// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2014-2015, The Linux Foundation. All rights reserved. */ #include #include #include #include #include #include #include "edp.h" #include "edp.xml.h" #define VDDA_UA_ON_LOAD 100000 /* uA units */ #define VDDA_UA_OFF_LOAD 100 /* uA units */ #define DPCD_LINK_VOLTAGE_MAX 4 #define DPCD_LINK_PRE_EMPHASIS_MAX 4 #define EDP_LINK_BW_MAX DP_LINK_BW_2_7 /* Link training return value */ #define EDP_TRAIN_FAIL -1 #define EDP_TRAIN_SUCCESS 0 #define EDP_TRAIN_RECONFIG 1 #define EDP_CLK_MASK_AHB BIT(0) #define EDP_CLK_MASK_AUX BIT(1) #define EDP_CLK_MASK_LINK BIT(2) #define EDP_CLK_MASK_PIXEL BIT(3) #define EDP_CLK_MASK_MDP_CORE BIT(4) #define EDP_CLK_MASK_LINK_CHAN (EDP_CLK_MASK_LINK | EDP_CLK_MASK_PIXEL) #define EDP_CLK_MASK_AUX_CHAN \ (EDP_CLK_MASK_AHB | EDP_CLK_MASK_AUX | EDP_CLK_MASK_MDP_CORE) #define EDP_CLK_MASK_ALL (EDP_CLK_MASK_AUX_CHAN | EDP_CLK_MASK_LINK_CHAN) #define EDP_BACKLIGHT_MAX 255 #define EDP_INTR_STATUS1 \ (EDP_INTERRUPT_REG_1_HPD | EDP_INTERRUPT_REG_1_AUX_I2C_DONE | \ EDP_INTERRUPT_REG_1_WRONG_ADDR | EDP_INTERRUPT_REG_1_TIMEOUT | \ EDP_INTERRUPT_REG_1_NACK_DEFER | EDP_INTERRUPT_REG_1_WRONG_DATA_CNT | \ EDP_INTERRUPT_REG_1_I2C_NACK | EDP_INTERRUPT_REG_1_I2C_DEFER | \ EDP_INTERRUPT_REG_1_PLL_UNLOCK | EDP_INTERRUPT_REG_1_AUX_ERROR) #define EDP_INTR_MASK1 (EDP_INTR_STATUS1 << 2) #define EDP_INTR_STATUS2 \ (EDP_INTERRUPT_REG_2_READY_FOR_VIDEO | \ EDP_INTERRUPT_REG_2_IDLE_PATTERNs_SENT | \ EDP_INTERRUPT_REG_2_FRAME_END | EDP_INTERRUPT_REG_2_CRC_UPDATED) #define EDP_INTR_MASK2 (EDP_INTR_STATUS2 << 2) struct edp_ctrl { struct platform_device *pdev; void __iomem *base; /* regulators */ struct regulator *vdda_vreg; /* 1.8 V */ struct regulator *lvl_vreg; /* clocks */ struct clk *aux_clk; struct clk *pixel_clk; struct clk *ahb_clk; struct clk *link_clk; struct clk *mdp_core_clk; /* gpios */ struct gpio_desc *panel_en_gpio; struct gpio_desc *panel_hpd_gpio; /* completion and mutex */ struct completion idle_comp; struct mutex dev_mutex; /* To protect device power status */ /* work queue */ struct work_struct on_work; struct work_struct off_work; struct workqueue_struct *workqueue; /* Interrupt register lock */ spinlock_t irq_lock; bool edp_connected; bool power_on; /* edid raw data */ struct edid *edid; struct drm_dp_aux *drm_aux; /* dpcd raw data */ u8 dpcd[DP_RECEIVER_CAP_SIZE]; /* Link status */ u8 link_rate; u8 lane_cnt; u8 v_level; u8 p_level; /* Timing status */ u8 interlaced; u32 pixel_rate; /* in kHz */ u32 color_depth; struct edp_aux *aux; struct edp_phy *phy; }; struct edp_pixel_clk_div { u32 rate; /* in kHz */ u32 m; u32 n; }; #define EDP_PIXEL_CLK_NUM 8 static const struct edp_pixel_clk_div clk_divs[2][EDP_PIXEL_CLK_NUM] = { { /* Link clock = 162MHz, source clock = 810MHz */ {119000, 31, 211}, /* WSXGA+ 1680x1050@60Hz CVT */ {130250, 32, 199}, /* UXGA 1600x1200@60Hz CVT */ {148500, 11, 60}, /* FHD 1920x1080@60Hz */ {154000, 50, 263}, /* WUXGA 1920x1200@60Hz CVT */ {209250, 31, 120}, /* QXGA 2048x1536@60Hz CVT */ {268500, 119, 359}, /* WQXGA 2560x1600@60Hz CVT */ {138530, 33, 193}, /* AUO B116HAN03.0 Panel */ {141400, 48, 275}, /* AUO B133HTN01.2 Panel */ }, { /* Link clock = 270MHz, source clock = 675MHz */ {119000, 52, 295}, /* WSXGA+ 1680x1050@60Hz CVT */ {130250, 11, 57}, /* UXGA 1600x1200@60Hz CVT */ {148500, 11, 50}, /* FHD 1920x1080@60Hz */ {154000, 47, 206}, /* WUXGA 1920x1200@60Hz CVT */ {209250, 31, 100}, /* QXGA 2048x1536@60Hz CVT */ {268500, 107, 269}, /* WQXGA 2560x1600@60Hz CVT */ {138530, 63, 307}, /* AUO B116HAN03.0 Panel */ {141400, 53, 253}, /* AUO B133HTN01.2 Panel */ }, }; static int edp_clk_init(struct edp_ctrl *ctrl) { struct platform_device *pdev = ctrl->pdev; int ret; ctrl->aux_clk = msm_clk_get(pdev, "core"); if (IS_ERR(ctrl->aux_clk)) { ret = PTR_ERR(ctrl->aux_clk); pr_err("%s: Can't find core clock, %d\n", __func__, ret); ctrl->aux_clk = NULL; return ret; } ctrl->pixel_clk = msm_clk_get(pdev, "pixel"); if (IS_ERR(ctrl->pixel_clk)) { ret = PTR_ERR(ctrl->pixel_clk); pr_err("%s: Can't find pixel clock, %d\n", __func__, ret); ctrl->pixel_clk = NULL; return ret; } ctrl->ahb_clk = msm_clk_get(pdev, "iface"); if (IS_ERR(ctrl->ahb_clk)) { ret = PTR_ERR(ctrl->ahb_clk); pr_err("%s: Can't find iface clock, %d\n", __func__, ret); ctrl->ahb_clk = NULL; return ret; } ctrl->link_clk = msm_clk_get(pdev, "link"); if (IS_ERR(ctrl->link_clk)) { ret = PTR_ERR(ctrl->link_clk); pr_err("%s: Can't find link clock, %d\n", __func__, ret); ctrl->link_clk = NULL; return ret; } /* need mdp core clock to receive irq */ ctrl->mdp_core_clk = msm_clk_get(pdev, "mdp_core"); if (IS_ERR(ctrl->mdp_core_clk)) { ret = PTR_ERR(ctrl->mdp_core_clk); pr_err("%s: Can't find mdp_core clock, %d\n", __func__, ret); ctrl->mdp_core_clk = NULL; return ret; } return 0; } static int edp_clk_enable(struct edp_ctrl *ctrl, u32 clk_mask) { int ret; DBG("mask=%x", clk_mask); /* ahb_clk should be enabled first */ if (clk_mask & EDP_CLK_MASK_AHB) { ret = clk_prepare_enable(ctrl->ahb_clk); if (ret) { pr_err("%s: Failed to enable ahb clk\n", __func__); goto f0; } } if (clk_mask & EDP_CLK_MASK_AUX) { ret = clk_set_rate(ctrl->aux_clk, 19200000); if (ret) { pr_err("%s: Failed to set rate aux clk\n", __func__); goto f1; } ret = clk_prepare_enable(ctrl->aux_clk); if (ret) { pr_err("%s: Failed to enable aux clk\n", __func__); goto f1; } } /* Need to set rate and enable link_clk prior to pixel_clk */ if (clk_mask & EDP_CLK_MASK_LINK) { DBG("edp->link_clk, set_rate %ld", (unsigned long)ctrl->link_rate * 27000000); ret = clk_set_rate(ctrl->link_clk, (unsigned long)ctrl->link_rate * 27000000); if (ret) { pr_err("%s: Failed to set rate to link clk\n", __func__); goto f2; } ret = clk_prepare_enable(ctrl->link_clk); if (ret) { pr_err("%s: Failed to enable link clk\n", __func__); goto f2; } } if (clk_mask & EDP_CLK_MASK_PIXEL) { DBG("edp->pixel_clk, set_rate %ld", (unsigned long)ctrl->pixel_rate * 1000); ret = clk_set_rate(ctrl->pixel_clk, (unsigned long)ctrl->pixel_rate * 1000); if (ret) { pr_err("%s: Failed to set rate to pixel clk\n", __func__); goto f3; } ret = clk_prepare_enable(ctrl->pixel_clk); if (ret) { pr_err("%s: Failed to enable pixel clk\n", __func__); goto f3; } } if (clk_mask & EDP_CLK_MASK_MDP_CORE) { ret = clk_prepare_enable(ctrl->mdp_core_clk); if (ret) { pr_err("%s: Failed to enable mdp core clk\n", __func__); goto f4; } } return 0; f4: if (clk_mask & EDP_CLK_MASK_PIXEL) clk_disable_unprepare(ctrl->pixel_clk); f3: if (clk_mask & EDP_CLK_MASK_LINK) clk_disable_unprepare(ctrl->link_clk); f2: if (clk_mask & EDP_CLK_MASK_AUX) clk_disable_unprepare(ctrl->aux_clk); f1: if (clk_mask & EDP_CLK_MASK_AHB) clk_disable_unprepare(ctrl->ahb_clk); f0: return ret; } static void edp_clk_disable(struct edp_ctrl *ctrl, u32 clk_mask) { if (clk_mask & EDP_CLK_MASK_MDP_CORE) clk_disable_unprepare(ctrl->mdp_core_clk); if (clk_mask & EDP_CLK_MASK_PIXEL) clk_disable_unprepare(ctrl->pixel_clk); if (clk_mask & EDP_CLK_MASK_LINK) clk_disable_unprepare(ctrl->link_clk); if (clk_mask & EDP_CLK_MASK_AUX) clk_disable_unprepare(ctrl->aux_clk); if (clk_mask & EDP_CLK_MASK_AHB) clk_disable_unprepare(ctrl->ahb_clk); } static int edp_regulator_init(struct edp_ctrl *ctrl) { struct device *dev = &ctrl->pdev->dev; int ret; DBG(""); ctrl->vdda_vreg = devm_regulator_get(dev, "vdda"); ret = PTR_ERR_OR_ZERO(ctrl->vdda_vreg); if (ret) { pr_err("%s: Could not get vdda reg, ret = %d\n", __func__, ret); ctrl->vdda_vreg = NULL; return ret; } ctrl->lvl_vreg = devm_regulator_get(dev, "lvl-vdd"); ret = PTR_ERR_OR_ZERO(ctrl->lvl_vreg); if (ret) { pr_err("%s: Could not get lvl-vdd reg, ret = %d\n", __func__, ret); ctrl->lvl_vreg = NULL; return ret; } return 0; } static int edp_regulator_enable(struct edp_ctrl *ctrl) { int ret; ret = regulator_set_load(ctrl->vdda_vreg, VDDA_UA_ON_LOAD); if (ret < 0) { pr_err("%s: vdda_vreg set regulator mode failed.