1# Begin of automatic generation
2
3# Maximal error of functions:
4Function: "acos":
5double: 1
6float: 1
7ldouble: 1
8
9Function: "acos_downward":
10double: 1
11float: 1
12ldouble: 1
13
14Function: "acos_towardzero":
15double: 1
16float: 1
17ldouble: 1
18
19Function: "acos_upward":
20double: 1
21float: 1
22ldouble: 1
23
24Function: "acosh":
25double: 2
26float: 2
27ldouble: 4
28
29Function: "acosh_downward":
30double: 2
31float: 2
32ldouble: 3
33
34Function: "acosh_towardzero":
35double: 2
36float: 2
37ldouble: 2
38
39Function: "acosh_upward":
40double: 2
41float: 2
42ldouble: 3
43
44Function: "asin":
45double: 1
46float: 1
47ldouble: 1
48
49Function: "asin_downward":
50double: 1
51float: 1
52ldouble: 2
53
54Function: "asin_towardzero":
55double: 1
56float: 1
57ldouble: 1
58
59Function: "asin_upward":
60double: 2
61float: 1
62ldouble: 2
63
64Function: "asinh":
65double: 2
66float: 2
67ldouble: 4
68
69Function: "asinh_downward":
70double: 3
71float: 3
72ldouble: 4
73
74Function: "asinh_towardzero":
75double: 2
76float: 2
77ldouble: 2
78
79Function: "asinh_upward":
80double: 3
81float: 3
82ldouble: 4
83
84Function: "atan":
85double: 1
86float: 1
87ldouble: 1
88
89Function: "atan2":
90float: 1
91ldouble: 2
92
93Function: "atan2_downward":
94double: 1
95float: 2
96ldouble: 2
97
98Function: "atan2_towardzero":
99double: 1
100float: 2
101ldouble: 3
102
103Function: "atan2_upward":
104double: 1
105float: 1
106ldouble: 2
107
108Function: "atan_downward":
109double: 1
110float: 2
111ldouble: 2
112
113Function: "atan_towardzero":
114double: 1
115float: 1
116ldouble: 1
117
118Function: "atan_upward":
119double: 1
120float: 2
121ldouble: 2
122
123Function: "atanh":
124double: 2
125float: 2
126ldouble: 4
127
128Function: "atanh_downward":
129double: 3
130float: 3
131ldouble: 4
132
133Function: "atanh_towardzero":
134double: 2
135float: 2
136ldouble: 2
137
138Function: "atanh_upward":
139double: 3
140float: 3
141ldouble: 4
142
143Function: "cabs":
144double: 1
145ldouble: 1
146
147Function: "cabs_downward":
148double: 1
149ldouble: 1
150
151Function: "cabs_towardzero":
152double: 1
153ldouble: 1
154
155Function: "cabs_upward":
156double: 1
157ldouble: 1
158
159Function: Real part of "cacos":
160double: 1
161float: 2
162ldouble: 2
163
164Function: Imaginary part of "cacos":
165double: 2
166float: 2
167ldouble: 2
168
169Function: Real part of "cacos_downward":
170double: 3
171float: 2
172ldouble: 3
173
174Function: Imaginary part of "cacos_downward":
175double: 5
176float: 3
177ldouble: 6
178
179Function: Real part of "cacos_towardzero":
180double: 3
181float: 2
182ldouble: 3
183
184Function: Imaginary part of "cacos_towardzero":
185double: 4
186float: 2
187ldouble: 5
188
189Function: Real part of "cacos_upward":
190double: 2
191float: 2
192ldouble: 3
193
194Function: Imaginary part of "cacos_upward":
195double: 5
196float: 5
197ldouble: 7
198
199Function: Real part of "cacosh":
200double: 2
201float: 2
202ldouble: 2
203
204Function: Imaginary part of "cacosh":
205double: 1
206float: 2
207ldouble: 2
208
209Function: Real part of "cacosh_downward":
210double: 4
211float: 2
212ldouble: 5
213
214Function: Imaginary part of "cacosh_downward":
215double: 3
216float: 3
217ldouble: 4
218
