1 /*
2  * Copyright 2011 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #ifndef DRM_FOURCC_H
25 #define DRM_FOURCC_H
26 
27 #include "drm.h"
28 
29 #if defined(__cplusplus)
30 extern "C" {
31 #endif
32 
33 /**
34  * DOC: overview
35  *
36  * In the DRM subsystem, framebuffer pixel formats are described using the
37  * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
38  * fourcc code, a Format Modifier may optionally be provided, in order to
39  * further describe the buffer's format - for example tiling or compression.
40  *
41  * Format Modifiers
42  * ----------------
43  *
44  * Format modifiers are used in conjunction with a fourcc code, forming a
45  * unique fourcc:modifier pair. This format:modifier pair must fully define the
46  * format and data layout of the buffer, and should be the only way to describe
47  * that particular buffer.
48  *
49  * Having multiple fourcc:modifier pairs which describe the same layout should
50  * be avoided, as such aliases run the risk of different drivers exposing
51  * different names for the same data format, forcing userspace to understand
52  * that they are aliases.
53  *
54  * Format modifiers may change any property of the buffer, including the number
55  * of planes and/or the required allocation size. Format modifiers are
56  * vendor-namespaced, and as such the relationship between a fourcc code and a
57  * modifier is specific to the modifer being used. For example, some modifiers
58  * may preserve meaning - such as number of planes - from the fourcc code,
59  * whereas others may not.
60  *
61  * Modifiers must uniquely encode buffer layout. In other words, a buffer must
62  * match only a single modifier. A modifier must not be a subset of layouts of
63  * another modifier. For instance, it's incorrect to encode pitch alignment in
64  * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel
65  * aligned modifier. That said, modifiers can have implicit minimal
66  * requirements.
67  *
68  * For modifiers where the combination of fourcc code and modifier can alias,
69  * a canonical pair needs to be defined and used by all drivers. Preferred
70  * combinations are also encouraged where all combinations might lead to
71  * confusion and unnecessarily reduced interoperability. An example for the
72  * latter is AFBC, where the ABGR layouts are preferred over ARGB layouts.
73  *
74  * There are two kinds of modifier users:
75  *
76  * - Kernel and user-space drivers: for drivers it's important that modifiers
77  *   don't alias, otherwise two drivers might support the same format but use
78  *   different aliases, preventing them from sharing buffers in an efficient
79  *   format.
80  * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users
81  *   see modifiers as opaque tokens they can check for equality and intersect.
82  *   These users musn't need to know to reason about the modifier value
83  *   (i.e. they are not expected to extract information out of the modifier).
84  *
85  * Vendors should document their modifier usage in as much detail as
86  * possible, to ensure maximum compatibility across devices, drivers and
87  * applications.
88  *
89  * The authoritative list of format modifier codes is found in
90  * `include/uapi/drm/drm_fourcc.h`
91  */
92 
93 #define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
94 				 ((__u32)(c) << 16) | ((__u32)(d) << 24))
95 
96 #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
97 
98 /* Reserve 0 for the invalid format specifier */
99 #define DRM_FORMAT_INVALID	0
100 
101 /* color index */
102 #define DRM_FORMAT_C8		fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
103 
104 /* 8 bpp Red */
105 #define DRM_FORMAT_R8		fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
106 
107 /* 10 bpp Red */
108 #define DRM_FORMAT_R10		fourcc_code('R', '1', '0', ' ') /* [15:0] x:R 6:10 little endian */
109 
110 /* 12 bpp Red */
111 #define DRM_FORMAT_R12		fourcc_code('R', '1', '2', ' ') /* [15:0] x:R 4:12 little endian */
112 
113 /* 16 bpp Red */
114 #define DRM_FORMAT_R16		fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
115 
116 /* 16 bpp RG */
117 #define DRM_FORMAT_RG88		fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
118 #define DRM_FORMAT_GR88		fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
119 
120 /* 32 bpp RG */
121 #define DRM_FORMAT_RG1616	fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
122 #define DRM_FORMAT_GR1616	fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
123 
124 /* 8 bpp RGB */
125 #define DRM_FORMAT_RGB332	fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
126 #define DRM_FORMAT_BGR233	fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
127 
128 /* 16 bpp RGB */
129 #define DRM_FORMAT_XRGB4444	fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
130 #define DRM_FORMAT_XBGR4444	fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
131 #define DRM_FORMAT_RGBX4444	fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
132 #define DRM_FORMAT_BGRX4444	fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
133 
134 #define DRM_FORMAT_ARGB4444	fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
135 #define DRM_FORMAT_ABGR4444	fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
136 #define DRM_FORMAT_RGBA4444	fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
137 #define DRM_FORMAT_BGRA4444	fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
138 
139 #define DRM_FORMAT_XRGB1555	fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