\n", __func__); goto vdda_set_fail; } ret = regulator_enable(ctrl->vdda_vreg); if (ret) { pr_err("%s: Failed to enable vdda_vreg regulator.\n", __func__); goto vdda_enable_fail; } ret = regulator_enable(ctrl->lvl_vreg); if (ret) { pr_err("Failed to enable lvl-vdd reg regulator, %d", ret); goto lvl_enable_fail; } DBG("exit"); return 0; lvl_enable_fail: regulator_disable(ctrl->vdda_vreg); vdda_enable_fail: regulator_set_load(ctrl->vdda_vreg, VDDA_UA_OFF_LOAD); vdda_set_fail: return ret; } static void edp_regulator_disable(struct edp_ctrl *ctrl) { regulator_disable(ctrl->lvl_vreg); regulator_disable(ctrl->vdda_vreg); regulator_set_load(ctrl->vdda_vreg, VDDA_UA_OFF_LOAD); } static int edp_gpio_config(struct edp_ctrl *ctrl) { struct device *dev = &ctrl->pdev->dev; int ret; ctrl->panel_hpd_gpio = devm_gpiod_get(dev, "panel-hpd", GPIOD_IN); if (IS_ERR(ctrl->panel_hpd_gpio)) { ret = PTR_ERR(ctrl->panel_hpd_gpio); ctrl->panel_hpd_gpio = NULL; pr_err("%s: cannot get panel-hpd-gpios, %d\n", __func__, ret); return ret; } ctrl->panel_en_gpio = devm_gpiod_get(dev, "panel-en", GPIOD_OUT_LOW); if (IS_ERR(ctrl->panel_en_gpio)) { ret = PTR_ERR(ctrl->panel_en_gpio); ctrl->panel_en_gpio = NULL; pr_err("%s: cannot get panel-en-gpios, %d\n", __func__, ret); return ret; } DBG("gpio on"); return 0; } static void edp_ctrl_irq_enable(struct edp_ctrl *ctrl, int enable) { unsigned long flags; DBG("%d", enable); spin_lock_irqsave(&ctrl->irq_lock, flags); if (enable) { edp_write(ctrl->base + REG_EDP_INTERRUPT_REG_1, EDP_INTR_MASK1); edp_write(ctrl->base + REG_EDP_INTERRUPT_REG_2, EDP_INTR_MASK2); } else { edp_write(ctrl->base + REG_EDP_INTERRUPT_REG_1, 0x0); edp_write(ctrl->base + REG_EDP_INTERRUPT_REG_2, 0x0); } spin_unlock_irqrestore(&ctrl->irq_lock, flags); DBG("exit"); } static void edp_fill_link_cfg(struct edp_ctrl *ctrl) { u32 prate; u32 lrate; u32 bpp; u8 max_lane = drm_dp_max_lane_count(ctrl->dpcd); u8 lane; prate = ctrl->pixel_rate; bpp = ctrl->color_depth * 3; /* * By default, use the maximum link rate and minimum lane count, * so that we can do rate down shift during link training. */ ctrl->link_rate = ctrl->dpcd[DP_MAX_LINK_RATE]; prate *= bpp; prate /= 8; /* in kByte */ lrate = 270000; /* in kHz */ lrate *= ctrl->link_rate; lrate /= 10; /* in kByte, 10 bits --> 8 bits */ for (lane = 1; lane <= max_lane; lane <<= 1) { if (lrate >= prate) break; lrate <<= 1; } ctrl->lane_cnt = lane; DBG("rate=%d lane=%d", ctrl->link_rate, ctrl->lane_cnt); } static void edp_config_ctrl(struct edp_ctrl *ctrl) { u32 data; enum edp_color_depth depth; data = EDP_CONFIGURATION_CTRL_LANES(ctrl->lane_cnt - 1); if (drm_dp_enhanced_frame_cap(ctrl->dpcd)) data |= EDP_CONFIGURATION_CTRL_ENHANCED_FRAMING; depth = EDP_6BIT; if (ctrl->color_depth == 8) depth = EDP_8BIT; data |= EDP_CONFIGURATION_CTRL_COLOR(depth); if (!ctrl->interlaced) /* progressive */ data |= EDP_CONFIGURATION_CTRL_PROGRESSIVE; data |= (EDP_CONFIGURATION_CTRL_SYNC_CLK | EDP_CONFIGURATION_CTRL_STATIC_MVID); edp_write(ctrl->base + REG_EDP_CONFIGURATION_CTRL, data); } static void edp_state_ctrl(struct edp_ctrl *ctrl, u32 state) { edp_write(ctrl->base + REG_EDP_STATE_CTRL, state); /* Make sure H/W status is set */ wmb(); } static int edp_lane_set_write(struct edp_ctrl *ctrl, u8 voltage_level, u8 pre_emphasis_level) { int i; u8 buf[4]; if (voltage_level >= DPCD_LINK_VOLTAGE_MAX) voltage_level |= 0x04; if (pre_emphasis_level >= DPCD_LINK_PRE_EMPHASIS_MAX) pre_emphasis_level |= 0x04; pre_emphasis_level <<= 3; for (i = 0; i < 4; i++) buf[i] = voltage_level | pre_emphasis_level; DBG("%s: p|v=0x%x", __func__, voltage_level | pre_emphasis_level); if (drm_dp_dpcd_write(ctrl->drm_aux, 0x103, buf, 4) < 4) { pr_err("%s: Set sw/pe to panel failed\n", __func__); return -ENOLINK; } return 0; } static int edp_train_pattern_set_write(struct edp_ctrl *ctrl, u8 pattern) { u8 p = pattern; DBG("pattern=%x", p); if (drm_dp_dpcd_write(ctrl->drm_aux, DP_TRAINING_PATTERN_SET, &p, 1) < 1) { pr_err("%s: Set training pattern to panel failed\n", __func__); return -ENOLINK; } return 0; } static void edp_sink_train_set_adjust(struct edp_ctrl *ctrl, const u8 *link_status) { int i; u8 max = 0; u8 data; /* use the max level across lanes */ for (i = 0; i < ctrl->lane_cnt; i++) { data = drm_dp_get_adjust_request_voltage(link_status, i); DBG("lane=%d req_voltage_swing=0x%x", i, data); if (max < data) max = data; } ctrl->v_level = max >> DP_TRAIN_VOLTAGE_SWING_SHIFT; /* use the max level across lanes */ max = 0; for (i = 0; i < ctrl->lane_cnt; i++) { data = drm_dp_get_adjust_request_pre_emphasis(link_status, i); DBG("lane=%d req_pre_emphasis=0x%x", i, data); if (max < data) max = data; } ctrl->p_level = max >> DP_TRAIN_PRE_EMPHASIS_SHIFT; DBG("v_level=%d, p_level=%d", ctrl->v_level, ctrl->p_level); } static void edp_host_train_set(struct edp_ctrl *ctrl, u32 train) { int cnt = 10; u32 data; u32 shift = train - 1; DBG("train=%d", train); edp_state_ctrl(ctrl, EDP_STATE_CTRL_TRAIN_PATTERN_1 << shift); while (--cnt) { data = edp_read(ctrl->base + REG_EDP_MAINLINK_READY); if (data & (EDP_MAINLINK_READY_TRAIN_PATTERN_1_READY << shift)) break; } if (cnt == 0) pr_err("%s: set link_train=%d failed\n", __func__, train); } static const u8 vm_pre_emphasis[4][4] = { {0x03, 0x06, 0x09, 0x0C}, /* pe0, 0 db */ {0x03, 0x06, 0x09, 0xFF}, /* pe1, 3.5 db */ {0x03, 0x06, 0xFF, 0xFF}, /* pe2, 6.0 db */ {0x03, 0xFF, 0xFF, 0xFF} /* pe3, 9.5 db */ }; /* voltage swing, 0.2v and 1.0v are not support */ static const u8 vm_voltage_swing[4][4] = { {0x14, 0x18, 0x1A, 0x1E}, /* sw0, 0.4v */ {0x18, 0x1A, 0x1E, 0xFF}, /* sw1, 0.6 v */ {0x1A, 0x1E, 0xFF, 0xFF}, /* sw1, 0.8 v */ {0x1E, 0xFF, 0xFF, 0xFF} /* sw1, 1.2 v, optional */ }; static int edp_voltage_pre_emphasise_set(struct edp_ctrl *ctrl) { u32 value0; u32 value1; DBG("v=%d p=%d", ctrl->v_level, ctrl->p_level); value0 = vm_pre_emphasis[(int)(ctrl->v_level)][(int)(ctrl->p_level)]; value1 = vm_voltage_swing[(int)(ctrl->v_level)][(int)(ctrl->p_level)]; /* Configure host and panel only if both values are allowed */ if (value0 != 0xFF && value1 != 0xFF) { msm_edp_phy_vm_pe_cfg(ctrl->phy, value0, value1); return edp_lane_set_write(ctrl, ctrl->v_level, ctrl->p_level); } return -EINVAL; } static int edp_start_link_train_1(struct edp_ctrl *ctrl) { u8 link_status[DP_LINK_STATUS_SIZE]; u8 old_v_level; int tries; int ret; int rlen; DBG(""); edp_host_train_set(ctrl, DP_TRAINING_PATTERN_1); ret = edp_voltage_pre_emphasise_set(ctrl); if (ret) return ret; ret = edp_train_pattern_set_write(ctrl, DP_TRAINING_PATTERN_1 | DP_RECOVERED_CLOCK_OUT_EN); if (ret) return ret; tries = 0; old_v_level = ctrl->v_level; while (1) { drm_dp_link_train_clock_recovery_delay(ctrl->drm_aux, ctrl->dpcd); rlen = drm_dp_dpcd_read_link_status(ctrl->drm_aux, link_status); if (rlen < DP_LINK_STATUS_SIZE) { pr_err("%s: read link status failed\n", __func__); return -ENOLINK; } if (drm_dp_clock_recovery_ok(link_status, ctrl->lane_cnt)) { ret = 0; break; } if (ctrl->v_level == DPCD_LINK_VOLTAGE_MAX) { ret = -1; break; } if (old_v_level == ctrl->v_level) { tries++; if (tries >= 5) { ret = -1; break; } } else { tries = 0; old_v_level = ctrl->v_level; } edp_sink_train_set_adjust(ctrl, link_status); ret = edp_voltage_pre_emphasise_set(ctrl); if (ret) return ret; } return ret; } static int edp_start_link_train_2(struct edp_ctrl *ctrl) { u8 link_status[DP_LINK_STATUS_SIZE]; int