219Function: Real part of "cacosh_towardzero":
220double: 4
221float: 2
222ldouble: 5
223
224Function: Imaginary part of "cacosh_towardzero":
225double: 3
226float: 2
227ldouble: 3
228
229Function: Real part of "cacosh_upward":
230double: 4
231float: 3
232ldouble: 6
233
234Function: Imaginary part of "cacosh_upward":
235double: 3
236float: 2
237ldouble: 4
238
239Function: "carg":
240float: 1
241ldouble: 2
242
243Function: "carg_downward":
244double: 1
245float: 2
246ldouble: 2
247
248Function: "carg_towardzero":
249double: 1
250float: 2
251ldouble: 3
252
253Function: "carg_upward":
254double: 1
255float: 1
256ldouble: 2
257
258Function: Real part of "casin":
259double: 1
260float: 1
261ldouble: 2
262
263Function: Imaginary part of "casin":
264double: 2
265float: 2
266ldouble: 2
267
268Function: Real part of "casin_downward":
269double: 3
270float: 2
271ldouble: 3
272
273Function: Imaginary part of "casin_downward":
274double: 5
275float: 3
276ldouble: 6
277
278Function: Real part of "casin_towardzero":
279double: 3
280float: 1
281ldouble: 3
282
283Function: Imaginary part of "casin_towardzero":
284double: 4
285float: 2
286ldouble: 5
287
288Function: Real part of "casin_upward":
289double: 3
290float: 2
291ldouble: 3
292
293Function: Imaginary part of "casin_upward":
294double: 5
295float: 5
296ldouble: 7
297
298Function: Real part of "casinh":
299double: 2
300float: 2
301ldouble: 2
302
303Function: Imaginary part of "casinh":
304double: 1
305float: 1
306ldouble: 2
307
308Function: Real part of "casinh_downward":
309double: 5
310float: 3
311ldouble: 6
312
313Function: Imaginary part of "casinh_downward":
314double: 3
315float: 2
316ldouble: 3
317
318Function: Real part of "casinh_towardzero":
319double: 4
320float: 2
321ldouble: 5
322
323Function: Imaginary part of "casinh_towardzero":
324double: 3
325float: 1
326ldouble: 3
327
328Function: Real part of "casinh_upward":
329double: 5
330float: 5
331ldouble: 7
332
333Function: Imaginary part of "casinh_upward":
334double: 3
335float: 2
336ldouble: 3
337
338Function: Real part of "catan":
339double: 1
340float: 1
341ldouble: 1
342
343Function: Imaginary part of "catan":
344double: 1
345float: 1
346ldouble: 1
347
348Function: Real part of "catan_downward":
349double: 1
350float: 2
351ldouble: 2
352
353Function: Imaginary part of "catan_downward":
354double: 2
355float: 2
356ldouble: 2
357
358Function: Real part of "catan_towardzero":
359double: 1
360float: 2
361ldouble: 2
362
363Function: Imaginary part of "catan_towardzero":
364double: 2
365float: 2
366ldouble: 2
367
368Function: Real part of "catan_upward":
369double: 1
370float: 1
371ldouble: 2
372
373Function: Imaginary part of "catan_upward":
374double: 2
375float: 2
376ldouble: 3
377
378Function: Real part of "catanh":
379double: 1
380float: 1
381ldouble: 1
382
383Function: Imaginary part of "catanh":
384double: 1
385float: 1
386ldouble: 1
387
388Function: Real part of "catanh_downward":
389double: 2
390float: 2
391ldouble: 2
392
393Function: Imaginary part of "catanh_downward":
394double: 1
395float: 2
396ldouble: 2
397
398Function: Real part of "catanh_towardzero":
399double: 2
400float: 2
401ldouble: 2
402
403Function: Imaginary part of "catanh_towardzero":
404double: 1
