1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MATH_H
3 #define _LINUX_MATH_H
4 
5 #include <asm/div64.h>
6 #include <uapi/linux/kernel.h>
7 
8 /*
9  * This looks more complex than it should be. But we need to
10  * get the type for the ~ right in round_down (it needs to be
11  * as wide as the result!), and we want to evaluate the macro
12  * arguments just once each.
13  */
14 #define __round_mask(x, y) ((__typeof__(x))((y)-1))
15 
16 /**
17  * round_up - round up to next specified power of 2
18  * @x: the value to round
19  * @y: multiple to round up to (must be a power of 2)
20  *
21  * Rounds @x up to next multiple of @y (which must be a power of 2).
22  * To perform arbitrary rounding up, use roundup() below.
23  */
24 #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
25 
26 /**
27  * round_down - round down to next specified power of 2
28  * @x: the value to round
29  * @y: multiple to round down to (must be a power of 2)
30  *
31  * Rounds @x down to next multiple of @y (which must be a power of 2).
32  * To perform arbitrary rounding down, use rounddown() below.
33  */
34 #define round_down(x, y) ((x) & ~__round_mask(x, y))
35 
36 #define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
37 
38 #define DIV_ROUND_DOWN_ULL(ll, d) \
39 	({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
40 
41 #define DIV_ROUND_UP_ULL(ll, d) \
42 	DIV_ROUND_DOWN_ULL((unsigned long long)(ll) + (d) - 1, (d))
43 
44 #if BITS_PER_LONG == 32
45 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
46 #else
47 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
48 #endif
49 
50 /**
51  * roundup - round up to the next specified multiple
52  * @x: the value to up
53  * @y: multiple to round up to
54  *
55  * Rounds @x up to next multiple of @y. If @y will always be a power
56  * of 2, consider using the faster round_up().
57  */
58 #define roundup(x, y) (					\
59 {							\
60 	typeof(y) __y = y;				\
61 	(((x) + (__y - 1)) / __y) * __y;		\
62 }							\
63 )
64 /**
65  * rounddown - round down to next specified multiple
66  * @x: the value to round
67  * @y: multiple to round down to
68  *
69  * Rounds @x down to next multiple of @y. If @y will always be a power
70  * of 2, consider using the faster round_down().
71  */
72 #define rounddown(x, y) (				\
73 {							\
74 	typeof(x) __x = (x);				\
75 	__x - (__x % (y));				\
76 }							\
77 )
78 
79 /*
80  * Divide positive or negative dividend by positive or negative divisor
81  * and round to closest integer. Result is undefined for negative
82  * divisors if the dividend variable type is unsigned and for negative
83  * dividends if the divisor variable type is unsigned.
84  */
85 #define DIV_ROUND_CLOSEST(x, divisor)(			\
86 {							\
87 	typeof(x) __x = x;				\
88 	typeof(divisor) __d = divisor;			\
89 	(((typeof(x))-1) > 0 ||				\
90 	 ((typeof(divisor))-1) > 0 ||			\
91 	 (((__x) > 0) == ((__d) > 0))) ?		\
92 		(((__x) + ((__d) / 2)) / (__d)) :	\
93 		(((__x) - ((__d) / 2)) / (__d));	\
94 }							\
95 )
96 /*
97  * Same as above but for u64 dividends. divisor must be a 32-bit
98  * number.
99  */
100 #define DIV_ROUND_CLOSEST_ULL(x, divisor)(		\
101 {							\
102 	typeof(divisor) __d = divisor;			\
103 	unsigned long long _tmp = (x) + (__d) / 2;	\
104 	do_div(_tmp, __d);				\
105 	_tmp;						\
106 }							\
107 )
108 
109 /*
110  * Multiplies an integer by a fraction, while avoiding unnecessary
111  * overflow or loss of precision.
112  */
113 #define mult_frac(x, numer, denom)(			\
114 {							\
115 	typeof(x) quot = (x) / (denom);			\
116 	typeof(x) rem  = (x) % (denom);			\
117 	(quot * (numer)) + ((rem * (numer)) / (denom));	\
118 }							\
119 )
120 
121 #define sector_div(a, b) do_div(a, b)
122 
123 /**
124  * abs - return absolute value of an argument
125  * @x: the value.  If it is unsigned type, it is converted to signed type first.
126  *     char is treated as if it was signed (regardless of whether it really is)
127  *     but the macro's return type is preserved as char.
128  *
129  * Return: an absolute value of x.
130  */
131 #define abs(x)	__abs_choose_expr(x, long long,				\
132 		__abs_choose_expr(x, long,				\
133 		__abs_choose_expr(x, int,				\
134 		__abs_choose_expr(x, short,				\
135 		__abs_choose_expr(x, char,				\
136 		__builtin_choose_expr(					\
137 			__builtin_types_compatible_p(typeof(x), char),	\
138 			(char)({ signed char __x = (x); __x<0?-__x:__x; }), \
139 			((void)0)))))))
140 
141 #define __abs_choose_expr(x, type, other) __builtin_choose_expr(	\
142 	__builtin_types_compatible_p(typeof(x),   signed type) ||	\
143 	__builtin_types_compatible_p(typeof(x), unsigned type),		\
144 	({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
145 
146 /**
147  * reciprocal_scale - "scale" a value into range [0, ep_ro)
148  * @val: value
149  * @ep_ro: right open interval endpoint
150  *
151  * Perform a "reciprocal multiplication" in order to "scale" a value into
152  * range [0, @ep_ro), where the upper interval endpoint is right-open.
153  * This is useful, e.g. for accessing a index of an array containing
154  * @ep_ro elements, for example. Think of it as sort of modulus, only that
155  * the result isn't that of modulo. ;) Note that if initial input is a
156  * small value, then result will return 0.
157  *
158  * Return: a result based on @val in interval [0, @ep_ro).
159  */
reciprocal_scale(u32 val,u32 ep_ro)160 static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
161 {
162 	return (u32)(((u64) val * ep_ro) >> 32);
163 }
164 
165 u64 int_pow(u64 base, unsigned int exp);
166 unsigned long int_sqrt(unsigned long);
167 
168 #if BITS_PER_LONG < 64
169 u32 int_sqrt64(u64 x);
170 #else
int_sqrt64(u64 x)171 static inline u32 int_sqrt64(u64 x)
172 {
173 	return (u32)int_sqrt(x);
174 }
175 #endif
176 
177 #endif	/* _LINUX_MATH_H */
178