1# Begin of automatic generation 2 3# Maximal error of functions: 4Function: "acos": 5double: 1 6float: 1 7ldouble: 1 8 9Function: "acos_downward": 10double: 1 11float: 1 12ldouble: 1 13 14Function: "acos_towardzero": 15double: 1 16float: 1 17ldouble: 1 18 19Function: "acos_upward": 20double: 1 21float: 1 22ldouble: 1 23 24Function: "acosh": 25double: 2 26float: 2 27ldouble: 4 28 29Function: "acosh_downward": 30double: 2 31float: 2 32ldouble: 3 33 34Function: "acosh_towardzero": 35double: 2 36float: 2 37ldouble: 2 38 39Function: "acosh_upward": 40double: 2 41float: 2 42ldouble: 3 43 44Function: "asin": 45double: 1 46float: 1 47ldouble: 1 48 49Function: "asin_downward": 50double: 1 51float: 1 52ldouble: 2 53 54Function: "asin_towardzero": 55double: 1 56float: 1 57ldouble: 1 58 59Function: "asin_upward": 60double: 2 61float: 1 62ldouble: 2 63 64Function: "asinh": 65double: 2 66float: 2 67ldouble: 4 68 69Function: "asinh_downward": 70double: 3 71float: 3 72ldouble: 4 73 74Function: "asinh_towardzero": 75double: 2 76float: 2 77ldouble: 2 78 79Function: "asinh_upward": 80double: 3 81float: 3 82ldouble: 4 83 84Function: "atan": 85double: 1 86float: 1 87ldouble: 1 88 89Function: "atan2": 90float: 1 91ldouble: 2 92 93Function: "atan2_downward": 94double: 1 95float: 2 96ldouble: 2 97 98Function: "atan2_towardzero": 99double: 1 100float: 2 101ldouble: 3 102 103Function: "atan2_upward": 104double: 1 105float: 1 106ldouble: 2 107 108Function: "atan_downward": 109double: 1 110float: 2 111ldouble: 2 112 113Function: "atan_towardzero": 114double: 1 115float: 1 116ldouble: 1 117 118Function: "atan_upward": 119double: 1 120float: 2 121ldouble: 2 122 123Function: "atanh": 124double: 2 125float: 2 126ldouble: 4 127 128Function: "atanh_downward": 129double: 3 130float: 3 131ldouble: 4 132 133Function: "atanh_towardzero": 134double: 2 135float: 2 136ldouble: 2 137 138Function: "atanh_upward": 139double: 3 140float: 3 141ldouble: 4 142 143Function: "cabs": 144double: 1 145ldouble: 1 146 147Function: "cabs_downward": 148double: 1 149ldouble: 1 150 151Function: "cabs_towardzero": 152double: 1 153ldouble: 1 154 155Function: "cabs_upward": 156double: 1 157ldouble: 1 158 159Function: Real part of "cacos": 160double: 1 161float: 2 162ldouble: 2 163 164Function: Imaginary part of "cacos": 165double: 2 166float: 2 167ldouble: 2 168 169Function: Real part of "cacos_downward": 170double: 3 171float: 2 172ldouble: 3 173 174Function: Imaginary part of "cacos_downward": 175double: 5 176float: 3 177ldouble: 6 178 179Function: Real part of "cacos_towardzero": 180double: 3 181float: 2 182ldouble: 3 183 184Function: Imaginary part of "cacos_towardzero": 185double: 4 186float: 2 187ldouble: 5 188 189Function: Real part of "cacos_upward": 190double: 2 191float: 2 192ldouble: 3 193 194Function: Imaginary part of "cacos_upward": 195double: 5 196float: 5 197ldouble: 7 198 199Function: Real part of "cacosh": 200double: 2 201float: 2 202ldouble: 2 203 204Function: Imaginary part of "cacosh": 205double: 1 206float: 2 207ldouble: 2 208 209Function: Real part of "cacosh_downward": 210double: 4 211float: 2 212ldouble: 5 213 214Function: Imaginary part of "cacosh_downward": 215double: 3 216float: 3 217ldouble: 4 218 