405float: 2
406ldouble: 2
407
408Function: Real part of "catanh_upward":
409double: 4
410float: 4
411ldouble: 4
412
413Function: Imaginary part of "catanh_upward":
414double: 1
415float: 1
416ldouble: 2
417
418Function: "cbrt":
419double: 4
420float: 1
421ldouble: 1
422
423Function: "cbrt_downward":
424double: 4
425float: 1
426ldouble: 1
427
428Function: "cbrt_towardzero":
429double: 3
430float: 1
431ldouble: 1
432
433Function: "cbrt_upward":
434double: 5
435float: 1
436ldouble: 1
437
438Function: Real part of "ccos":
439double: 1
440float: 1
441ldouble: 1
442
443Function: Imaginary part of "ccos":
444double: 1
445float: 1
446ldouble: 1
447
448Function: Real part of "ccos_downward":
449double: 1
450float: 1
451ldouble: 2
452
453Function: Imaginary part of "ccos_downward":
454double: 3
455float: 3
456ldouble: 2
457
458Function: Real part of "ccos_towardzero":
459double: 1
460float: 2
461ldouble: 2
462
463Function: Imaginary part of "ccos_towardzero":
464double: 3
465float: 3
466ldouble: 2
467
468Function: Real part of "ccos_upward":
469double: 1
470float: 2
471ldouble: 3
472
473Function: Imaginary part of "ccos_upward":
474double: 2
475float: 2
476ldouble: 2
477
478Function: Real part of "ccosh":
479double: 1
480float: 1
481ldouble: 1
482
483Function: Imaginary part of "ccosh":
484double: 1
485float: 1
486ldouble: 1
487
488Function: Real part of "ccosh_downward":
489double: 2
490float: 2
491ldouble: 2
492
493Function: Imaginary part of "ccosh_downward":
494double: 3
495float: 3
496ldouble: 2
497
498Function: Real part of "ccosh_towardzero":
499double: 2
500float: 3
501ldouble: 2
502
503Function: Imaginary part of "ccosh_towardzero":
504double: 3
505float: 3
506ldouble: 2
507
508Function: Real part of "ccosh_upward":
509double: 1
510float: 2
511ldouble: 3
512
513Function: Imaginary part of "ccosh_upward":
514double: 2
515float: 2
516ldouble: 2
517
518Function: Real part of "cexp":
519double: 2
520float: 1
521ldouble: 1
522
523Function: Imaginary part of "cexp":
524double: 1
525float: 2
526ldouble: 1
527
528Function: Real part of "cexp_downward":
529double: 2
530float: 2
531ldouble: 2
532
533Function: Imaginary part of "cexp_downward":
534double: 3
535float: 3
536ldouble: 2
537
538Function: Real part of "cexp_towardzero":
539double: 2
540float: 2
541ldouble: 2
542
543Function: Imaginary part of "cexp_towardzero":
544double: 3
545float: 3
546ldouble: 2
547
548Function: Real part of "cexp_upward":
549double: 1
550float: 2
551ldouble: 3
552
553Function: Imaginary part of "cexp_upward":
554double: 3
555float: 2
556ldouble: 3
557
558Function: Real part of "clog":
559double: 3
560float: 3
561ldouble: 2
562
563Function: Imaginary part of "clog":
564double: 1
565float: 1
566ldouble: 1
567
568Function: Real part of "clog10":
569double: 3
570float: 4
571ldouble: 2
572
573Function: Imaginary part of "clog10":
574double: 2
575float: 2
576ldouble: 2
577
578Function: Real part of "clog10_downward":
579double: 5
580float: 5
581ldouble: 3
582
583Function: Imaginary part of "clog10_downward":
584double: 2
585float: 4
586ldouble: 3
587
588Function: Real part of "clog10_towardzero":
589double: 5
590float: 5
591ldouble: 4
592
593Function: Imaginary part of "clog10_towardzero":
594double: 2
