// SPDX-License-Identifier: BSD-2-Clause /* * Copyright (c) 2014, STMicroelectronics International N.V. * Copyright (c) 2020, Linaro Limited */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include vaddr_t tee_svc_uref_base; void syscall_log(const void *buf __maybe_unused, size_t len __maybe_unused) { #ifdef CFG_TEE_CORE_TA_TRACE char *kbuf; if (len == 0) return; kbuf = malloc(len + 1); if (kbuf == NULL) return; if (copy_from_user(kbuf, buf, len) == TEE_SUCCESS) { kbuf[len] = '\0'; trace_ext_puts(kbuf); } free_wipe(kbuf); #endif } TEE_Result syscall_not_supported(void) { return TEE_ERROR_NOT_SUPPORTED; } /* Configuration properties */ /* API implementation version */ static const char api_vers[] = TO_STR(CFG_TEE_API_VERSION); /* Implementation description (implementation-dependent) */ static const char descr[] = TO_STR(CFG_TEE_IMPL_DESCR); /* * TA persistent time protection level * 100: Persistent time based on an REE-controlled real-time clock * and on the TEE Trusted Storage for the storage of origins (default). * 1000: Persistent time based on a TEE-controlled real-time clock * and the TEE Trusted Storage. * The real-time clock MUST be out of reach of software attacks * from the REE. */ static const uint32_t ta_time_prot_lvl = 100; /* Elliptic Curve Cryptographic support */ #ifdef CFG_CRYPTO_ECC static const bool crypto_ecc_en = 1; #else static const bool crypto_ecc_en; #endif /* * Trusted storage anti rollback protection level * 0 (or missing): No antirollback protection (default) * 100: Antirollback enforced at REE level * 1000: Antirollback TEE-controlled hardware */ #ifdef CFG_RPMB_FS static const uint32_t ts_antiroll_prot_lvl = 1000; #else static const uint32_t ts_antiroll_prot_lvl; #endif /* Trusted OS implementation version */ static const char trustedos_impl_version[] = TO_STR(TEE_IMPL_VERSION); /* Trusted OS implementation version (binary value) */ static const uint32_t trustedos_impl_bin_version; /* 0 by default */ /* Trusted OS implementation manufacturer name */ static const char trustedos_manufacturer[] = TO_STR(CFG_TEE_MANUFACTURER); /* Trusted firmware version */ static const char fw_impl_version[] = TO_STR(CFG_TEE_FW_IMPL_VERSION); /* Trusted firmware version (binary value) */ static const uint32_t fw_impl_bin_version; /* 0 by default */ /* Trusted firmware manufacturer name */ static const char fw_manufacturer[] = TO_STR(CFG_TEE_FW_MANUFACTURER); static TEE_Result get_prop_tee_dev_id(struct ts_session *sess __unused, void *buf, size_t *blen) { TEE_Result res; TEE_UUID uuid; const size_t nslen = 5; uint8_t data[5 + FVR_DIE_ID_NUM_REGS * sizeof(uint32_t)] = { 'O', 'P', 'T', 'E', 'E' }; if (*blen < sizeof(uuid)) { *blen = sizeof(uuid); return TEE_ERROR_SHORT_BUFFER; } *blen = sizeof(uuid); if (tee_otp_get_die_id(data + nslen, sizeof(data) - nslen)) return TEE_ERROR_BAD_STATE; res = tee_hash_createdigest(TEE_ALG_SHA256, data, sizeof(data), (uint8_t *)&uuid, sizeof(uuid)); if (res != TEE_SUCCESS) return TEE_ERROR_BAD_STATE; /* * Changes the random value into and UUID as specifiec * in RFC 4122. The magic values are from