219Function: Real part of "cacosh_towardzero": 220double: 4 221float: 2 222ldouble: 5 223 224Function: Imaginary part of "cacosh_towardzero": 225double: 3 226float: 2 227ldouble: 3 228 229Function: Real part of "cacosh_upward": 230double: 4 231float: 3 232ldouble: 6 233 234Function: Imaginary part of "cacosh_upward": 235double: 3 236float: 2 237ldouble: 4 238 239Function: "carg": 240float: 1 241ldouble: 2 242 243Function: "carg_downward": 244double: 1 245float: 2 246ldouble: 2 247 248Function: "carg_towardzero": 249double: 1 250float: 2 251ldouble: 3 252 253Function: "carg_upward": 254double: 1 255float: 1 256ldouble: 2 257 258Function: Real part of "casin": 259double: 1 260float: 1 261ldouble: 2 262 263Function: Imaginary part of "casin": 264double: 2 265float: 2 266ldouble: 2 267 268Function: Real part of "casin_downward": 269double: 3 270float: 2 271ldouble: 3 272 273Function: Imaginary part of "casin_downward": 274double: 5 275float: 3 276ldouble: 6 277 278Function: Real part of "casin_towardzero": 279double: 3 280float: 1 281ldouble: 3 282 283Function: Imaginary part of "casin_towardzero": 284double: 4 285float: 2 286ldouble: 5 287 288Function: Real part of "casin_upward": 289double: 3 290float: 2 291ldouble: 3 292 293Function: Imaginary part of "casin_upward": 294double: 5 295float: 5 296ldouble: 7 297 298Function: Real part of "casinh": 299double: 2 300float: 2 301ldouble: 2 302 303Function: Imaginary part of "casinh": 304double: 1 305float: 1 306ldouble: 2 307 308Function: Real part of "casinh_downward": 309double: 5 310float: 3 311ldouble: 6 312 313Function: Imaginary part of "casinh_downward": 314double: 3 315float: 2 316ldouble: 3 317 318Function: Real part of "casinh_towardzero": 319double: 4 320float: 2 321ldouble: 5 322 323Function: Imaginary part of "casinh_towardzero": 324double: 3 325float: 1 326ldouble: 3 327 328Function: Real part of "casinh_upward": 329double: 5 330float: 5 331ldouble: 7 332 333Function: Imaginary part of "casinh_upward": 334double: 3 335float: 2 336ldouble: 3 337 338Function: Real part of "catan": 339double: 1 340float: 1 341ldouble: 1 342 343Function: Imaginary part of "catan": 344double: 1 345float: 1 346ldouble: 1 347 348Function: Real part of "catan_downward": 349double: 1 350float: 2 351ldouble: 2 352 353Function: Imaginary part of "catan_downward": 354double: 2 355float: 2 356ldouble: 2 357 358Function: Real part of "catan_towardzero": 359double: 1 360float: 2 361ldouble: 2 362 363Function: Imaginary part of "catan_towardzero": 364double: 2 365float: 2 366ldouble: 2 367 368Function: Real part of "catan_upward": 369double: 1 370float: 1 371ldouble: 2 372 373Function: Imaginary part of "catan_upward": 374double: 2 375float: 2 376ldouble: 3 377 378Function: Real part of "catanh": 379double: 1 380float: 1 381ldouble: 1 382 383Function: Imaginary part of "catanh": 384double: 1 385float: 1 386ldouble: 1 387 388Function: Real part of "catanh_downward": 389double: 2 390float: 2 391ldouble: 2 392 393Function: Imaginary part of "catanh_downward": 394double: 1 395float: 2 396ldouble: 2 397 398Function: Real part of "catanh_towardzero": 399double: 2 400float: 2 401ldouble: 2 402 403Function: Imaginary part of "catanh_towardzero": 404double: 