// SPDX-License-Identifier: BSD-2-Clause /* * Copyright (c) 2017-2018, STMicroelectronics * Copyright (c) 2016-2018, Linaro Limited */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include register_phys_mem_pgdir(MEM_AREA_IO_NSEC, APB1_BASE, APB1_SIZE); register_phys_mem_pgdir(MEM_AREA_IO_NSEC, APB2_BASE, APB2_SIZE); register_phys_mem_pgdir(MEM_AREA_IO_NSEC, APB3_BASE, APB3_SIZE); register_phys_mem_pgdir(MEM_AREA_IO_NSEC, APB4_BASE, APB4_SIZE); register_phys_mem_pgdir(MEM_AREA_IO_NSEC, APB5_BASE, APB5_SIZE); register_phys_mem_pgdir(MEM_AREA_IO_NSEC, AHB4_BASE, AHB4_SIZE); register_phys_mem_pgdir(MEM_AREA_IO_NSEC, AHB5_BASE, AHB5_SIZE); register_phys_mem_pgdir(MEM_AREA_IO_SEC, APB3_BASE, APB4_SIZE); register_phys_mem_pgdir(MEM_AREA_IO_SEC, APB5_BASE, APB5_SIZE); register_phys_mem_pgdir(MEM_AREA_IO_SEC, AHB4_BASE, AHB4_SIZE); register_phys_mem_pgdir(MEM_AREA_IO_SEC, AHB5_BASE, AHB5_SIZE); register_phys_mem_pgdir(MEM_AREA_IO_SEC, GIC_BASE, GIC_SIZE); register_ddr(DDR_BASE, CFG_DRAM_SIZE); #define _ID2STR(id) (#id) #define ID2STR(id) _ID2STR(id) static TEE_Result platform_banner(void) { #ifdef CFG_EMBED_DTB IMSG("Platform stm32mp1: flavor %s - DT %s", ID2STR(PLATFORM_FLAVOR), ID2STR(CFG_EMBED_DTB_SOURCE_FILE)); #else IMSG("Platform stm32mp1: flavor %s - no device tree", ID2STR(PLATFORM_FLAVOR)); #endif return TEE_SUCCESS; } service_init(platform_banner); /* * Console * * CFG_STM32_EARLY_CONSOLE_UART specifies the ID of the UART used for * trace console. Value 0 disables the early console. * * We cannot use the generic serial_console support since probing * the console requires the platform clock driver to be already * up and ready which is done only once service_init are completed. */ static struct stm32_uart_pdata console_data; void console_init(void) { /* Early console initialization before MMU setup */ struct uart { paddr_t pa; bool secure; } uarts[] = { [0] = { .pa = 0 }, [1] = { .pa = USART1_BASE, .secure = true, }, [2] = { .pa = USART2_BASE, .secure = false, }, [3] = { .pa = USART3_BASE, .secure = false, }, [4] = { .pa = UART4_BASE, .secure = false, }, [5] = { .pa = UART5_BASE, .secure = false, }, [6] = { .pa = USART6_BASE, .secure = false, }, [7] = { .pa = UART7_BASE, .secure = false, }, [8] = { .pa = UART8_BASE, .secure = false, }, }; COMPILE_TIME_ASSERT(ARRAY_SIZE(uarts) > CFG_STM32_EARLY_CONSOLE_UART); if (!uarts[CFG_STM32_EARLY_CONSOLE_UART].pa) return; /* No clock yet bound to the UART console */ console_data.clock = NULL; console_data.secure = uarts[CFG_STM32_EARLY_CONSOLE_UART].secure; stm32_uart_init(&console_data, uarts[CFG_STM32_EARLY_CONSOLE_UART].pa); register_serial_console(&console_data.chip); IMSG("Early console on UART#%u", CFG_STM32_EARLY_CONSOLE_UART); } #ifdef CFG_EMBED_DTB static TEE_Result init_console_from_dt(void) { struct stm32_uart_pdata *pd = NULL; void *fdt = NULL; int node = 0; TEE_Result res = TEE_ERROR_GENERIC; fdt = get_embedded_dt(); res = get_console_node_from_dt(fdt, &node, NULL, NULL); if (res == TEE_ERROR_ITEM_NOT_FOUND) { fdt = get_external_dt(); res = get_console_node_from_dt(fdt, &node, NULL, NULL); if (res == TEE_ERROR_ITEM_NOT_FOUND) return TEE_SUCCESS; if (res != TEE_SUCCESS) return res; } pd = stm32_uart_init_from_dt_node(fdt, node); if (!pd) { IMSG("DTB disables console"); register_serial_console(NULL); return TEE_SUCCESS; } /* Replace early console with the new one */ console_flush(); console_data = *pd; free(pd); register_serial_console(&console_data.chip); IMSG("DTB enables console (%ssecure)", pd->secure ? "" : "non-"); return TEE_SUCCESS; } /* Probe console