// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2016-2020 HabanaLabs, Ltd. * All Rights Reserved. */ #include #include "../habanalabs.h" bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr) { struct asic_fixed_properties *prop = &hdev->asic_prop; return hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size, prop->dmmu.start_addr, prop->dmmu.end_addr); } /** * hl_mmu_init() - initialize the MMU module. * @hdev: habanalabs device structure. * * Return: 0 for success, non-zero for failure. */ int hl_mmu_init(struct hl_device *hdev) { int rc = -EOPNOTSUPP; if (!hdev->mmu_enable) return 0; if (hdev->mmu_func[MMU_DR_PGT].init != NULL) { rc = hdev->mmu_func[MMU_DR_PGT].init(hdev); if (rc) return rc; } if (hdev->mmu_func[MMU_HR_PGT].init != NULL) rc = hdev->mmu_func[MMU_HR_PGT].init(hdev); return rc; } /** * hl_mmu_fini() - release the MMU module. * @hdev: habanalabs device structure. * * This function does the following: * - Disable MMU in H/W. * - Free the pgt_infos pool. * * All contexts should be freed before calling this function. */ void hl_mmu_fini(struct hl_device *hdev) { if (!hdev->mmu_enable) return; if (hdev->mmu_func[MMU_DR_PGT].fini != NULL) hdev->mmu_func[MMU_DR_PGT].fini(hdev); if (hdev->mmu_func[MMU_HR_PGT].fini != NULL) hdev->mmu_func[MMU_HR_PGT].fini(hdev); } /** * hl_mmu_ctx_init() - initialize a context for using the MMU module. * @ctx: pointer to the context structure to initialize. * * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all * page tables hops related to this context. * Return: 0 on success, non-zero otherwise. */ int hl_mmu_ctx_init(struct hl_ctx *ctx) { struct hl_device *hdev = ctx->hdev; int rc = -EOPNOTSUPP; if (!hdev->mmu_enable) return 0; mutex_init(&ctx->mmu_lock); if (hdev->mmu_func[MMU_DR_PGT].ctx_init != NULL) { rc = hdev->mmu_func[MMU_DR_PGT].ctx_init(ctx); if (rc) return rc; } if (hdev->mmu_func[MMU_HR_PGT].ctx_init != NULL) rc = hdev->mmu_func[MMU_HR_PGT].ctx_init(ctx); return rc; } /* * hl_mmu_ctx_fini - disable a ctx from using the mmu module * * @ctx: pointer to the context structure * * This function does the following: * - Free any pgts which were not freed yet * - Free the mutex * - Free DRAM default page mapping hops */ void hl_mmu_ctx_fini(struct hl_ctx *ctx) { struct hl_device *hdev = ctx->hdev; if (!hdev->mmu_enable) return; if (hdev->mmu_func[MMU_DR_PGT].ctx_fini != NULL) hdev->mmu_func[MMU_DR_PGT].ctx_fini(ctx); if (hdev->mmu_func[MMU_HR_PGT].ctx_fini != NULL) hdev->mmu_func[MMU_HR_PGT].ctx_fini(ctx); mutex_destroy(&ctx->mmu_lock); } /* * hl_mmu_unmap_page - unmaps a virtual addr * * @ctx: pointer to the context structure * @virt_addr: virt addr to map from * @page_size: size of the page to unmap * @flush_pte: whether to do a PCI flush * * This function does the following: * - Check that the virt addr is mapped * - Unmap the virt addr and frees pgts if possible * - Returns 0 on success, -EINVAL if the given addr is not mapped * * Because this function changes the page tables in the device and because it * changes the MMU hash, it must be protected by a lock. * However, because it maps only a single page, the lock should be implemented * in a higher level in order to protect the entire mapping of the memory area * * For optimization reasons PCI flush may be requested once after unmapping of * large area. */ int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size, bool flush_pte) { struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; struct hl_mmu_properties *mmu_prop; u64 real_virt_addr; u32 real_page_size, npages; int i, rc = 0, pgt_residency; bool is_dram_addr; if (!hdev->mmu_enable) return 0; is_dram_addr = hl_is_dram_va(hdev, virt_addr); if (is_dram_addr) mmu_prop = &prop->dmmu; else if ((page_size % prop->pmmu_huge.page_size) == 0) mmu_prop = &prop->pmmu_huge; else mmu_prop = &prop->pmmu; pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT; /* * The H/W handles mapping of specific page