1 405float: 2 406ldouble: 2 407 408Function: Real part of "catanh_upward": 409double: 4 410float: 4 411ldouble: 4 412 413Function: Imaginary part of "catanh_upward": 414double: 1 415float: 1 416ldouble: 2 417 418Function: "cbrt": 419double: 4 420float: 1 421ldouble: 1 422 423Function: "cbrt_downward": 424double: 4 425float: 1 426ldouble: 1 427 428Function: "cbrt_towardzero": 429double: 3 430float: 1 431ldouble: 1 432 433Function: "cbrt_upward": 434double: 5 435float: 1 436ldouble: 1 437 438Function: Real part of "ccos": 439double: 1 440float: 1 441ldouble: 1 442 443Function: Imaginary part of "ccos": 444double: 1 445float: 1 446ldouble: 1 447 448Function: Real part of "ccos_downward": 449double: 1 450float: 1 451ldouble: 2 452 453Function: Imaginary part of "ccos_downward": 454double: 3 455float: 3 456ldouble: 2 457 458Function: Real part of "ccos_towardzero": 459double: 1 460float: 2 461ldouble: 2 462 463Function: Imaginary part of "ccos_towardzero": 464double: 3 465float: 3 466ldouble: 2 467 468Function: Real part of "ccos_upward": 469double: 1 470float: 2 471ldouble: 3 472 473Function: Imaginary part of "ccos_upward": 474double: 2 475float: 2 476ldouble: 2 477 478Function: Real part of "ccosh": 479double: 1 480float: 1 481ldouble: 1 482 483Function: Imaginary part of "ccosh": 484double: 1 485float: 1 486ldouble: 1 487 488Function: Real part of "ccosh_downward": 489double: 2 490float: 2 491ldouble: 2 492 493Function: Imaginary part of "ccosh_downward": 494double: 3 495float: 3 496ldouble: 2 497 498Function: Real part of "ccosh_towardzero": 499double: 2 500float: 3 501ldouble: 2 502 503Function: Imaginary part of "ccosh_towardzero": 504double: 3 505float: 3 506ldouble: 2 507 508Function: Real part of "ccosh_upward": 509double: 1 510float: 2 511ldouble: 3 512 513Function: Imaginary part of "ccosh_upward": 514double: 2 515float: 2 516ldouble: 2 517 518Function: Real part of "cexp": 519double: 2 520float: 1 521ldouble: 1 522 523Function: Imaginary part of "cexp": 524double: 1 525float: 2 526ldouble: 1 527 528Function: Real part of "cexp_downward": 529double: 2 530float: 2 531ldouble: 2 532 533Function: Imaginary part of "cexp_downward": 534double: 3 535float: 3 536ldouble: 2 537 538Function: Real part of "cexp_towardzero": 539double: 2 540float: 2 541ldouble: 2 542 543Function: Imaginary part of "cexp_towardzero": 544double: 3 545float: 3 546ldouble: 2 547 548Function: Real part of "cexp_upward": 549double: 1 550float: 2 551ldouble: 3 552 553Function: Imaginary part of "cexp_upward": 554double: 3 555float: 2 556ldouble: 3 557 558Function: Real part of "clog": 559double: 3 560float: 3 561ldouble: 2 562 563Function: Imaginary part of "clog": 564double: 1 565float: 1 566ldouble: 1 567 568Function: Real part of "clog10": 569double: 3 570float: 4 571ldouble: 2 572 573Function: Imaginary part of "clog10": 574double: 2 575float: 2 576ldouble: 2 577 578Function: Real part of "clog10_downward": 579double: 5 580float: 5 581ldouble: 3 582 583Function: Imaginary part of "clog10_downward": 584double: 2 585float: 4 586ldouble: 3 587 588Function: Real part of "clog10_towardzero": 589double: 5 590float: 5 591ldouble: 4 592 593Function: Imaginary part of "clog10_towardzero": 594double: 2 