from DT once clock inits (service init level) are completed */ service_init_late(init_console_from_dt); #endif /* * GIC init, used also for primary/secondary boot core wake completion */ static struct gic_data gic_data; void itr_core_handler(void) { gic_it_handle(&gic_data); } void main_init_gic(void) { assert(cpu_mmu_enabled()); gic_init(&gic_data, get_gicc_base(), get_gicd_base()); itr_init(&gic_data.chip); stm32mp_register_online_cpu(); } void main_secondary_init_gic(void) { gic_cpu_init(&gic_data); stm32mp_register_online_cpu(); } static TEE_Result init_stm32mp1_drivers(void) { /* Without secure DTB support, some drivers must be inited */ if (!IS_ENABLED(CFG_EMBED_DTB)) stm32_etzpc_init(ETZPC_BASE); /* Secure internal memories for the platform, once ETZPC is ready */ etzpc_configure_tzma(0, ETZPC_TZMA_ALL_SECURE); etzpc_lock_tzma(0); COMPILE_TIME_ASSERT(((SYSRAM_BASE + SYSRAM_SIZE) <= CFG_TZSRAM_START) || ((SYSRAM_BASE <= CFG_TZSRAM_START) && (SYSRAM_SEC_SIZE >= CFG_TZSRAM_SIZE))); etzpc_configure_tzma(1, SYSRAM_SEC_SIZE >> SMALL_PAGE_SHIFT); etzpc_lock_tzma(1); return TEE_SUCCESS; } service_init_late(init_stm32mp1_drivers); vaddr_t get_gicc_base(void) { struct io_pa_va base = { .pa = GIC_BASE + GICC_OFFSET }; return io_pa_or_va_secure(&base, 1); } vaddr_t get_gicd_base(void) { struct io_pa_va base = { .pa = GIC_BASE + GICD_OFFSET }; return io_pa_or_va_secure(&base, 1); } void stm32mp_get_bsec_static_cfg(struct stm32_bsec_static_cfg *cfg) { cfg->base = BSEC_BASE; cfg->upper_start = STM32MP1_UPPER_OTP_START; cfg->max_id = STM32MP1_OTP_MAX_ID; } bool stm32mp_is_closed_device(void) { uint32_t otp = 0; TEE_Result result = TEE_ERROR_GENERIC; /* Non closed_device platform expects fuse well programmed to 0 */ result = stm32_bsec_shadow_read_otp(&otp, DATA0_OTP); if (!result && !(otp & BIT(DATA0_OTP_SECURED_POS))) return false; return true; } bool __weak stm32mp_with_pmic(void) { return false; } uint32_t may_spin_lock(unsigned int *lock) { if (!lock || !cpu_mmu_enabled()) return 0; return cpu_spin_lock_xsave(lock); } void may_spin_unlock(unsigned int *lock, uint32_t exceptions) { if (!lock || !cpu_mmu_enabled()) return; cpu_spin_unlock_xrestore(lock, exceptions); } static vaddr_t stm32_tamp_base(void) { static struct io_pa_va base = { .pa = TAMP_BASE }; return io_pa_or_va_secure(&base, 1); } static vaddr_t bkpreg_base(void) { return stm32_tamp_base() + TAMP_BKP_REGISTER_OFF; } vaddr_t stm32mp_bkpreg(unsigned int idx) { return bkpreg_base() + (idx * sizeof(uint32_t)); } #ifdef CFG_STM32_GPIO vaddr_t stm32_get_gpio_bank_base(unsigned int bank) { static struct io_pa_va gpios_nsec_base = { .pa = GPIOS_NSEC_BASE }; static struct io_pa_va gpioz_base = { .pa = GPIOZ_BASE }; /* Get secure mapping address for GPIOZ */ if (bank == GPIO_BANK_Z) return io_pa_or_va_secure(&gpioz_base, GPIO_BANK_OFFSET); COMPILE_TIME_ASSERT(GPIO_BANK_A == 0); assert(bank <= GPIO_BANK_K); return io_pa_or_va_nsec(&gpios_nsec_base, (bank + 1) * GPIO_BANK_OFFSET) + (bank * GPIO_BANK_OFFSET); } unsigned int stm32_get_gpio_bank_offset(unsigned int bank) { if (bank == GPIO_BANK_Z) return 0; assert(bank <= GPIO_BANK_K); return bank * GPIO_BANK_OFFSET; } unsigned int stm32_get_gpio_bank_clock(unsigned int bank) { if (bank == GPIO_BANK_Z) return GPIOZ; assert(bank <= GPIO_BANK_K); return GPIOA + bank; } #ifdef CFG_DRIVERS_CLK struct clk *stm32_get_gpio_bank_clk(unsigned int bank) { if (bank == GPIO_BANK_Z) return stm32mp_rcc_clock_id_to_clk(GPIOZ); assert(bank <= GPIO_BANK_K); return stm32mp_rcc_clock_id_to_clk(GPIOA + bank); } #endif #endif /* CFG_STM32_GPIO */