595float: 4
596ldouble: 3
597
598Function: Real part of "clog10_upward":
599double: 6
600float: 5
601ldouble: 4
602
603Function: Imaginary part of "clog10_upward":
604double: 2
605float: 4
606ldouble: 3
607
608Function: Real part of "clog_downward":
609double: 4
610float: 3
611ldouble: 3
612
613Function: Imaginary part of "clog_downward":
614double: 1
615float: 2
616ldouble: 2
617
618Function: Real part of "clog_towardzero":
619double: 4
620float: 4
621ldouble: 3
622
623Function: Imaginary part of "clog_towardzero":
624double: 1
625float: 3
626ldouble: 2
627
628Function: Real part of "clog_upward":
629double: 4
630float: 3
631ldouble: 4
632
633Function: Imaginary part of "clog_upward":
634double: 1
635float: 2
636ldouble: 2
637
638Function: "cos":
639double: 1
640float: 1
641ldouble: 2
642
643Function: "cos_downward":
644double: 1
645float: 1
646ldouble: 3
647
648Function: "cos_towardzero":
649double: 1
650float: 1
651ldouble: 1
652
653Function: "cos_upward":
654double: 1
655float: 1
656ldouble: 2
657
658Function: "cosh":
659double: 2
660float: 2
661ldouble: 2
662
663Function: "cosh_downward":
664double: 3
665float: 1
666ldouble: 3
667
668Function: "cosh_towardzero":
669double: 3
670float: 1
671ldouble: 3
672
673Function: "cosh_upward":
674double: 2
675float: 2
676ldouble: 3
677
678Function: Real part of "cpow":
679double: 2
680float: 5
681ldouble: 4
682
683Function: Imaginary part of "cpow":
684float: 2
685ldouble: 1
686
687Function: Real part of "cpow_downward":
688double: 5
689float: 8
690ldouble: 6
691
692Function: Imaginary part of "cpow_downward":
693double: 1
694float: 2
695ldouble: 2
696
697Function: Real part of "cpow_towardzero":
698double: 5
699float: 8
700ldouble: 6
701
702Function: Imaginary part of "cpow_towardzero":
703double: 1
704float: 2
705ldouble: 2
706
707Function: Real part of "cpow_upward":
708double: 4
709float: 1
710ldouble: 3
711
712Function: Imaginary part of "cpow_upward":
713double: 1
714float: 2
715ldouble: 2
716
717Function: Real part of "csin":
718double: 1
719float: 1
720ldouble: 1
721
722Function: Imaginary part of "csin":
723ldouble: 1
724
725Function: Real part of "csin_downward":
726double: 3
727float: 3
728ldouble: 2
729
730Function: Imaginary part of "csin_downward":
731double: 1
732float: 1
733ldouble: 2
734
735Function: Real part of "csin_towardzero":
736double: 3
737float: 3
738ldouble: 2
739
740Function: Imaginary part of "csin_towardzero":
741double: 1
742float: 1
743ldouble: 2
744
745Function: Real part of "csin_upward":
746double: 2
747float: 2
748ldouble: 2
749
750Function: Imaginary part of "csin_upward":
751double: 1
752float: 2
753ldouble: 3
754
755Function: Real part of "csinh":
756float: 1
757ldouble: 1
758
759Function: Imaginary part of "csinh":
760double: 1
761float: 1
762ldouble: 1
763
764Function: Real part of "csinh_downward":
765double: 2
766float: 1
767ldouble: 2
768
769Function: Imaginary part of "csinh_downward":
770double: 3
771float: 3
772ldouble: 2
773
774Function: Real part of "csinh_towardzero":
775double: 2
776float: 2
777ldouble: 2
778
779Function: Imaginary part of "csinh_towardzero":
780double: 3
781float: 3
782ldouble: 2
783
784Function: Real part of "csinh_upward":
785double: 1
786float: 2
787ldouble: 3