the example * code in the RFC. * * TEE_UUID is defined slightly different from the RFC, * but close enough for our purpose. */ uuid.timeHiAndVersion &= 0x0fff; uuid.timeHiAndVersion |= 5 << 12; /* uuid.clock_seq_hi_and_reserved in the RFC */ uuid.clockSeqAndNode[0] &= 0x3f; uuid.clockSeqAndNode[0] |= 0x80; return copy_to_user(buf, &uuid, sizeof(TEE_UUID)); } static TEE_Result get_prop_tee_sys_time_prot_level(struct ts_session *sess __unused, void *buf, size_t *blen) { uint32_t prot; if (*blen < sizeof(prot)) { *blen = sizeof(prot); return TEE_ERROR_SHORT_BUFFER; } *blen = sizeof(prot); prot = tee_time_get_sys_time_protection_level(); return copy_to_user(buf, &prot, sizeof(prot)); } static TEE_Result get_prop_client_id(struct ts_session *sess, void *buf, size_t *blen) { if (*blen < sizeof(TEE_Identity)) { *blen = sizeof(TEE_Identity); return TEE_ERROR_SHORT_BUFFER; } *blen = sizeof(TEE_Identity); return copy_to_user(buf, &to_ta_session(sess)->clnt_id, sizeof(TEE_Identity)); } static TEE_Result get_prop_ta_app_id(struct ts_session *sess, void *buf, size_t *blen) { if (*blen < sizeof(TEE_UUID)) { *blen = sizeof(TEE_UUID); return TEE_ERROR_SHORT_BUFFER; } *blen = sizeof(TEE_UUID); return copy_to_user(buf, &sess->ctx->uuid, sizeof(TEE_UUID)); } #ifdef CFG_TA_BTI static TEE_Result get_prop_feat_bti_implemented(struct ts_session *sess __unused, void *buf, size_t *blen) { bool bti_impl = false; if (*blen < sizeof(bti_impl)) { *blen = sizeof(bti_impl); return TEE_ERROR_SHORT_BUFFER; } *blen = sizeof(bti_impl); bti_impl = feat_bti_is_implemented(); return copy_to_user(buf, &bti_impl, sizeof(bti_impl)); } #endif /* Properties of the set TEE_PROPSET_CURRENT_CLIENT */ const struct tee_props tee_propset_client[] = { { .name = "gpd.client.identity", .prop_type = USER_TA_PROP_TYPE_IDENTITY, .get_prop_func = get_prop_client_id }, }; /* Properties of the set TEE_PROPSET_CURRENT_TA */ const struct tee_props tee_propset_ta[] = { { .name = "gpd.ta.appID", .prop_type = USER_TA_PROP_TYPE_UUID, .get_prop_func = get_prop_ta_app_id }, /* * Following properties are processed directly in libutee: * TA_PROP_STR_SINGLE_INSTANCE * TA_PROP_STR_MULTI_SESSION * TA_PROP_STR_KEEP_ALIVE * TA_PROP_STR_DATA_SIZE * TA_PROP_STR_STACK_SIZE * TA_PROP_STR_VERSION * TA_PROP_STR_DESCRIPTION * USER_TA_PROP_TYPE_STRING, * TA_DESCRIPTION */ }; /* Properties of the set TEE_PROPSET_TEE_IMPLEMENTATION */ const struct tee_props tee_propset_tee[] = { { .name = "gpd.tee.apiversion", .prop_type = USER_TA_PROP_TYPE_STRING, .data = api_vers, .len = sizeof(api_vers), }, { .name = "gpd.tee.description", .prop_type = USER_TA_PROP_TYPE_STRING, .data = descr, .len = sizeof(descr) }, { .name = "gpd.tee.deviceID", .prop_type = USER_TA_PROP_TYPE_UUID, .get_prop_func = get_prop_tee_dev_id }, { .name = "gpd.tee.systemTime.protectionLevel", .prop_type = USER_TA_PROP_TYPE_U32, .get_prop_func = get_prop_tee_sys_time_prot_level }, { .name = "gpd.tee.TAPersistentTime.protectionLevel", .prop_type = USER_TA_PROP_TYPE_U32, .data = &ta_time_prot_lvl, .len = sizeof(ta_time_prot_lvl) }, { .name = "gpd.tee.cryptography.ecc", .prop_type = USER_TA_PROP_TYPE_BOOL, .data = &crypto_ecc_en, .len = sizeof(crypto_ecc_en) }, { .name = "gpd.tee.trustedStorage.antiRollback.protectionLevel", .prop_type = USER_TA_PROP_TYPE_U32, .data = &ts_antiroll_prot_lvl, .len = sizeof(ts_antiroll_prot_lvl) }, { .name = "gpd.tee.trustedos.implementation.version", .prop_type = USER_TA_PROP_TYPE_STRING, .data = trustedos_impl_version, .len = sizeof(trustedos_impl_version) }, { .name = "gpd.tee.trustedos.implementation.binaryversion", .prop_type = USER_TA_PROP_TYPE_U32, .data = &trustedos_impl_bin_version, .len = sizeof(trustedos_impl_bin_version) }, { .name = "gpd.tee.trustedos.manufacturer", .prop_type = USER_TA_PROP_TYPE_STRING, .data = trustedos_manufacturer, .len = sizeof(trustedos_manufacturer) }, { .name = "gpd.tee.firmware.implementation.version", .prop_type = USER_TA_PROP_TYPE_STRING, .data = fw_impl_version, .len = sizeof(fw_impl_version) }, { .name = "gpd.tee.firmware.implementation.binaryversion", .prop_type = USER_TA_PROP_TYPE_U32, .data = &fw_impl_bin_version, .len = sizeof(fw_impl_bin_version) }, { .name = "gpd.tee.firmware.manufacturer", .prop_type = USER_TA_PROP_TYPE_STRING, .data = fw_manufacturer, .len = sizeof(fw_manufacturer) }, #ifdef CFG_TA_BTI { .name = "org.trustedfirmware.optee.cpu.feat_bti_implemented", .prop_type = USER_TA_PROP_TYPE_BOOL, .get_prop_func = get_prop_feat_bti_implemented }, #endif /* * Following properties are processed directly in libutee: * gpd.tee.arith.maxBigIntSize */ }; __weak const struct tee_vendor_props vendor_props_client; __weak const struct tee_vendor_props vendor_props_ta; __weak const struct tee_vendor_props vendor_props_tee; static void get_prop_set(unsigned long prop_set, const struct tee_props **props, size_t *size, const struct tee_props **vendor_props, size_t *vendor_size) { if ((TEE_PropSetHandle)prop_set == TEE_PROPSET_CURRENT_CLIENT) { *props = tee_propset_client; *size = ARRAY_SIZE(tee_propset_client); *vendor_props = vendor_props_client.props; *vendor_size = vendor_props_client.len; } else if ((TEE_PropSetHandle)prop_set == TEE_PROPSET_CURRENT_TA) { *props = tee_propset_ta; *size = ARRAY_SIZE(tee_propset_ta); *vendor_props = vendor_props_ta.props; *vendor_size = vendor_props_ta.len; } else if ((TEE_PropSetHandle)prop_set == TEE_PROPSET_TEE_IMPLEMENTATION) { *props = tee_propset_tee; *size = ARRAY_SIZE(tee_propset_tee); *vendor_props = vendor_props_tee.props; *vendor_size = vendor_props_tee.len; } else { *props = NULL; *size = 0; *vendor_props = NULL; *vendor_size = 0; } } static const struct tee_props *get_prop_struct(unsigned long prop_set, unsigned long index) { const struct tee_props *props; const struct tee_props *vendor_props; size_t size; size_t vendor_size; get_prop_set(prop_set, &props, &size, &vendor_props, &vendor_size); if (index < size) return &(props[index]); index -= size; if (index < vendor_size) return &(vendor_props[index]); return NULL; } /* * prop_set is part of TEE_PROPSET_xxx * index is the index in the Property Set to retrieve * if name is not NULL, the name of "index" property is returned * if buf