595float: 4 596ldouble: 3 597 598Function: Real part of "clog10_upward": 599double: 6 600float: 5 601ldouble: 4 602 603Function: Imaginary part of "clog10_upward": 604double: 2 605float: 4 606ldouble: 3 607 608Function: Real part of "clog_downward": 609double: 4 610float: 3 611ldouble: 3 612 613Function: Imaginary part of "clog_downward": 614double: 1 615float: 2 616ldouble: 2 617 618Function: Real part of "clog_towardzero": 619double: 4 620float: 4 621ldouble: 3 622 623Function: Imaginary part of "clog_towardzero": 624double: 1 625float: 3 626ldouble: 2 627 628Function: Real part of "clog_upward": 629double: 4 630float: 3 631ldouble: 4 632 633Function: Imaginary part of "clog_upward": 634double: 1 635float: 2 636ldouble: 2 637 638Function: "cos": 639double: 1 640float: 1 641ldouble: 2 642 643Function: "cos_downward": 644double: 1 645float: 1 646ldouble: 3 647 648Function: "cos_towardzero": 649double: 1 650float: 1 651ldouble: 1 652 653Function: "cos_upward": 654double: 1 655float: 1 656ldouble: 2 657 658Function: "cosh": 659double: 2 660float: 2 661ldouble: 2 662 663Function: "cosh_downward": 664double: 3 665float: 1 666ldouble: 3 667 668Function: "cosh_towardzero": 669double: 3 670float: 1 671ldouble: 3 672 673Function: "cosh_upward": 674double: 2 675float: 2 676ldouble: 3 677 678Function: Real part of "cpow": 679double: 2 680float: 5 681ldouble: 4 682 683Function: Imaginary part of "cpow": 684float: 2 685ldouble: 1 686 687Function: Real part of "cpow_downward": 688double: 5 689float: 8 690ldouble: 6 691 692Function: Imaginary part of "cpow_downward": 693double: 1 694float: 2 695ldouble: 2 696 697Function: Real part of "cpow_towardzero": 698double: 5 699float: 8 700ldouble: 6 701 702Function: Imaginary part of "cpow_towardzero": 703double: 1 704float: 2 705ldouble: 2 706 707Function: Real part of "cpow_upward": 708double: 4 709float: 1 710ldouble: 3 711 712Function: Imaginary part of "cpow_upward": 713double: 1 714float: 2 715ldouble: 2 716 717Function: Real part of "csin": 718double: 1 719float: 1 720ldouble: 1 721 722Function: Imaginary part of "csin": 723ldouble: 1 724 725Function: Real part of "csin_downward": 726double: 3 727float: 3 728ldouble: 2 729 730Function: Imaginary part of "csin_downward": 731double: 1 732float: 1 733ldouble: 2 734 735Function: Real part of "csin_towardzero": 736double: 3 737float: 3 738ldouble: 2 739 740Function: Imaginary part of "csin_towardzero": 741double: 1 742float: 1 743ldouble: 2 744 745Function: Real part of "csin_upward": 746double: 2 747float: 2 748ldouble: 2 749 750Function: Imaginary part of "csin_upward": 751double: 1 752float: 2 753ldouble: 3 754 755Function: Real part of "csinh": 756float: 1 757ldouble: 1 758 759Function: Imaginary part of "csinh": 760double: 1 761float: 1 762ldouble: 1 763 764Function: Real part of "csinh_downward": 765double: 2 766float: 1 767ldouble: 2 768 769Function: Imaginary part of "csinh_downward": 770double: 3 771float: 3 772ldouble: 2 773 774Function: Real part of "csinh_towardzero": 775double: 2 776float: 2 777ldouble: 2 778 779Function: Imaginary part of "csinh_towardzero": 780double: 3 781float: 3 782ldouble: 2 783 784Function: Real part of "csinh_upward": 785double: 1 786float: 2 787ldouble: 