tries = 0; int ret; int rlen; DBG(""); edp_host_train_set(ctrl, DP_TRAINING_PATTERN_2); ret = edp_voltage_pre_emphasise_set(ctrl); if (ret) return ret; ret = edp_train_pattern_set_write(ctrl, DP_TRAINING_PATTERN_2 | DP_RECOVERED_CLOCK_OUT_EN); if (ret) return ret; while (1) { drm_dp_link_train_channel_eq_delay(ctrl->drm_aux, ctrl->dpcd); rlen = drm_dp_dpcd_read_link_status(ctrl->drm_aux, link_status); if (rlen < DP_LINK_STATUS_SIZE) { pr_err("%s: read link status failed\n", __func__); return -ENOLINK; } if (drm_dp_channel_eq_ok(link_status, ctrl->lane_cnt)) { ret = 0; break; } tries++; if (tries > 10) { ret = -1; break; } edp_sink_train_set_adjust(ctrl, link_status); ret = edp_voltage_pre_emphasise_set(ctrl); if (ret) return ret; } return ret; } static int edp_link_rate_down_shift(struct edp_ctrl *ctrl) { u32 prate, lrate, bpp; u8 rate, lane, max_lane; int changed = 0; rate = ctrl->link_rate; lane = ctrl->lane_cnt; max_lane = drm_dp_max_lane_count(ctrl->dpcd); bpp = ctrl->color_depth * 3; prate = ctrl->pixel_rate; prate *= bpp; prate /= 8; /* in kByte */ if (rate > DP_LINK_BW_1_62 && rate <= EDP_LINK_BW_MAX) { rate -= 4; /* reduce rate */ changed++; } if (changed) { if (lane >= 1 && lane < max_lane) lane <<= 1; /* increase lane */ lrate = 270000; /* in kHz */ lrate *= rate; lrate /= 10; /* kByte, 10 bits --> 8 bits */ lrate *= lane; DBG("new lrate=%u prate=%u(kHz) rate=%d lane=%d p=%u b=%d", lrate, prate, rate, lane, ctrl->pixel_rate, bpp); if (lrate > prate) { ctrl->link_rate = rate; ctrl->lane_cnt = lane; DBG("new rate=%d %d", rate, lane); return 0; } } return -EINVAL; } static int edp_clear_training_pattern(struct edp_ctrl *ctrl) { int ret; ret = edp_train_pattern_set_write(ctrl, 0); drm_dp_link_train_channel_eq_delay(ctrl->drm_aux, ctrl->dpcd); return ret; } static int edp_do_link_train(struct edp_ctrl *ctrl) { u8 values[2]; int ret; DBG(""); /* * Set the current link rate and lane cnt to panel. They may have been * adjusted and the values are different from them in DPCD CAP */ values[0] = ctrl->lane_cnt; values[1] = ctrl->link_rate; if (drm_dp_enhanced_frame_cap(ctrl->dpcd)) values[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN; if (drm_dp_dpcd_write(ctrl->drm_aux, DP_LINK_BW_SET, values, sizeof(values)) < 0) return EDP_TRAIN_FAIL; ctrl->v_level = 0; /* start from default level */ ctrl->p_level = 0; edp_state_ctrl(ctrl, 0); if (edp_clear_training_pattern(ctrl)) return EDP_TRAIN_FAIL; ret = edp_start_link_train_1(ctrl); if (ret < 0) { if (edp_link_rate_down_shift(ctrl) == 0) { DBG("link reconfig"); ret = EDP_TRAIN_RECONFIG; goto clear; } else { pr_err("%s: Training 1 failed", __func__); ret = EDP_TRAIN_FAIL; goto clear; } } DBG("Training 1 completed successfully"); edp_state_ctrl(ctrl, 0); if (edp_clear_training_pattern(ctrl)) return EDP_TRAIN_FAIL; ret = edp_start_link_train_2(ctrl); if (ret < 0) { if (edp_link_rate_down_shift(ctrl) == 0) { DBG("link reconfig"); ret = EDP_TRAIN_RECONFIG; goto clear; } else { pr_err("%s: Training 2 failed", __func__); ret = EDP_TRAIN_FAIL; goto clear; } } DBG("Training 2 completed successfully"); edp_state_ctrl(ctrl, EDP_STATE_CTRL_SEND_VIDEO); clear: edp_clear_training_pattern(ctrl); return ret; } static void edp_clock_synchrous(struct edp_ctrl *ctrl, int sync) { u32 data; enum edp_color_depth depth; data = edp_read(ctrl->base + REG_EDP_MISC1_MISC0); if (sync) data |= EDP_MISC1_MISC0_SYNC; else data &= ~EDP_MISC1_MISC0_SYNC; /* only legacy rgb mode supported */ depth = EDP_6BIT; /* Default */ if (ctrl->color_depth == 8) depth = EDP_8BIT; else if (ctrl->color_depth == 10) depth = EDP_10BIT; else if (ctrl->color_depth == 12) depth = EDP_12BIT; else if (ctrl->color_depth == 16) depth = EDP_16BIT; data |= EDP_MISC1_MISC0_COLOR(depth); edp_write(ctrl->base + REG_EDP_MISC1_MISC0, data); } static int