: 4 799ldouble: 4 800 801Function: Imaginary part of "csqrt_downward": 802double: 4 803float: 3 804ldouble: 3 805 806Function: Real part of "csqrt_towardzero": 807double: 4 808float: 3 809ldouble: 3 810 811Function: Imaginary part of "csqrt_towardzero": 812double: 4 813float: 3 814ldouble: 3 815 816Function: Real part of "csqrt_upward": 817double: 5 818float: 4 819ldouble: 4 820 821Function: Imaginary part of "csqrt_upward": 822double: 3 823float: 3 824ldouble: 3 825 826Function: Real part of "ctan": 827double: 1 828float: 1 829ldouble: 3 830 831Function: Imaginary part of "ctan": 832double: 2 833float: 2 834ldouble: 3 835 836Function: Real part of "ctan_downward": 837double: 6 838float: 5 839ldouble: 4 840 841Function: Imaginary part of "ctan_downward": 842double: 2 843float: 2 844ldouble: 5 845 846Function: Real part of "ctan_towardzero": 847double: 5 848float: 2 849ldouble: 4 850 851Function: Imaginary part of "ctan_towardzero": 852double: 1 853float: 2 854ldouble: 5 855 856Function: Real part of "ctan_upward": 857double: 2 858float: 4 859ldouble: 5 860 861Function: Imaginary part of "ctan_upward": 862double: 2 863float: 2 864ldouble: 5 865 866Function: Real part of "ctanh": 867double: 2 868float: 2 869ldouble: 3 870 871Function: Imaginary part of "ctanh": 872double: 2 873float: 2 874ldouble: 3 875 876Function: Real part of "ctanh_downward": 877double: 4 878float: 2 879ldouble: 5 880 881Function: Imaginary part of "ctanh_downward": 882double: 6 883float: 5 884ldouble: 4 885 886Function: Real part of "ctanh_towardzero": 887double: 2 888float: 2 889ldouble: 5 890 891Function: Imaginary part of "ctanh_towardzero": 892double: 5 893float: 2 894ldouble: 3 895 896Function: Real part of "ctanh_upward": 897double: 2 898float: 2 899ldouble: 5 900 901Function: Imaginary part of "ctanh_upward": 902double: 2 903float: 3 904ldouble: 5 905 906Function: "erf": 907double: 1 908float: 1 909ldouble: 1 910 911Function: "erf_downward": 912double: 1 913float: 1 914ldouble: 2 915 916Function: "erf_towardzero": 917double: 1 918float: 1 919ldouble: 1 920 921Function: "erf_upward": 922double: 1 923float: 1 924ldouble: 2 925 926Function: "erfc": 927double: 3 928float: 2 929ldouble: 2 930 931Function: "erfc_downward": 932double: 3 933float: 4 934ldouble: 5 935 936Function: "erfc_towardzero": 937double: 3 938float: 3 939ldouble: 4 940 941Function: "erfc_upward": 942double: 3 943float: 4 944ldouble: 5 945 946Function: "exp": 947ldouble: 1 948 949Function: "exp10": 950double: 2 951ldouble: 2 952 953Function: "exp10_downward": 954double: 2 955float: 1 956ldouble: 3 957 958Function: "exp10_towardzero": 959double: 2 960float: 1 961ldouble: 3 962 963Function: "exp10_upward": 964double: 2 965float: 1 966ldouble: 3 967 968Function: "exp2": 969double: 1 970ldouble: 1 971 972Function: "exp2_downward": 973double: 1 974ldouble: 1 975 976Function: "exp2_towardzero": 977double: 1 978ldouble: 1 979 980Function: "exp2_upward": 981double: 1 982float: 1 983ldouble: 2 984 985Function: "exp_downward": 986double: 1 987float: 1 988 989Function: "exp_towardzero": 