is not NULL, the property is returned */ TEE_Result syscall_get_property(unsigned long prop_set, unsigned long index, void *name, uint32_t *name_len, void *buf, uint32_t *blen, uint32_t *prop_type) { struct ts_session *sess = ts_get_current_session(); TEE_Result res = TEE_SUCCESS; TEE_Result res2 = TEE_SUCCESS; const struct tee_props *prop = NULL; uint32_t klen = 0; size_t klen_size = 0; uint32_t elen = 0; prop = get_prop_struct(prop_set, index); if (!prop) return TEE_ERROR_ITEM_NOT_FOUND; /* Get the property type */ if (prop_type) { res = copy_to_user(prop_type, &prop->prop_type, sizeof(*prop_type)); if (res != TEE_SUCCESS) return res; } /* Get the property */ if (buf && blen) { res = copy_from_user(&klen, blen, sizeof(klen)); if (res != TEE_SUCCESS) return res; if (prop->get_prop_func) { klen_size = klen; res = prop->get_prop_func(sess, buf, &klen_size); klen = klen_size; res2 = copy_to_user(blen, &klen, sizeof(*blen)); } else { if (klen < prop->len) res = TEE_ERROR_SHORT_BUFFER; else res = copy_to_user(buf, prop->data, prop->len); res2 = copy_to_user(blen, &prop->len, sizeof(*blen)); } if (res2 != TEE_SUCCESS) return res2; if (res != TEE_SUCCESS) return res; } /* Get the property name */ if (name && name_len) { res = copy_from_user(&klen, name_len, sizeof(klen)); if (res != TEE_SUCCESS) return res; elen = strlen(prop->name) + 1; if (klen < elen) res = TEE_ERROR_SHORT_BUFFER; else res = copy_to_user(name, prop->name, elen); res2 = copy_to_user(name_len, &elen, sizeof(*name_len)); if (res2 != TEE_SUCCESS) return res2; if (res != TEE_SUCCESS) return res; } return res; } /* * prop_set is part of TEE_PROPSET_xxx */ TEE_Result syscall_get_property_name_to_index(unsigned long prop_set, void *name, unsigned long name_len, uint32_t *index) { TEE_Result res = TEE_SUCCESS; const struct tee_props *props = NULL; size_t size = 0; const struct tee_props *vendor_props = NULL; size_t vendor_size = 0; char *kname = NULL; uint32_t i = 0; get_prop_set(prop_set, &props, &size, &vendor_props, &vendor_size); if (!props) return TEE_ERROR_ITEM_NOT_FOUND; if (!name || !name_len) { res = TEE_ERROR_BAD_PARAMETERS; goto out; } kname = malloc(name_len); if (!kname) return TEE_ERROR_OUT_OF_MEMORY; res = copy_from_user(kname, name, name_len); if (res != TEE_SUCCESS) goto out; kname[name_len - 1] = 0; res = TEE_ERROR_ITEM_NOT_FOUND; for (i = 0; i < size; i++) { if (!strcmp(kname, props[i].name)) { res = copy_to_user(index, &i, sizeof(*index)); goto out; } } for (i = size; i < size + vendor_size; i++) { if (!strcmp(kname, vendor_props[i - size].name)) { res = copy_to_user(index, &i, sizeof(*index)); goto out; } } out: free_wipe(kname); return res; } static TEE_Result utee_param_to_param(struct user_ta_ctx *utc, struct tee_ta_param *p, struct utee_params *up) { size_t n = 0; uint32_t types = up->types; p->types = types; for (n = 0; n < TEE_NUM_PARAMS; n++) { uintptr_t a = up->vals[n * 2]; size_t b = up->vals[n * 2 + 1]; uint32_t flags = TEE_MEMORY_ACCESS_READ | TEE_MEMORY_ACCESS_ANY_OWNER; switch (TEE_PARAM_TYPE_GET(types, n)) { case TEE_PARAM_TYPE_MEMREF_OUTPUT: case