3 788 789Function: Imaginary part of "csinh_upward": 790double: 2 791float: 2 792ldouble: 2 793 794Function: Real part of "csqrt": 795double: 2 796float: 2 797ldouble: 2 798 799Function: Imaginary part of "csqrt": 800double: 2 801float: 2 802ldouble: 2 803 804Function: Real part of "csqrt_downward": 805double: 5 806float: 4 807ldouble: 4 808 809Function: Imaginary part of "csqrt_downward": 810double: 4 811float: 3 812ldouble: 3 813 814Function: Real part of "csqrt_towardzero": 815double: 4 816float: 3 817ldouble: 3 818 819Function: Imaginary part of "csqrt_towardzero": 820double: 4 821float: 3 822ldouble: 3 823 824Function: Real part of "csqrt_upward": 825double: 5 826float: 4 827ldouble: 4 828 829Function: Imaginary part of "csqrt_upward": 830double: 3 831float: 3 832ldouble: 3 833 834Function: Real part of "ctan": 835double: 1 836float: 1 837ldouble: 3 838 839Function: Imaginary part of "ctan": 840double: 2 841float: 2 842ldouble: 3 843 844Function: Real part of "ctan_downward": 845double: 6 846float: 5 847ldouble: 4 848 849Function: Imaginary part of "ctan_downward": 850double: 2 851float: 2 852ldouble: 5 853 854Function: Real part of "ctan_towardzero": 855double: 5 856float: 2 857ldouble: 4 858 859Function: Imaginary part of "ctan_towardzero": 860double: 2 861float: 2 862ldouble: 5 863 864Function: Real part of "ctan_upward": 865double: 2 866float: 4 867ldouble: 5 868 869Function: Imaginary part of "ctan_upward": 870double: 2 871float: 2 872ldouble: 5 873 874Function: Real part of "ctanh": 875double: 2 876float: 2 877ldouble: 3 878 879Function: Imaginary part of "ctanh": 880double: 2 881float: 1 882ldouble: 3 883 884Function: Real part of "ctanh_downward": 885double: 4 886float: 2 887ldouble: 5 888 889Function: Imaginary part of "ctanh_downward": 890double: 6 891float: 5 892ldouble: 4 893 894Function: Real part of "ctanh_towardzero": 895double: 2 896float: 2 897ldouble: 5 898 899Function: Imaginary part of "ctanh_towardzero": 900double: 5 901float: 2 902ldouble: 3 903 904Function: Real part of "ctanh_upward": 905double: 2 906float: 2 907ldouble: 5 908 909Function: Imaginary part of "ctanh_upward": 910double: 2 911float: 3 912ldouble: 5 913 914Function: "erf": 915double: 1 916float: 1 917ldouble: 1 918 919Function: "erf_downward": 920double: 1 921float: 1 922ldouble: 2 923 924Function: "erf_towardzero": 925double: 1 926float: 1 927ldouble: 1 928 929Function: "erf_upward": 930double: 1 931float: 1 932ldouble: 2 933 934Function: "erfc": 935double: 2 936float: 2 937ldouble: 4 938 939Function: "erfc_downward": 940double: 4 941float: 4 942ldouble: 5 943 944Function: "erfc_towardzero": 945double: 3 946float: 3 947ldouble: 4 948 949Function: "erfc_upward": 950double: 4 951float: 4 952ldouble: 5 953 954Function: "exp": 955double: 1 956float: 1 957ldouble: 1 958 959Function: "exp10": 960double: 2 961ldouble: 2 962 963Function: "exp10_downward": 964double: 3 965float: 1 966ldouble: 3 967 968Function: "exp10_towardzero": 969double: 3 970float: 1 971ldouble: 3 972 973Function: "exp10_upward": 974double: 2 975float: 1 976ldouble: 3 977 978Function: "exp2": 979double: 1 980ldouble: 1 981 982Function: "exp2_downward": 983double: 1 984ldouble: 1 985 986Function: "exp2_towardzero": 