788
789Function: Imaginary part of "csinh_upward":
790double: 2
791float: 2
792ldouble: 2
793
794Function: Real part of "csqrt":
795double: 2
796float: 2
797ldouble: 2
798
799Function: Imaginary part of "csqrt":
800double: 2
801float: 2
802ldouble: 2
803
804Function: Real part of "csqrt_downward":
805double: 5
806float: 4
807ldouble: 4
808
809Function: Imaginary part of "csqrt_downward":
810double: 4
811float: 3
812ldouble: 3
813
814Function: Real part of "csqrt_towardzero":
815double: 4
816float: 3
817ldouble: 3
818
819Function: Imaginary part of "csqrt_towardzero":
820double: 4
821float: 3
822ldouble: 3
823
824Function: Real part of "csqrt_upward":
825double: 5
826float: 4
827ldouble: 4
828
829Function: Imaginary part of "csqrt_upward":
830double: 3
831float: 3
832ldouble: 3
833
834Function: Real part of "ctan":
835double: 1
836float: 1
837ldouble: 3
838
839Function: Imaginary part of "ctan":
840double: 2
841float: 2
842ldouble: 3
843
844Function: Real part of "ctan_downward":
845double: 6
846float: 5
847ldouble: 4
848
849Function: Imaginary part of "ctan_downward":
850double: 2
851float: 2
852ldouble: 5
853
854Function: Real part of "ctan_towardzero":
855double: 5
856float: 2
857ldouble: 4
858
859Function: Imaginary part of "ctan_towardzero":
860double: 2
861float: 2
862ldouble: 5
863
864Function: Real part of "ctan_upward":
865double: 2
866float: 4
867ldouble: 5
868
869Function: Imaginary part of "ctan_upward":
870double: 2
871float: 2
872ldouble: 5
873
874Function: Real part of "ctanh":
875double: 2
876float: 2
877ldouble: 3
878
879Function: Imaginary part of "ctanh":
880double: 2
881float: 1
882ldouble: 3
883
884Function: Real part of "ctanh_downward":
885double: 4
886float: 2
887ldouble: 5
888
889Function: Imaginary part of "ctanh_downward":
890double: 6
891float: 5
892ldouble: 4
893
894Function: Real part of "ctanh_towardzero":
895double: 2
896float: 2
897ldouble: 5
898
899Function: Imaginary part of "ctanh_towardzero":
900double: 5
901float: 2
902ldouble: 3
903
904Function: Real part of "ctanh_upward":
905double: 2
906float: 2
907ldouble: 5
908
909Function: Imaginary part of "ctanh_upward":
910double: 2
911float: 3
912ldouble: 5
913
914Function: "erf":
915double: 1
916float: 1
917ldouble: 1
918
919Function: "erf_downward":
920double: 1
921float: 1
922ldouble: 2
923
924Function: "erf_towardzero":
925double: 1
926float: 1
927ldouble: 1
928
929Function: "erf_upward":
930double: 1
931float: 1
932ldouble: 2
933
934Function: "erfc":
935double: 2
936float: 2
937ldouble: 4
938
939Function: "erfc_downward":
940double: 4
941float: 4
942ldouble: 5
943
944Function: "erfc_towardzero":
945double: 3
946float: 3
947ldouble: 4
948
949Function: "erfc_upward":
950double: 4
951float: 4
952ldouble: 5
953
954Function: "exp":
955double: 1
956float: 1
957ldouble: 1
958
959Function: "exp10":
960double: 2
961ldouble: 2
962
963Function: "exp10_downward":
964double: 3
965float: 1
966ldouble: 3
967
968Function: "exp10_towardzero":
969double: 3
970float: 1
971ldouble: 3
972
973Function: "exp10_upward":
974double: 2
975float: 1
976ldouble: 3
977
978Function: "exp2":
979double: 1
980ldouble: 1
981
982Function: "exp2_downward":
983double: 1
984ldouble: 1
985
986Function: "exp2_towardzero":