TEE_PARAM_TYPE_MEMREF_INOUT: flags |= TEE_MEMORY_ACCESS_WRITE; fallthrough; case TEE_PARAM_TYPE_MEMREF_INPUT: p->u[n].mem.offs = a; p->u[n].mem.size = b; if (!p->u[n].mem.offs) { /* Allow NULL memrefs if of size 0 */ if (p->u[n].mem.size) return TEE_ERROR_BAD_PARAMETERS; p->u[n].mem.mobj = NULL; break; } p->u[n].mem.mobj = &mobj_virt; if (vm_check_access_rights(&utc->uctx, flags, a, b)) return TEE_ERROR_ACCESS_DENIED; break; case TEE_PARAM_TYPE_VALUE_INPUT: case TEE_PARAM_TYPE_VALUE_INOUT: p->u[n].val.a = a; p->u[n].val.b = b; break; default: memset(&p->u[n], 0, sizeof(p->u[n])); break; } } return TEE_SUCCESS; } static TEE_Result alloc_temp_sec_mem(size_t size, struct mobj **mobj, uint8_t **va) { struct mobj *m = NULL; void *v = NULL; /* Allocate section in secure DDR */ #ifdef CFG_PAGED_USER_TA m = mobj_seccpy_shm_alloc(size); #else m = mobj_mm_alloc(mobj_sec_ddr, size, &tee_mm_sec_ddr); #endif if (!m) return TEE_ERROR_GENERIC; v = mobj_get_va(*mobj, 0, size); if (!v) { mobj_put(m); return TEE_ERROR_GENERIC; } *mobj = m; *va = v; return TEE_SUCCESS; } /* * TA invokes some TA with parameter. * If some parameters are memory references: * - either the memref is inside TA private RAM: TA is not allowed to expose * its private RAM: use a temporary memory buffer and copy the data. * - or the memref is not in the TA private RAM: * - if the memref was mapped to the TA, TA is allowed to expose it. * - if so, converts memref virtual address into a physical address. */ static TEE_Result tee_svc_copy_param(struct ts_session *sess, struct ts_session *called_sess, struct utee_params *callee_params, struct tee_ta_param *param, void *tmp_buf_va[TEE_NUM_PARAMS], size_t tmp_buf_size[TEE_NUM_PARAMS], struct mobj **mobj_tmp) { struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx); bool ta_private_memref[TEE_NUM_PARAMS] = { false, }; TEE_Result res = TEE_SUCCESS; size_t dst_offs = 0; size_t req_mem = 0; uint8_t *dst = 0; void *va = NULL; size_t n = 0; size_t s = 0; /* fill 'param' input struct with caller params description buffer */ if (!callee_params) { memset(param, 0, sizeof(*param)); } else { uint32_t flags = TEE_MEMORY_ACCESS_READ | TEE_MEMORY_ACCESS_WRITE | TEE_MEMORY_ACCESS_ANY_OWNER; res = vm_check_access_rights(&utc->uctx, flags, (uaddr_t)callee_params, sizeof(struct utee_params)); if (res != TEE_SUCCESS) return res; res = utee_param_to_param(utc, param, callee_params); if (res != TEE_SUCCESS) return res; } if (called_sess && is_pseudo_ta_ctx(called_sess->ctx)) { /* pseudo TA borrows the mapping of the calling TA */ return TEE_SUCCESS; } /* All mobj in param are of type MOJB_TYPE_VIRT */ for (n = 0; n < TEE_NUM_PARAMS; n++) { ta_private_memref[n] = false; switch (TEE_PARAM_TYPE_GET(param->types, n)) { case TEE_PARAM_TYPE_MEMREF_INPUT: case TEE_PARAM_TYPE_MEMREF_OUTPUT: case TEE_PARAM_TYPE_MEMREF_INOUT: va = (void *)param->u[n].mem.offs; s = param->u[n].mem.size; if (!va) { if (s) return TEE_ERROR_BAD_PARAMETERS; break; } /* uTA cannot expose its private memory */ if (vm_buf_is_inside_um_private(&utc->uctx, va, s)) { s = ROUNDUP(s, sizeof(uint32_t)); if (ADD_OVERFLOW(req_mem, s, &req_mem)) return TEE_ERROR_BAD_PARAMETERS; ta_private_memref[n] = true; break; } res = vm_buf_to_mboj_offs(&utc->uctx, va, s, ¶m->u[n].mem.mobj, ¶m->u[n].mem.offs); if (res != TEE_SUCCESS) return res; break; default: break; } } if (req_mem == 0) return TEE_SUCCESS; res = alloc_temp_sec_mem(req_mem, mobj_tmp, &dst); if (res != TEE_SUCCESS) return res; dst_offs = 0; for (n = 0; n < TEE_NUM_PARAMS; n++) { if (!ta_private_memref[n]) continue; s = ROUNDUP(param->u[n].mem.size, sizeof(uint32_t)); switch (TEE_PARAM_TYPE_GET(param->types, n)) { case TEE_PARAM_TYPE_MEMREF_INPUT: case TEE_PARAM_TYPE_MEMREF_INOUT: va = (void *)param->u[n].mem.offs; if (va) { res = copy_from_user(dst, va, param->u[n].mem.size); if (res != TEE_SUCCESS) return res; param->u[n].mem.offs = dst_offs; param->u[n].mem.mobj = *mobj_tmp; tmp_buf_va[n] = dst; tmp_buf_size[n] = param->u[n].mem.size; dst += s; dst_offs += s; } break; case TEE_PARAM_TYPE_MEMREF_OUTPUT: va = (void *)param->u[n].mem.offs; if (va) { param->u[n].mem.offs = dst_offs; param->u[n].mem.mobj = *mobj_tmp; tmp_buf_va[n] = dst; tmp_buf_size[n] = param->u[n].mem.size; dst += s; dst_offs += s; } break; default: continue; } } return TEE_SUCCESS; } /* * Back from execution of service: update parameters passed from TA: * If some parameters were memory references: * - either the memref was temporary: copy back data and update size * - or it was the original TA memref: update only the size value. */ static TEE_Result tee_svc_update_out_param( struct tee_ta_param *param, void *tmp_buf_va[TEE_NUM_PARAMS], size_t tmp_buf_size[TEE_NUM_PARAMS], struct utee_params *usr_param) { size_t n; uint64_t *vals = usr_param->vals; size_t sz = 0; for (n = 0; n < TEE_NUM_PARAMS; n++) { switch (TEE_PARAM_TYPE_GET(param->types, n)) { case TEE_PARAM_TYPE_MEMREF_OUTPUT: case TEE_PARAM_TYPE_MEMREF_INOUT: /* * Memory copy is only needed if there's a temporary * buffer involved, tmp_buf_va[n] is only update if * a temporary buffer is used. Otherwise only the * size needs to be updated. */ sz = param->u[n].mem.size; if (tmp_buf_va[n] && sz <= vals[n * 2 + 1]) { void *src = tmp_buf_va[n]; void *dst = (void *)(uintptr_t)vals[n * 2]; TEE_Result res = TEE_SUCCESS; /* * TA is allowed to return a size larger than * the original size. However, in such cases no * data should be synchronized as per TEE Client * API spec. */ if (sz <= tmp_buf_size[n]) { res = copy_to_user(dst, src, sz); if (res != TEE_SUCCESS) return res; } } usr_param->vals[n * 2 + 1] = sz; break; case TEE_PARAM_TYPE_VALUE_OUTPUT: case TEE_PARAM_TYPE_VALUE_INOUT: vals[n * 2] = param->u[n].val.a; vals[n * 2 + 1] = param->u[n].val.b; break; default: continue; } } return TEE_SUCCESS; } /* Called when a TA calls an OpenSession on another TA */ TEE_Result syscall_open_ta_session(const TEE_UUID *dest, unsigned long cancel_req_to, struct utee_params *usr_param, uint32_t *ta_sess, uint32_t *ret_orig) { struct ts_session *sess = ts_get_current_session(); struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx); TEE_Result res = TEE_SUCCESS; uint32_t ret_o = TEE_ORIGIN_TEE; struct tee_ta_session *s = NULL; struct mobj *mobj_param = NULL; TEE_UUID *uuid = malloc(sizeof(TEE_UUID)); struct tee_ta_param *param = malloc(sizeof(struct tee_ta_param)); TEE_Identity *clnt_id = malloc(sizeof(TEE_Identity)); void *tmp_buf_va[TEE_NUM_PARAMS] = { NULL }; size_t tmp_buf_size[TEE_NUM_PARAMS] = { 0 }; if (uuid == NULL || param == NULL || clnt_id == NULL) { res = TEE_ERROR_OUT_OF_MEMORY; goto out_free_only; } memset(param, 0, sizeof(struct tee_ta_param)); res = copy_from_user_private(uuid, dest, sizeof(TEE_UUID)); if (res != TEE_SUCCESS) goto function_exit; clnt_id->login = TEE_LOGIN_TRUSTED_APP; memcpy(&clnt_id->uuid, &sess->ctx->uuid, sizeof(TEE_UUID)); res = tee_svc_copy_param(sess, NULL, usr_param, param, tmp_buf_va, tmp_buf_size, &mobj_param); if (res != TEE_SUCCESS) goto function_exit; res = tee_ta_open_session(&ret_o, &s, &utc->open_sessions, uuid, clnt_id, cancel_req_to, param); vm_set_ctx(&utc->ta_ctx.ts_ctx); if (res != TEE_SUCCESS) goto function_exit; res = tee_svc_update_out_param(param, tmp_buf_va, tmp_buf_size, usr_param); function_exit: mobj_put_wipe(mobj_param); if (res == TEE_SUCCESS) copy_to_user_private(ta_sess, &s->id, sizeof(s->id)); copy_to_user_private(ret_orig, &ret_o, sizeof(ret_o)); out_free_only: free_wipe(param); free_wipe(uuid); free_wipe(clnt_id); return res; } TEE_Result syscall_close_ta_session(unsigned long ta_sess) { struct ts_session *sess = ts_get_current_session(); struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx); TEE_Identity clnt_id = { }; struct tee_ta_session *s = NULL; s = tee_ta_find_session(ta_sess, &utc->open_sessions); clnt_id.login = TEE_LOGIN_TRUSTED_APP; memcpy(&clnt_id.uuid, &sess->ctx->uuid, sizeof(TEE_UUID)); return tee_ta_close_session(s, &utc->open_sessions, &clnt_id); } TEE_Result syscall_invoke_ta_command(unsigned long ta_sess, unsigned long cancel_req_to, unsigned long cmd_id, struct utee_params *usr_param, uint32_t *ret_orig) { struct ts_session *sess = ts_get_current_session(); struct user_ta_ctx *utc = to_user_ta_ctx(sess->ctx); TEE_Result res = TEE_SUCCESS; TEE_Result res2 = TEE_SUCCESS; uint32_t ret_o = TEE_ORIGIN_TEE; struct tee_ta_param param = { 0 }; TEE_Identity clnt_id = { }; struct tee_ta_session *called_sess = NULL; struct mobj *mobj_param = NULL; void *tmp_buf_va[TEE_NUM_PARAMS] = { NULL }; size_t tmp_buf_size[TEE_NUM_PARAMS] = { }; called_sess = tee_ta_get_session((uint32_t)ta_sess, true, &utc->open_sessions); if (!called_sess) return TEE_ERROR_BAD_PARAMETERS; clnt_id.login = TEE_LOGIN_TRUSTED_APP; memcpy(&clnt_id.uuid, &sess->ctx->uuid, sizeof(TEE_UUID)); res = tee_svc_copy_param(sess, &called_sess->ts_sess, usr_param, ¶m, tmp_buf_va, tmp_buf_size, &mobj_param); if (res != TEE_SUCCESS) goto function_exit; res = tee_ta_invoke_command(&ret_o, called_sess, &clnt_id, cancel_req_to, cmd_id, ¶m); if (res == TEE_ERROR_TARGET_DEAD) goto function_exit; res2 = tee_svc_update_out_param(¶m, tmp_buf_va, tmp_buf_size, usr_param); if (res2 != TEE_SUCCESS) { /* * Spec for TEE_InvokeTACommand() says: * "If the return origin is different from * TEE_ORIGIN_TRUSTED_APP, then the function has failed * before it could reach the destination Trusted * Application." * * But if we can't update params to the caller we have no * choice we need to return some error to indicate that * parameters aren't updated as expected. */ ret_o = TEE_ORIGIN_TEE; res = res2; } function_exit: tee_ta_put_session(called_sess); mobj_put_wipe(mobj_param); copy_to_user_private(ret_orig, &ret_o, sizeof(ret_o)); return res; } TEE_Result syscall_check_access_rights(unsigned long flags, const void *buf, size_t len) { struct ts_session *s = ts_get_current_session(); return vm_check_access_rights(&to_user_ta_ctx(s->ctx)->uctx, flags, (uaddr_t)buf, len); } TEE_Result syscall_get_cancellation_flag(uint32_t *cancel) { struct ts_session *s = ts_get_current_session(); uint32_t c = 0; c = tee_ta_session_is_cancelled(to_ta_session(s), NULL); return copy_to_user(cancel, &c, sizeof(c)); } TEE_Result syscall_unmask_cancellation(uint32_t *old_mask) { struct ts_session *s = ts_get_current_session(); struct tee_ta_session *sess = NULL; uint32_t m = 0; sess = to_ta_session(s); m = sess->cancel_mask; sess->cancel_mask = false; return copy_to_user(old_mask, &m, sizeof(m)); } TEE_Result syscall_mask_cancellation(uint32_t *old_mask) { struct ts_session *s = ts_get_current_session(); struct tee_ta_session *sess = NULL; uint32_t m = 0; sess = to_ta_session(s); m = sess->cancel_mask; sess->cancel_mask = true; return copy_to_user(old_mask, &m, sizeof(m)); } TEE_Result syscall_wait(unsigned long timeout) { struct ts_session *s = ts_get_current_session(); TEE_Result res = TEE_SUCCESS; uint32_t mytime = 0; TEE_Time base_time = { }; TEE_Time current_time = { }; res = tee_time_get_sys_time(&base_time); if (res != TEE_SUCCESS) return res; while (true) { res = tee_time_get_sys_time(¤t_time); if (res != TEE_SUCCESS) return res; if (tee_ta_session_is_cancelled(to_ta_session(s), ¤t_time)) return TEE_ERROR_CANCEL; mytime = (current_time.seconds - base_time.seconds) * 1000 + (int)current_time.millis - (int)base_time.millis; if (mytime >= timeout) return TEE_SUCCESS; tee_time_wait(timeout - mytime); } return res; } TEE_Result syscall_get_time(unsigned long cat, TEE_Time *mytime) { struct ts_session *s = ts_get_current_session(); TEE_Result res = TEE_SUCCESS; TEE_Result res2 = TEE_SUCCESS; TEE_Time t = { }; switch (cat) { case UTEE_TIME_CAT_SYSTEM: res = tee_time_get_sys_time(&t); break; case UTEE_TIME_CAT_TA_PERSISTENT: res = tee_time_get_ta_time((const void *)&s->ctx->uuid, &t); break; case UTEE_TIME_CAT_REE: res = tee_time_get_ree_time(&t); break; default: res = TEE_ERROR_BAD_PARAMETERS; break; } if (res == TEE_SUCCESS || res == TEE_ERROR_OVERFLOW) { res2 = copy_to_user_private(mytime, &t, sizeof(t)); if (res2 != TEE_SUCCESS) res = res2; } return res; } TEE_Result syscall_set_ta_time(const TEE_Time *mytime) { struct ts_session *s = ts_get_current_session(); TEE_Result res = TEE_SUCCESS; TEE_Time t = { }; res = copy_from_user_private(&t, mytime, sizeof(t)); if (res != TEE_SUCCESS) return res; return tee_time_set_ta_time((const void *)&s->ctx->uuid, &t); }