990double: 1 991float: 1 992 993Function: "exp_upward": 994double: 1 995float: 1 996 997Function: "expm1": 998double: 1 999float: 1 1000ldouble: 1 1001 1002Function: "expm1_downward": 1003double: 1 1004float: 1 1005ldouble: 2 1006 1007Function: "expm1_towardzero": 1008double: 1 1009float: 2 1010ldouble: 4 1011 1012Function: "expm1_upward": 1013double: 1 1014float: 1 1015ldouble: 3 1016 1017Function: "gamma": 1018double: 4 1019float: 3 1020ldouble: 5 1021 1022Function: "gamma_downward": 1023double: 4 1024float: 4 1025ldouble: 8 1026 1027Function: "gamma_towardzero": 1028double: 4 1029float: 3 1030ldouble: 5 1031 1032Function: "gamma_upward": 1033double: 4 1034float: 5 1035ldouble: 8 1036 1037Function: "hypot": 1038double: 1 1039ldouble: 1 1040 1041Function: "hypot_downward": 1042double: 1 1043ldouble: 1 1044 1045Function: "hypot_towardzero": 1046double: 1 1047ldouble: 1 1048 1049Function: "hypot_upward": 1050double: 1 1051ldouble: 1 1052 1053Function: "j0": 1054double: 2 1055float: 2 1056ldouble: 2 1057 1058Function: "j0_downward": 1059double: 2 1060float: 4 1061ldouble: 4 1062 1063Function: "j0_towardzero": 1064double: 2 1065float: 1 1066ldouble: 2 1067 1068Function: "j0_upward": 1069double: 3 1070float: 2 1071ldouble: 5 1072 1073Function: "j1": 1074double: 1 1075float: 2 1076ldouble: 4 1077 1078Function: "j1_downward": 1079double: 3 1080float: 2 1081ldouble: 4 1082 1083Function: "j1_towardzero": 1084double: 3 1085float: 2 1086ldouble: 4 1087 1088Function: "j1_upward": 1089double: 3 1090float: 4 1091ldouble: 3 1092 1093Function: "jn": 1094double: 4 1095float: 4 1096ldouble: 7 1097 1098Function: "jn_downward": 1099double: 4 1100float: 5 1101ldouble: 8 1102 1103Function: "jn_towardzero": 1104double: 4 1105float: 5 1106ldouble: 8 1107 1108Function: "jn_upward": 1109double: 5 1110float: 4 1111ldouble: 7 1112 1113Function: "lgamma": 1114double: 4 1115float: 3 1116ldouble: 5 1117 1118Function: "lgamma_downward": 1119double: 4 1120float: 4 1121ldouble: 8 1122 1123Function: "lgamma_towardzero": 1124double: 4 1125float: 3 1126ldouble: 5 1127 1128Function: "lgamma_upward": 1129double: 4 1130float: 5 1131ldouble: 8 1132 1133Function: "log": 1134ldouble: 1 1135 1136Function: "log10": 1137double: 2 1138float: 2 1139ldouble: 1 1140 1141Function: "log10_downward": 1142double: 2 1143float: 3 1144ldouble: 1 1145 1146Function: "log10_towardzero": 1147double: 2 1148float: 1 1149ldouble: 1 1150 1151Function: "log10_upward": 1152double: 2 1153float: 2 1154ldouble: 1 1155 1156Function: "log1p": 1157double: 1 1158float: 1 1159ldouble: 2 1160 1161Function: "log1p_downward": 1162double: 1 1163float: 2 1164ldouble: 3 1165 1166Function: "log1p_towardzero": 1167double: 2 1168float: 2 1169ldouble: 3 1170 1171Function: "log1p_upward": 1172double: 2 1173float: 2 1174ldouble: 2 1175 1176Function: "log2": 1177double: 2 1178float: 1 1179ldouble: 2 1180 1181Function: "log2_downward": 1182double: 3 1183ldouble: 3 1184 1185Function: "log2_towardzero": 1186double: 2 1187ldouble: 1 1188 1189Function: "log2_upward": 1190double: 3 1191ldouble: 1 1192 1193Function: "log_downward": 1194ldouble: 1 1195 1196Function: "log_towardzero": 1197ldouble: 2 1198 1199Function: "log_upward": 1200double: 1 1201ldouble: 1 1202 1203Function: "pow": 1204double: 1 1205ldouble: 2 1206 1207Function: "pow_downward": 1208double: 1 1209float: 1 1210ldouble: 2 1211 1212Function: "pow_towardzero": 1213double: 1 1214float: 1 1215ldouble: 2 1216 1217Function: "pow_upward": 1218double: 1 1219float: 1 1220ldouble: 2 1221 1222Function: "sin": 1223double: 1 1224ldouble: 1 1225 1226Function: "sin_downward": 1227double: 1 1228ldouble: 3 1229 1230Function: "sin_towardzero": 1231double: 1 1232ldouble: 2 1233 1234Function: "sin_upward": 1235double: 1 1236ldouble: 3 1237 1238Function: "sincos": 1239double: 1 1240ldouble: 1 1241 1242Function: "sincos_downward": 1243double: 1 1244ldouble: 3 1245 1246Function: "sincos_towardzero": 1247double: 1 1248ldouble: 2 1249 1250Function: "sincos_upward": 1251double: 1 1252ldouble: 3 1253 1254Function: "sinh": 1255double: 2 1256float: 2 1257ldouble: 2 1258 1259Function: "sinh_downward": 1260double: 3 1261float: 3 1262ldouble: 3 1263 1264Function: "sinh_towardzero": 1265double: 2 1266float: 2 1267ldouble: 3 1268 1269Function: "sinh_upward": 1270double: 3 1271float: 3 1272ldouble: 4 1273 1274Function: "tan": 1275float: 1 1276ldouble: 1 1277 1278Function: "tan_downward": 1279double: 1 1280float: 2 1281ldouble: 1 1282 1283Function: "tan_towardzero": 1284double: 1 1285float: 1 1286ldouble: 1 1287 1288Function: "tan_upward": 1289double: 1 1290float: 1 1291ldouble: 1 1292 1293Function: "tanh": 1294double: 2 1295float: 2 1296ldouble: 2 1297 1298Function: "tanh_downward": 1299double: 3 1300float: 3 1301ldouble: 4 1302 1303Function: "tanh_towardzero": 1304double: 2 1305float: 2 1306ldouble: 3 1307 1308Function: "tanh_upward": 1309double: 3 1310float: 3 1311ldouble: 3 1312 1313Function: "tgamma": 1314double: 5 1315float: 4 1316ldouble: 4 1317 1318Function: "tgamma_downward": 1319double: 5 1320float: 5 1321ldouble: 5 1322 1323Function: "tgamma_towardzero": 1324double: 5 1325float: 4 1326ldouble: 5 1327 1328Function: "tgamma_upward": 1329double: 4 1330float: 4 1331ldouble: 4 1332 1333Function: "y0": 1334double: 2 1335float: 1 1336ldouble: 3 1337 1338Function: "y0_downward": 1339double: 3 1340float: 4 1341ldouble: 4 1342 1343Function: "y0_towardzero": 1344double: 3 1345float: 3 1346ldouble: 3 1347 1348Function: "y0_upward": 1349double: 2 1350float: 5 1351ldouble: 3 1352 1353Function: "y1": 1354double: 3 1355float: 2 1356ldouble: 2 1357 1358Function: "y1_downward": 1359double: 3 1360float: 2 1361ldouble: 4 1362 1363Function: "y1_towardzero": 1364double: 3 1365float: 2 1366ldouble: 2 1367 1368Function: "y1_upward": 1369double: 5 1370float: 2 1371ldouble: 5 1372 1373Function: "yn": 1374double: 3 1375float: 3 1376ldouble: 5 1377 1378Function: "yn_downward": 1379double: 3 1380float: 4 1381ldouble: 5 1382 1383Function: "yn_towardzero": 1384double: 3 1385float: 3 1386ldouble: 5 1387 1388Function: "yn_upward": 1389double: 4 1390float: 5 1391ldouble: 5 1392 1393# end of automatic generation 1394