987double: 1
988ldouble: 1
989
990Function: "exp2_upward":
991double: 1
992float: 1
993ldouble: 2
994
995Function: "exp_downward":
996double: 1
997float: 1
998
999Function: "exp_towardzero":
1000double: 1
1001float: 1
1002
1003Function: "exp_upward":
1004double: 1
1005float: 1
1006
1007Function: "expm1":
1008double: 1
1009float: 1
1010ldouble: 2
1011
1012Function: "expm1_downward":
1013double: 1
1014float: 1
1015ldouble: 2
1016
1017Function: "expm1_towardzero":
1018double: 1
1019float: 2
1020ldouble: 4
1021
1022Function: "expm1_upward":
1023double: 1
1024float: 1
1025ldouble: 3
1026
1027Function: "gamma":
1028double: 3
1029float: 3
1030ldouble: 5
1031
1032Function: "gamma_downward":
1033double: 4
1034float: 4
1035ldouble: 8
1036
1037Function: "gamma_towardzero":
1038double: 4
1039float: 3
1040ldouble: 5
1041
1042Function: "gamma_upward":
1043double: 4
1044float: 5
1045ldouble: 8
1046
1047Function: "hypot":
1048double: 1
1049ldouble: 1
1050
1051Function: "hypot_downward":
1052double: 1
1053ldouble: 1
1054
1055Function: "hypot_towardzero":
1056double: 1
1057ldouble: 1
1058
1059Function: "hypot_upward":
1060double: 1
1061ldouble: 1
1062
1063Function: "j0":
1064double: 3
1065float: 9
1066ldouble: 2
1067
1068Function: "j0_downward":
1069double: 6
1070float: 9
1071ldouble: 9
1072
1073Function: "j0_towardzero":
1074double: 7
1075float: 9
1076ldouble: 9
1077
1078Function: "j0_upward":
1079double: 9
1080float: 8
1081ldouble: 7
1082
1083Function: "j1":
1084double: 4
1085float: 9
1086ldouble: 4
1087
1088Function: "j1_downward":
1089double: 3
1090float: 8
1091ldouble: 4
1092
1093Function: "j1_towardzero":
1094double: 4
1095float: 8
1096ldouble: 4
1097
1098Function: "j1_upward":
1099double: 9
1100float: 9
1101ldouble: 3
1102
1103Function: "jn":
1104double: 4
1105float: 4
1106ldouble: 7
1107
1108Function: "jn_downward":
1109double: 4
1110float: 5
1111ldouble: 8
1112
1113Function: "jn_towardzero":
1114double: 4
1115float: 5
1116ldouble: 8
1117
1118Function: "jn_upward":
1119double: 5
1120float: 4
1121ldouble: 7
1122
1123Function: "lgamma":
1124double: 3
1125float: 3
1126ldouble: 5
1127
1128Function: "lgamma_downward":
1129double: 4
1130float: 4
1131ldouble: 8
1132
1133Function: "lgamma_towardzero":
1134double: 4
1135float: 3
1136ldouble: 5
1137
1138Function: "lgamma_upward":
1139double: 4
1140float: 5
1141ldouble: 8
1142
1143Function: "log":
1144double: 1
1145ldouble: 1
1146
1147Function: "log10":
1148double: 2
1149float: 2
1150ldouble: 2
1151
1152Function: "log10_downward":
1153double: 2
1154float: 3
1155ldouble: 1
1156
1157Function: "log10_towardzero":
1158double: 2
1159float: 1
1160ldouble: 1
1161
1162Function: "log10_upward":
1163double: 2
1164float: 2
1165ldouble: 1
1166
1167Function: "log1p":
1168double: 1
1169float: 1
1170ldouble: 3
1171
1172Function: "log1p_downward":
1173double: 1
1174float: 2
1175ldouble: 3
1176
1177Function: "log1p_towardzero":
1178double: 2
1179float: 2
1180ldouble: 3
1181
1182Function: "log1p_upward":
1183double: 2
1184float: 2
1185ldouble: 2
1186
1187Function: "log2":
1188double: 1
1189float: 1
1190ldouble: 3
1191
1192Function: "log2_downward":
1193double: 3
1194ldouble: 3
1195
1196Function: "log2_towardzero":
1197double: 2
1198ldouble: 1
1199