edp_sw_mvid_nvid(struct edp_ctrl *ctrl, u32 m, u32 n) { u32 n_multi, m_multi = 5; if (ctrl->link_rate == DP_LINK_BW_1_62) { n_multi = 1; } else if (ctrl->link_rate == DP_LINK_BW_2_7) { n_multi = 2; } else { pr_err("%s: Invalid link rate, %d\n", __func__, ctrl->link_rate); return -EINVAL; } edp_write(ctrl->base + REG_EDP_SOFTWARE_MVID, m * m_multi); edp_write(ctrl->base + REG_EDP_SOFTWARE_NVID, n * n_multi); return 0; } static void edp_mainlink_ctrl(struct edp_ctrl *ctrl, int enable) { u32 data = 0; edp_write(ctrl->base + REG_EDP_MAINLINK_CTRL, EDP_MAINLINK_CTRL_RESET); /* Make sure fully reset */ wmb(); usleep_range(500, 1000); if (enable) data |= EDP_MAINLINK_CTRL_ENABLE; edp_write(ctrl->base + REG_EDP_MAINLINK_CTRL, data); } static void edp_ctrl_phy_aux_enable(struct edp_ctrl *ctrl, int enable) { if (enable) { edp_regulator_enable(ctrl); edp_clk_enable(ctrl, EDP_CLK_MASK_AUX_CHAN); msm_edp_phy_ctrl(ctrl->phy, 1); msm_edp_aux_ctrl(ctrl->aux, 1); gpiod_set_value(ctrl->panel_en_gpio, 1); } else { gpiod_set_value(ctrl->panel_en_gpio, 0); msm_edp_aux_ctrl(ctrl->aux, 0); msm_edp_phy_ctrl(ctrl->phy, 0); edp_clk_disable(ctrl, EDP_CLK_MASK_AUX_CHAN); edp_regulator_disable(ctrl); } } static void edp_ctrl_link_enable(struct edp_ctrl *ctrl, int enable) { u32 m, n; if (enable) { /* Enable link channel clocks */ edp_clk_enable(ctrl, EDP_CLK_MASK_LINK_CHAN); msm_edp_phy_lane_power_ctrl(ctrl->phy, true, ctrl->lane_cnt); msm_edp_phy_vm_pe_init(ctrl->phy); /* Make sure phy is programed */ wmb(); msm_edp_phy_ready(ctrl->phy); edp_config_ctrl(ctrl); msm_edp_ctrl_pixel_clock_valid(ctrl, ctrl->pixel_rate, &m, &n); edp_sw_mvid_nvid(ctrl, m, n); edp_mainlink_ctrl(ctrl, 1); } else { edp_mainlink_ctrl(ctrl, 0); msm_edp_phy_lane_power_ctrl(ctrl->phy, false, 0); edp_clk_disable(ctrl, EDP_CLK_MASK_LINK_CHAN); } } static int edp_ctrl_training(struct edp_ctrl *ctrl) { int ret; /* Do link training only when power is on */ if (!ctrl->power_on) return -EINVAL; train_start: ret = edp_do_link_train(ctrl); if (ret == EDP_TRAIN_RECONFIG) { /* Re-configure main link */ edp_ctrl_irq_enable(ctrl, 0); edp_ctrl_link_enable(ctrl, 0); msm_edp_phy_ctrl(ctrl->phy, 0); /* Make sure link is fully disabled */ wmb(); usleep_range(500, 1000); msm_edp_phy_ctrl(ctrl->phy, 1); edp_ctrl_link_enable(ctrl, 1); edp_ctrl_irq_enable(ctrl, 1); goto train_start; } return ret; } static void edp_ctrl_on_worker(struct work_struct *work) { struct edp_ctrl *ctrl = container_of( work, struct edp_ctrl, on_work); u8 value; int ret; mutex_lock(&ctrl->dev_mutex); if (ctrl->power_on) { DBG("already on"); goto unlock_ret; } edp_ctrl_phy_aux_enable(ctrl, 1); edp_ctrl_link_enable(ctrl, 1); edp_ctrl_irq_enable(ctrl, 1); /* DP_SET_POWER register is only available on DPCD v1.1 and later */ if (ctrl->dpcd[DP_DPCD_REV] >= 0x11) { ret = drm_dp_dpcd_readb(ctrl->drm_aux, DP_SET_POWER, &value); if (ret < 0) goto fail; value &= ~DP_SET_POWER_MASK; value |= DP_SET_POWER_D0; ret = drm_dp_dpcd_writeb(ctrl->drm_aux, DP_SET_POWER, value); if (ret < 0) goto fail; /* * According to the DP 1.1 specification, a "Sink Device must * exit the power saving state within 1 ms" (Section 2.5.3.1, * Table 5-52, "Sink Control Field" (register 0x600). */ usleep_range(1000, 2000); } ctrl->power_on = true; /* Start link training */ ret = edp_ctrl_training(ctrl); if (ret != EDP_TRAIN_SUCCESS) goto fail; DBG("DONE"); goto unlock_ret; fail: edp_ctrl_irq_enable(ctrl, 0); edp_ctrl_link_enable(ctrl, 0); edp_ctrl_phy_aux_enable(ctrl, 0); ctrl->power_on = false; unlock_ret: mutex_unlock(&ctrl->dev_mutex); } static void edp_ctrl_off_worker(struct work_struct *work) { struct edp_ctrl *ctrl = container_of( work, struct edp_ctrl, off_work); unsigned long time_left; mutex_lock(&ctrl->dev_mutex); if (!ctrl->power_on) { DBG("already off"); goto