sizes. Hence if the page * size is bigger, we break it to sub-pages and unmap them separately. */ if ((page_size % mmu_prop->page_size) == 0) { real_page_size = mmu_prop->page_size; } else { /* * MMU page size may differ from DRAM page size. * In such case work with the DRAM page size and let the MMU * scrambling routine to handle this mismatch when * calculating the address to remove from the MMU page table */ if (is_dram_addr && ((page_size % prop->dram_page_size) == 0)) { real_page_size = prop->dram_page_size; } else { dev_err(hdev->dev, "page size of %u is not %uKB aligned, can't unmap\n", page_size, mmu_prop->page_size >> 10); return -EFAULT; } } npages = page_size / real_page_size; real_virt_addr = virt_addr; for (i = 0 ; i < npages ; i++) { rc = hdev->mmu_func[pgt_residency].unmap(ctx, real_virt_addr, is_dram_addr); if (rc) break; real_virt_addr += real_page_size; } if (flush_pte) hdev->mmu_func[pgt_residency].flush(ctx); return rc; } /* * hl_mmu_map_page - maps a virtual addr to physical addr * * @ctx: pointer to the context structure * @virt_addr: virt addr to map from * @phys_addr: phys addr to map to * @page_size: physical page size * @flush_pte: whether to do a PCI flush * * This function does the following: * - Check that the virt addr is not mapped * - Allocate pgts as necessary in order to map the virt addr to the phys * - Returns 0 on success, -EINVAL if addr is already mapped, or -ENOMEM. * * Because this function changes the page tables in the device and because it * changes the MMU hash, it must be protected by a lock. * However, because it maps only a single page, the lock should be implemented * in a higher level in order to protect the entire mapping of the memory area * * For optimization reasons PCI flush may be requested once after mapping of * large area. */ int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size, bool flush_pte) { struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; struct hl_mmu_properties *mmu_prop; u64 real_virt_addr, real_phys_addr; u32 real_page_size, npages; int i, rc, pgt_residency, mapped_cnt = 0; bool is_dram_addr; if (!hdev->mmu_enable) return 0; is_dram_addr = hl_is_dram_va(hdev, virt_addr); if (is_dram_addr) mmu_prop = &prop->dmmu; else if ((page_size % prop->pmmu_huge.page_size) == 0) mmu_prop = &prop->pmmu_huge; else mmu_prop = &prop->pmmu; pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT; /* * The H/W handles mapping of specific page sizes. Hence if the page * size is bigger, we break it to sub-pages and map them separately. */ if ((page_size % mmu_prop->page_size) == 0) { real_page_size = mmu_prop->page_size; } else if (is_dram_addr && ((page_size % prop->dram_page_size) == 0) && (prop->dram_page_size < mmu_prop->page_size)) { /* * MMU page size may differ from DRAM page size. * In such case work with the DRAM page size and let the MMU * scrambling routine handle this mismatch when calculating * the address to place in the MMU page table. (in that case * also make sure that the dram_page_size smaller than the * mmu page size) */ real_page_size = prop->dram_page_size; } else { dev_err(hdev->dev, "page size of %u is not %uKB aligned, can't map\n", page_size, mmu_prop->page_size >> 10); return -EFAULT; } /* * Verify that the phys and virt addresses are aligned with the * MMU page size (in dram this means checking the address and MMU * after scrambling) */ if ((is_dram_addr && ((hdev->asic_funcs->scramble_addr(hdev, phys_addr) & (mmu_prop->page_size - 1)) || (hdev->asic_funcs->scramble_addr(hdev, virt_addr) & (mmu_prop->page_size - 1)))) || (!is_dram_addr && ((phys_addr & (real_page_size - 1)) || (virt_addr & (real_page_size - 1))))) dev_crit(hdev->dev, "Mapping address 0x%llx with virtual address 0x%llx and page size of 0x%x is erroneous! Addresses must be divisible by page size", phys_addr, virt_addr, real_page_size); npages = page_size / real_page_size; real_virt_addr = virt_addr; real_phys_addr = phys_addr; for (i = 0 ; i < npages ; i++) { rc = hdev->mmu_func[pgt_residency].map(ctx, real_virt_addr, real_phys_addr, real_page_size, is_dram_addr); if (rc) goto err; real_virt_addr += real_page_size; real_phys_addr += real_page_size; mapped_cnt++; } if (flush_pte) hdev->mmu_func[pgt_residency].flush(ctx); return 0; err: real_virt_addr = virt_addr; for (i = 0 ; i < mapped_cnt ; i++) { if (hdev->mmu_func[pgt_residency].unmap(ctx, real_virt_addr, is_dram_addr)) dev_warn_ratelimited(hdev->dev, "failed to unmap va: 0x%llx\n", real_virt_addr); real_virt_addr += real_page_size; } hdev->mmu_func[pgt_residency].flush(ctx); return rc; } /* * hl_mmu_map_contiguous - implements a wrapper for hl_mmu_map_page * for mapping contiguous physical memory * * @ctx: pointer to the context structure * @virt_addr: virt addr to map from * @phys_addr: phys addr to map to * @size: size to map * */ int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 size) { struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; u64 curr_va, curr_pa; u32 page_size; bool flush_pte; int rc = 0, off; if (hl_mem_area_inside_range(virt_addr, size, prop->dmmu.start_addr, prop->dmmu.end_addr)) page_size = prop->dmmu.page_size; else if (hl_mem_area_inside_range(virt_addr, size, prop->pmmu.start_addr, prop->pmmu.end_addr)) page_size = prop->pmmu.page_size; else if (hl_mem_area_inside_range(virt_addr, size, prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr)) page_size = prop->pmmu_huge.page_size; else return -EINVAL; for (off = 0 ; off < size ; off += page_size) { curr_va = virt_addr + off; curr_pa = phys_addr + off; flush_pte = (off + page_size) >= size; rc = hl_mmu_map_page(ctx, curr_va, curr_pa, page_size, flush_pte); if (rc) { dev_err(hdev->dev, "Map failed for va 0x%llx to pa 0x%llx\n", curr_va, curr_pa); goto unmap; } } return rc; unmap: for (; off >= 0 ; off -= page_size) { curr_va = virt_addr + off; flush_pte = (off - (s32) page_size) < 0; if (hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte)) dev_warn_ratelimited(hdev->dev, "failed to unmap va 0x%llx\n", curr_va); } return rc; } /* * hl_mmu_unmap_contiguous - implements a wrapper for hl_mmu_unmap_page * for unmapping contiguous physical memory * * @ctx: pointer to the context structure * @virt_addr: virt addr to unmap * @size: size to unmap * */ int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size) { struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; u64 curr_va; u32 page_size; bool flush_pte; int rc = 0, off; if (hl_mem_area_inside_range(virt_addr, size, prop->dmmu.start_addr, prop->dmmu.end_addr)) page_size = prop->dmmu.page_size; else if (hl_mem_area_inside_range(virt_addr, size, prop->pmmu.start_addr, prop->pmmu.end_addr)) page_size = prop->pmmu.page_size; else if (hl_mem_area_inside_range(virt_addr, size, prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr)) page_size = prop->pmmu_huge.page_size; else return -EINVAL; for (off = 0 ; off < size ; off += page_size) { curr_va = virt_addr + off; flush_pte = (off + page_size) >= size; rc = hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte); if (rc) dev_warn_ratelimited(hdev->dev, "Unmap failed for va 0x%llx\n", curr_va); } return rc; } /* * hl_mmu_swap_out - marks all mapping of the given ctx as swapped out * * @ctx: pointer to the context structure * */ void hl_mmu_swap_out(struct hl_ctx *ctx) { struct hl_device *hdev = ctx->hdev; if (!hdev->mmu_enable) return; if (hdev->mmu_func[MMU_DR_PGT].swap_out != NULL) hdev->mmu_func[MMU_DR_PGT].swap_out(ctx); if (hdev->mmu_func[MMU_HR_PGT].swap_out != NULL) hdev->mmu_func[MMU_HR_PGT].swap_out(ctx); } /* * hl_mmu_swap_in - marks all mapping of the given ctx as swapped in * * @ctx: pointer to the context structure * */ void hl_mmu_swap_in(struct hl_ctx *ctx) { struct hl_device *hdev = ctx->hdev; if (!hdev->mmu_enable) return; if (hdev->mmu_func[MMU_DR_PGT].swap_in != NULL) hdev->mmu_func[MMU_DR_PGT].swap_in(ctx); if (hdev->mmu_func[MMU_HR_PGT].swap_in != NULL) hdev->mmu_func[MMU_HR_PGT].swap_in(ctx); } static void hl_mmu_pa_page_with_offset(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops, u64 *phys_addr) { struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; u64 offset_mask, addr_mask, hop_shift, tmp_phys_addr; u32 hop0_shift_off; void *p; /* last hop holds the phys address and flags */ if (hops->unscrambled_paddr) tmp_phys_addr = hops->unscrambled_paddr; else tmp_phys_addr = hops->hop_info[hops->used_hops - 1].hop_pte_val; if (hops->range_type == HL_VA_RANGE_TYPE_HOST_HUGE) p = &prop->pmmu_huge; else if (hops->range_type == HL_VA_RANGE_TYPE_HOST) p = &prop->pmmu; else /* HL_VA_RANGE_TYPE_DRAM */ p = &prop->dmmu; if ((hops->range_type == HL_VA_RANGE_TYPE_DRAM) && !is_power_of_2(prop->dram_page_size)) { u64 dram_page_size, dram_base, abs_phys_addr, abs_virt_addr, page_id, page_start; u32 page_off; /* * Bit arithmetics cannot be used for non power of two page * sizes. In addition, since bit arithmetics is not used, * we cannot ignore dram base. All that shall be considerd. */ dram_page_size = prop->dram_page_size; dram_base = prop->dram_base_address; abs_phys_addr = tmp_phys_addr - dram_base; abs_virt_addr = virt_addr - dram_base; page_id = DIV_ROUND_DOWN_ULL(abs_phys_addr, dram_page_size); page_start = page_id * dram_page_size; div_u64_rem(abs_virt_addr, dram_page_size, &page_off); *phys_addr = page_start + page_off + dram_base; } else { /* * find the correct hop shift field in hl_mmu_properties * structure in order to determine the right masks * for the page offset. */ hop0_shift_off = offsetof(struct hl_mmu_properties, hop0_shift); p = (char *)p + hop0_shift_off; p = (char *)p + ((hops->used_hops - 1) * sizeof(u64)); hop_shift = *(u64 *)p; offset_mask = (1ull << hop_shift) - 1; addr_mask = ~(offset_mask); *phys_addr = (tmp_phys_addr & addr_mask) | (virt_addr & offset_mask); } } int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr) { struct hl_mmu_hop_info hops; int rc; memset(&hops, 0, sizeof(hops)); rc = hl_mmu_get_tlb_info(ctx, virt_addr, &hops); if (rc) return rc; hl_mmu_pa_page_with_offset(ctx, virt_addr, &hops, phys_addr); return 0; } int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops) { struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; struct hl_mmu_properties *mmu_prop; int rc; bool is_dram_addr; if (!hdev->mmu_enable) return -EOPNOTSUPP; hops->scrambled_vaddr = virt_addr; /* assume no scrambling */ is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size, prop->dmmu.start_addr, prop->dmmu.end_addr); /* host-residency is the same in PMMU and HPMMU, use one of them */ mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu; mutex_lock(&ctx->mmu_lock); if (mmu_prop->host_resident) rc = hdev->mmu_func[MMU_HR_PGT].get_tlb_info(ctx, virt_addr, hops); else rc = hdev->mmu_func[MMU_DR_PGT].get_tlb_info(ctx, virt_addr, hops); mutex_unlock(&ctx->mmu_lock); /* add page offset to physical address */ if (hops->unscrambled_paddr) hl_mmu_pa_page_with_offset(ctx, virt_addr, hops, &hops->unscrambled_paddr); return rc; } int hl_mmu_if_set_funcs(struct hl_device *hdev) { if (!hdev->mmu_enable) return 0; switch (hdev->asic_type) { case ASIC_GOYA: case ASIC_GAUDI: case ASIC_GAUDI_SEC: hl_mmu_v1_set_funcs(hdev, &hdev->mmu_func[MMU_DR_PGT]); break; default: dev_err(hdev->dev, "Unrecognized ASIC type %d\n", hdev->asic_type); return -EOPNOTSUPP; } return 0; } /** * hl_mmu_scramble_addr() - The generic mmu address scrambling routine. * @hdev: pointer to device data. * @addr: The address to scramble. * * Return: The scrambled address. */ u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr) { return addr; } /** * hl_mmu_descramble_addr() - The generic mmu address descrambling * routine. * @hdev: pointer to device data. * @addr: The address to descramble. * * Return: The un-scrambled address. */ u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr) { return addr; }