987double: 1 988ldouble: 1 989 990Function: "exp2_upward": 991double: 1 992float: 1 993ldouble: 2 994 995Function: "exp_downward": 996double: 1 997float: 1 998 999Function: "exp_towardzero": 1000double: 1 1001float: 1 1002 1003Function: "exp_upward": 1004double: 1 1005float: 1 1006 1007Function: "expm1": 1008double: 1 1009float: 1 1010ldouble: 2 1011 1012Function: "expm1_downward": 1013double: 1 1014float: 1 1015ldouble: 2 1016 1017Function: "expm1_towardzero": 1018double: 1 1019float: 2 1020ldouble: 4 1021 1022Function: "expm1_upward": 1023double: 1 1024float: 1 1025ldouble: 3 1026 1027Function: "gamma": 1028double: 3 1029float: 3 1030ldouble: 5 1031 1032Function: "gamma_downward": 1033double: 4 1034float: 4 1035ldouble: 8 1036 1037Function: "gamma_towardzero": 1038double: 4 1039float: 3 1040ldouble: 5 1041 1042Function: "gamma_upward": 1043double: 4 1044float: 5 1045ldouble: 8 1046 1047Function: "hypot": 1048double: 1 1049ldouble: 1 1050 1051Function: "hypot_downward": 1052double: 1 1053ldouble: 1 1054 1055Function: "hypot_towardzero": 1056double: 1 1057ldouble: 1 1058 1059Function: "hypot_upward": 1060double: 1 1061ldouble: 1 1062 1063Function: "j0": 1064double: 3 1065float: 9 1066ldouble: 2 1067 1068Function: "j0_downward": 1069double: 6 1070float: 9 1071ldouble: 9 1072 1073Function: "j0_towardzero": 1074double: 7 1075float: 9 1076ldouble: 9 1077 1078Function: "j0_upward": 1079double: 9 1080float: 8 1081ldouble: 7 1082 1083Function: "j1": 1084double: 4 1085float: 9 1086ldouble: 4 1087 1088Function: "j1_downward": 1089double: 3 1090float: 8 1091ldouble: 4 1092 1093Function: "j1_towardzero": 1094double: 4 1095float: 8 1096ldouble: 4 1097 1098Function: "j1_upward": 1099double: 9 1100float: 9 1101ldouble: 3 1102 1103Function: "jn": 1104double: 4 1105float: 4 1106ldouble: 7 1107 1108Function: "jn_downward": 1109double: 4 1110float: 5 1111ldouble: 8 1112 1113Function: "jn_towardzero": 1114double: 4 1115float: 5 1116ldouble: 8 1117 1118Function: "jn_upward": 1119double: 5 1120float: 4 1121ldouble: 7 1122 1123Function: "lgamma": 1124double: 3 1125float: 3 1126ldouble: 5 1127 1128Function: "lgamma_downward": 1129double: 4 1130float: 4 1131ldouble: 8 1132 1133Function: "lgamma_towardzero": 1134double: 4 1135float: 3 1136ldouble: 5 1137 1138Function: "lgamma_upward": 1139double: 4 1140float: 5 1141ldouble: 8 1142 1143Function: "log": 1144double: 1 1145ldouble: 1 1146 1147Function: "log10": 1148double: 2 1149float: 2 1150ldouble: 2 1151 1152Function: "log10_downward": 1153double: 2 1154float: 3 1155ldouble: 1 1156 1157Function: "log10_towardzero": 1158double: 2 1159float: 1 1160ldouble: 1 1161 1162Function: "log10_upward": 1163double: 2 1164float: 2 1165ldouble: 1 1166 1167Function: "log1p": 1168double: 1 1169float: 1 1170ldouble: 3 1171 1172Function: "log1p_downward": 1173double: 1 1174float: 2 1175ldouble: 3 1176 1177Function: "log1p_towardzero": 1178double: 2 1179float: 2 1180ldouble: 3 1181 1182Function: "log1p_upward": 1183double: 2 1184float: 2 1185ldouble: 2 1186 1187Function: "log2": 1188double: 1 1189float: 1 1190ldouble: 3 1191 1192Function: "log2_downward": 1193double: 3 1194ldouble: 3 1195 1196Function: "log2_towardzero": 1197double: 2 1198ldouble: 1 1199 1200Function: "log2_upward": 1201double: 3 1202ldouble: 1 1203 1204Function: "log_downward": 1205ldouble: 1 1206 1207Function: "log_towardzero": 1208ldouble: 2 1209 1210Function: "log_upward": 1211double: 1 1212ldouble: 2 1213 1214Function: "pow": 1215double: 1 1216ldouble: 2 1217 1218Function: "pow_downward": 1219double: 1 1220float: 1 1221ldouble: 2 1222 1223Function: "pow_towardzero": 1224double: 1 1225float: 1 1226ldouble: 2 1227 1228Function: "pow_upward": 1229double: 1 1230float: 1 1231ldouble: 2 1232 1233Function: "sin": 1234double: 1 1235float: 1 1236ldouble: 2 1237 1238Function: "sin_downward": 1239double: 1 1240float: 1 1241ldouble: 3 1242 1243Function: "sin_towardzero": 1244double: 1 1245float: 1 1246ldouble: 2 1247 1248Function: "sin_upward": 1249double: 1 1250float: 1 1251ldouble: 3 1252 1253Function: "sincos": 1254double: 1 1255ldouble: 1 1256 1257Function: "sincos_downward": 1258double: 1 1259float: 1 1260ldouble: 3 1261 1262Function: "sincos_towardzero": 1263double: 1 1264float: 1 1265ldouble: 2 1266 1267Function: "sincos_upward": 1268double: 1 1269float: 1 1270ldouble: 3 1271 1272Function: "sinh": 1273double: 2 1274float: 2 1275ldouble: 2 1276 1277Function: "sinh_downward": 1278double: 3 1279float: 3 1280ldouble: 3 1281 1282Function: "sinh_towardzero": 1283double: 3 1284float: 2 1285ldouble: 3 1286 1287Function: "sinh_upward": 1288double: 3 1289float: 3 1290ldouble: 4 1291 1292Function: "tan": 1293float: 1 1294ldouble: 1 1295 1296Function: "tan_downward": 1297double: 1 1298float: 2 1299ldouble: 1 1300 1301Function: "tan_towardzero": 1302double: 1 1303float: 1 1304ldouble: 1 1305 1306Function: "tan_upward": 1307double: 1 1308float: 1 1309ldouble: 1 1310 1311Function: "tanh": 1312double: 2 1313float: 2 1314ldouble: 2 1315 1316Function: "tanh_downward": 1317double: 3 1318float: 3 1319ldouble: 4 1320 1321Function: "tanh_towardzero": 1322double: 2 1323float: 2 1324ldouble: 3 1325 1326Function: "tanh_upward": 1327double: 3 1328float: 3 1329ldouble: 3 1330 1331Function: "tgamma": 1332double: 9 1333float: 8 1334ldouble: 4 1335 1336Function: "tgamma_downward": 1337double: 9 1338float: 7 1339ldouble: 5 1340 1341Function: "tgamma_towardzero": 1342double: 9 1343float: 7 1344ldouble: 5 1345 1346Function: "tgamma_upward": 1347double: 8 1348float: 8 1349ldouble: 4 1350 1351Function: "y0": 1352double: 2 1353float: 8 1354ldouble: 3 1355 1356Function: "y0_downward": 1357double: 3 1358float: 8 1359ldouble: 7 1360 1361Function: "y0_towardzero": 1362double: 3 1363float: 8 1364ldouble: 3 1365 1366Function: "y0_upward": 1367double: 2 1368float: 8 1369ldouble: 4 1370 1371Function: "y1": 1372double: 3 1373float: 9 1374ldouble: 5 1375 1376Function: "y1_downward": 1377double: 6 1378float: 8 1379ldouble: 5 1380 1381Function: "y1_towardzero": 1382double: 3 1383float: 9 1384ldouble: 2 1385 1386Function: "y1_upward": 1387double: 6 1388float: 9 1389ldouble: 5 1390 1391Function: "yn": 1392double: 3 1393float: 3 1394ldouble: 5 1395 1396Function: "yn_downward": 1397double: 3 1398float: 4 1399ldouble: 5 1400 1401Function: "yn_towardzero": 1402double: 3 1403float: 3 1404ldouble: 5 1405 1406Function: "yn_upward": 1407double: 4 1408float: 5 1409ldouble: 5 1410 1411# end of automatic generation 1412