unlock_ret; } reinit_completion(&ctrl->idle_comp); edp_state_ctrl(ctrl, EDP_STATE_CTRL_PUSH_IDLE); time_left = wait_for_completion_timeout(&ctrl->idle_comp, msecs_to_jiffies(500)); if (!time_left) DBG("%s: idle pattern timedout\n", __func__); edp_state_ctrl(ctrl, 0); /* DP_SET_POWER register is only available on DPCD v1.1 and later */ if (ctrl->dpcd[DP_DPCD_REV] >= 0x11) { u8 value; int ret; ret = drm_dp_dpcd_readb(ctrl->drm_aux, DP_SET_POWER, &value); if (ret > 0) { value &= ~DP_SET_POWER_MASK; value |= DP_SET_POWER_D3; drm_dp_dpcd_writeb(ctrl->drm_aux, DP_SET_POWER, value); } } edp_ctrl_irq_enable(ctrl, 0); edp_ctrl_link_enable(ctrl, 0); edp_ctrl_phy_aux_enable(ctrl, 0); ctrl->power_on = false; unlock_ret: mutex_unlock(&ctrl->dev_mutex); } irqreturn_t msm_edp_ctrl_irq(struct edp_ctrl *ctrl) { u32 isr1, isr2, mask1, mask2; u32 ack; DBG(""); spin_lock(&ctrl->irq_lock); isr1 = edp_read(ctrl->base + REG_EDP_INTERRUPT_REG_1); isr2 = edp_read(ctrl->base + REG_EDP_INTERRUPT_REG_2); mask1 = isr1 & EDP_INTR_MASK1; mask2 = isr2 & EDP_INTR_MASK2; isr1 &= ~mask1; /* remove masks bit */ isr2 &= ~mask2; DBG("isr=%x mask=%x isr2=%x mask2=%x", isr1, mask1, isr2, mask2); ack = isr1 & EDP_INTR_STATUS1; ack <<= 1; /* ack bits */ ack |= mask1; edp_write(ctrl->base + REG_EDP_INTERRUPT_REG_1, ack); ack = isr2 & EDP_INTR_STATUS2; ack <<= 1; /* ack bits */ ack |= mask2; edp_write(ctrl->base + REG_EDP_INTERRUPT_REG_2, ack); spin_unlock(&ctrl->irq_lock); if (isr1 & EDP_INTERRUPT_REG_1_HPD) DBG("edp_hpd"); if (isr2 & EDP_INTERRUPT_REG_2_READY_FOR_VIDEO) DBG("edp_video_ready"); if (isr2 & EDP_INTERRUPT_REG_2_IDLE_PATTERNs_SENT) { DBG("idle_patterns_sent"); complete(&ctrl->idle_comp); } msm_edp_aux_irq(ctrl->aux, isr1); return IRQ_HANDLED; } void msm_edp_ctrl_power(struct edp_ctrl *ctrl, bool on) { if (on) queue_work(ctrl->workqueue, &ctrl->on_work); else queue_work(ctrl->workqueue, &ctrl->off_work); } int msm_edp_ctrl_init(struct msm_edp *edp) { struct edp_ctrl *ctrl = NULL; struct device *dev; int ret; if (!edp) { pr_err("%s: edp is NULL!\n", __func__); return -EINVAL; } dev = &edp->pdev->dev; ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL); if (!ctrl) return -ENOMEM; edp->ctrl = ctrl; ctrl->pdev = edp->pdev; ctrl->base = msm_ioremap(ctrl->pdev, "edp", "eDP"); if (IS_ERR(ctrl->base)) return PTR_ERR(ctrl->base); /* Get regulator, clock, gpio, pwm */ ret = edp_regulator_init(ctrl); if (ret) { pr_err("%s:regulator init fail\n", __func__); return ret; } ret = edp_clk_init(ctrl); if (ret) { pr_err("%s:clk init fail\n", __func__); return ret; } ret = edp_gpio_config(ctrl); if (ret) { pr_err("%s:failed to configure GPIOs: %d", __func__, ret); return ret; } /* Init aux and phy */ ctrl->aux = msm_edp_aux_init(edp, ctrl->base, &ctrl->drm_aux); if (!ctrl->aux || !ctrl->drm_aux) { pr_err("%s:failed to init aux\n", __func__); return -ENOMEM; } ctrl->phy = msm_edp_phy_init(dev, ctrl->base); if (!ctrl->phy) { pr_err("%s:failed to init phy\n", __func__); ret = -ENOMEM; goto err_destory_aux; } spin_lock_init(&ctrl->irq_lock); mutex_init(&ctrl->dev_mutex); init_completion(&ctrl->idle_comp); /* setup workqueue */ ctrl->workqueue = alloc_ordered_workqueue("edp_drm_work", 0); INIT_WORK(&ctrl->on_work, edp_ctrl_on_worker); INIT_WORK(&ctrl->off_work, edp_ctrl_off_worker); return 0; err_destory_aux: msm_edp_aux_destroy(dev, ctrl->aux); ctrl->aux = NULL; return ret; } void msm_edp_ctrl_destroy(struct edp_ctrl *ctrl) { if (!ctrl) return; if (ctrl->workqueue) { destroy_workqueue(ctrl->workqueue); ctrl->workqueue = NULL; } if (ctrl->aux) { msm_edp_aux_destroy(&ctrl->pdev->dev, ctrl->aux); ctrl->aux = NULL; } kfree(ctrl->edid); ctrl->edid = NULL; mutex_destroy(&ctrl->dev_mutex); } bool msm_edp_ctrl_panel_connected(struct edp_ctrl *ctrl) { mutex_lock(&ctrl->dev_mutex); DBG("connect status = %d", ctrl->edp_connected); if (ctrl->edp_connected) { mutex_unlock(&ctrl->dev_mutex); return true; } if (!ctrl->power_on) { edp_ctrl_phy_aux_enable(ctrl, 1); edp_ctrl_irq_enable(ctrl, 1); } if (drm_dp_dpcd_read(ctrl->drm_aux, DP_DPCD_REV, ctrl->dpcd, DP_RECEIVER_CAP_SIZE) < DP_RECEIVER_CAP_SIZE) { pr_err("%s: AUX channel is NOT ready\n", __func__); memset(ctrl->dpcd, 0, DP_RECEIVER_CAP_SIZE); } else { ctrl->edp_connected = true; } if (!ctrl->power_on) { edp_ctrl_irq_enable(ctrl, 0); edp_ctrl_phy_aux_enable(ctrl, 0); } DBG("exit: connect status=%d", ctrl->edp_connected); mutex_unlock(&ctrl->dev_mutex); return ctrl->edp_connected; } int msm_edp_ctrl_get_panel_info(struct edp_ctrl *ctrl, struct drm_connector *connector, struct edid **edid) { mutex_lock(&ctrl->dev_mutex); if (ctrl->edid) { if (edid) { DBG("Just return edid buffer"); *edid = ctrl->edid; } goto unlock_ret; } if (!ctrl->power_on) { edp_ctrl_phy_aux_enable(ctrl, 1); edp_ctrl_irq_enable(ctrl, 1); } /* Initialize link rate as panel max link rate */ ctrl->link_rate = ctrl->dpcd[DP_MAX_LINK_RATE]; ctrl->edid = drm_get_edid(connector, &ctrl->drm_aux->ddc); if (!ctrl->edid) { pr_err("%s: edid read fail\n", __func__); goto disable_ret; } if (edid) *edid = ctrl->edid; disable_ret: if (!ctrl->power_on) { edp_ctrl_irq_enable(ctrl, 0); edp_ctrl_phy_aux_enable(ctrl, 0); } unlock_ret: mutex_unlock(&ctrl->dev_mutex); return 0; } int msm_edp_ctrl_timing_cfg(struct edp_ctrl *ctrl, const struct drm_display_mode *mode, const struct drm_display_info *info) { u32 hstart_from_sync, vstart_from_sync; u32 data; int ret = 0; mutex_lock(&ctrl->dev_mutex); /* * Need to keep color depth, pixel rate and * interlaced information in ctrl context */ ctrl->color_depth = info->bpc; ctrl->pixel_rate = mode->clock; ctrl->interlaced = !!(mode->flags & DRM_MODE_FLAG_INTERLACE); /* Fill initial link config based on passed in timing */ edp_fill_link_cfg(ctrl); if (edp_clk_enable(ctrl, EDP_CLK_MASK_AHB)) { pr_err("%s, fail to prepare enable ahb clk\n", __func__); ret = -EINVAL; goto unlock_ret; } edp_clock_synchrous(ctrl, 1); /* Configure eDP timing to HW */ edp_write(ctrl->base + REG_EDP_TOTAL_HOR_VER, EDP_TOTAL_HOR_VER_HORIZ(mode->htotal) | EDP_TOTAL_HOR_VER_VERT(mode->vtotal)); vstart_from_sync = mode->vtotal - mode->vsync_start; hstart_from_sync = mode->htotal - mode->hsync_start; edp_write(ctrl->base + REG_EDP_START_HOR_VER_FROM_SYNC, EDP_START_HOR_VER_FROM_SYNC_HORIZ(hstart_from_sync) | EDP_START_HOR_VER_FROM_SYNC_VERT(vstart_from_sync)); data = EDP_HSYNC_VSYNC_WIDTH_POLARITY_VERT( mode->vsync_end - mode->vsync_start); data |= EDP_HSYNC_VSYNC_WIDTH_POLARITY_HORIZ( mode->hsync_end - mode->hsync_start); if (mode->flags & DRM_MODE_FLAG_NVSYNC) data |= EDP_HSYNC_VSYNC_WIDTH_POLARITY_NVSYNC; if (mode->flags & DRM_MODE_FLAG_NHSYNC) data |= EDP_HSYNC_VSYNC_WIDTH_POLARITY_NHSYNC; edp_write(ctrl->base + REG_EDP_HSYNC_VSYNC_WIDTH_POLARITY, data); edp_write(ctrl->base + REG_EDP_ACTIVE_HOR_VER, EDP_ACTIVE_HOR_VER_HORIZ(mode->hdisplay) | EDP_ACTIVE_HOR_VER_VERT(mode->vdisplay)); edp_clk_disable(ctrl, EDP_CLK_MASK_AHB); unlock_ret: mutex_unlock(&ctrl->dev_mutex); return ret; } bool msm_edp_ctrl_pixel_clock_valid(struct edp_ctrl *ctrl, u32 pixel_rate, u32 *pm, u32 *pn) { const struct edp_pixel_clk_div *divs; u32 err = 1; /* 1% error tolerance */ u32 clk_err; int i; if (ctrl->link_rate == DP_LINK_BW_1_62) { divs = clk_divs[0]; } else if (ctrl->link_rate == DP_LINK_BW_2_7) { divs = clk_divs[1]; } else { pr_err("%s: Invalid link rate,%d\n", __func__, ctrl->link_rate); return false; } for (i = 0; i < EDP_PIXEL_CLK_NUM; i++) { clk_err = abs(divs[i].rate - pixel_rate); if ((divs[i].rate * err / 100) >= clk_err) { if (pm) *pm = divs[i].m; if (pn) *pn = divs[i].n; return true; } } DBG("pixel clock %d(kHz) not supported", pixel_rate); return false; }