1200Function: "log2_upward":
1201double: 3
1202ldouble: 1
1203
1204Function: "log_downward":
1205ldouble: 1
1206
1207Function: "log_towardzero":
1208ldouble: 2
1209
1210Function: "log_upward":
1211double: 1
1212ldouble: 2
1213
1214Function: "pow":
1215double: 1
1216ldouble: 2
1217
1218Function: "pow_downward":
1219double: 1
1220float: 1
1221ldouble: 2
1222
1223Function: "pow_towardzero":
1224double: 1
1225float: 1
1226ldouble: 2
1227
1228Function: "pow_upward":
1229double: 1
1230float: 1
1231ldouble: 2
1232
1233Function: "sin":
1234double: 1
1235float: 1
1236ldouble: 2
1237
1238Function: "sin_downward":
1239double: 1
1240float: 1
1241ldouble: 3
1242
1243Function: "sin_towardzero":
1244double: 1
1245float: 1
1246ldouble: 2
1247
1248Function: "sin_upward":
1249double: 1
1250float: 1
1251ldouble: 3
1252
1253Function: "sincos":
1254double: 1
1255ldouble: 1
1256
1257Function: "sincos_downward":
1258double: 1
1259float: 1
1260ldouble: 3
1261
1262Function: "sincos_towardzero":
1263double: 1
1264float: 1
1265ldouble: 2
1266
1267Function: "sincos_upward":
1268double: 1
1269float: 1
1270ldouble: 3
1271
1272Function: "sinh":
1273double: 2
1274float: 2
1275ldouble: 2
1276
1277Function: "sinh_downward":
1278double: 3
1279float: 3
1280ldouble: 3
1281
1282Function: "sinh_towardzero":
1283double: 3
1284float: 2
1285ldouble: 3
1286
1287Function: "sinh_upward":
1288double: 3
1289float: 3
1290ldouble: 4
1291
1292Function: "tan":
1293float: 1
1294ldouble: 1
1295
1296Function: "tan_downward":
1297double: 1
1298float: 2
1299ldouble: 1
1300
1301Function: "tan_towardzero":
1302double: 1
1303float: 1
1304ldouble: 1
1305
1306Function: "tan_upward":
1307double: 1
1308float: 1
1309ldouble: 1
1310
1311Function: "tanh":
1312double: 2
1313float: 2
1314ldouble: 2
1315
1316Function: "tanh_downward":
1317double: 3
1318float: 3
1319ldouble: 4
1320
1321Function: "tanh_towardzero":
1322double: 2
1323float: 2
1324ldouble: 3
1325
1326Function: "tanh_upward":
1327double: 3
1328float: 3
1329ldouble: 3
1330
1331Function: "tgamma":
1332double: 9
1333float: 8
1334ldouble: 4
1335
1336Function: "tgamma_downward":
1337double: 9
1338float: 7
1339ldouble: 5
1340
1341Function: "tgamma_towardzero":
1342double: 9
1343float: 7
1344ldouble: 5
1345
1346Function: "tgamma_upward":
1347double: 8
1348float: 8
1349ldouble: 4
1350
1351Function: "y0":
1352double: 2
1353float: 8
1354ldouble: 3
1355
1356Function: "y0_downward":
1357double: 3
1358float: 8
1359ldouble: 7
1360
1361Function: "y0_towardzero":
1362double: 3
1363float: 8
1364ldouble: 3
1365
1366Function: "y0_upward":
1367double: 2
1368float: 8
1369ldouble: 4
1370
1371Function: "y1":
1372double: 3
1373float: 9
1374ldouble: 5
1375
1376Function: "y1_downward":
1377double: 6
1378float: 8
1379ldouble: 5
1380
1381Function: "y1_towardzero":
1382double: 3
1383float: 9
1384ldouble: 2
1385
1386Function: "y1_upward":
1387double: 6
1388float: 9
1389ldouble: 5
1390
1391Function: "yn":
1392double: 3
1393float: 3
1394ldouble: 5
1395
1396Function: "yn_downward":
1397double: 3
1398float: 4
1399ldouble: 5
1400
1401Function: "yn_towardzero":
1402double: 3
1403float: 3
1404ldouble: 5
1405
1406Function: "yn_upward":
1407double: 4
1408float: 5
1409ldouble: 5
1410
1411# end of automatic generation
1412