140 #define DRM_FORMAT_XBGR1555	fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
141 #define DRM_FORMAT_RGBX5551	fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
142 #define DRM_FORMAT_BGRX5551	fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
143 
144 #define DRM_FORMAT_ARGB1555	fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
145 #define DRM_FORMAT_ABGR1555	fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
146 #define DRM_FORMAT_RGBA5551	fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
147 #define DRM_FORMAT_BGRA5551	fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
148 
149 #define DRM_FORMAT_RGB565	fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
150 #define DRM_FORMAT_BGR565	fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
151 
152 /* 24 bpp RGB */
153 #define DRM_FORMAT_RGB888	fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
154 #define DRM_FORMAT_BGR888	fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
155 
156 /* 32 bpp RGB */
157 #define DRM_FORMAT_XRGB8888	fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
158 #define DRM_FORMAT_XBGR8888	fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
159 #define DRM_FORMAT_RGBX8888	fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
160 #define DRM_FORMAT_BGRX8888	fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
161 
162 #define DRM_FORMAT_ARGB8888	fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
163 #define DRM_FORMAT_ABGR8888	fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
164 #define DRM_FORMAT_RGBA8888	fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
165 #define DRM_FORMAT_BGRA8888	fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
166 
167 #define DRM_FORMAT_XRGB2101010	fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
168 #define DRM_FORMAT_XBGR2101010	fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
169 #define DRM_FORMAT_RGBX1010102	fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
170 #define DRM_FORMAT_BGRX1010102	fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
171 
172 #define DRM_FORMAT_ARGB2101010	fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
173 #define DRM_FORMAT_ABGR2101010	fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
174 #define DRM_FORMAT_RGBA1010102	fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
175 #define DRM_FORMAT_BGRA1010102	fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
176 
177 /* 64 bpp RGB */
178 #define DRM_FORMAT_XRGB16161616	fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */
179 #define DRM_FORMAT_XBGR16161616	fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */
180 
181 #define DRM_FORMAT_ARGB16161616	fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */
182 #define DRM_FORMAT_ABGR16161616	fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */
183 
184 /*
185  * Floating point 64bpp RGB
186  * IEEE 754-2008 binary16 half-precision float
187  * [15:0] sign:exponent:mantissa 1:5:10
188  */
189 #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
190 #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
191 
192 #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
193 #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
194 
195 /*
196  * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits
197  * of unused padding per component:
198  */
199 #define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */
200 
201 /* packed YCbCr */
202 #define DRM_FORMAT_YUYV		fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
203 #define DRM_FORMAT_YVYU		fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
204 #define DRM_FORMAT_UYVY		fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
205 #define DRM_FORMAT_VYUY		fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
206 
207 #define DRM_FORMAT_AYUV		fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
208 #define DRM_FORMAT_XYUV8888	fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
209 #define DRM_FORMAT_VUY888	fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
210 #define DRM_FORMAT_VUY101010	fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
211 
212 /*
213  * packed Y2xx indicate for each component, xx valid data occupy msb
214  * 16-xx padding occupy lsb
215  */
216 #define DRM_FORMAT_Y210         fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
217 #define DRM_FORMAT_Y212         fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
218 #define DRM_FORMAT_Y216         fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
219 
220 /*
221  * packed Y4xx indicate for each component, xx valid data occupy msb
222  * 16-xx padding occupy lsb except Y410
223  */
224 #define DRM_FORMAT_Y410         fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
225 #define DRM_FORMAT_Y412         fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
226 #define DRM_FORMAT_Y416         fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
227 
228 #define DRM_FORMAT_XVYU2101010	fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
229 #define DRM_FORMAT_XVYU12_16161616	fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
230 #define DRM_FORMAT_XVYU16161616	fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
231 
232 /*
233  * packed YCbCr420 2x2 tiled formats
234  * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
235  */
236 /* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
237 #define DRM_FORMAT_Y0L0		fourcc_code('Y', '0', 'L', '0')
238 /* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
239 #define DRM_FORMAT_X0L0		fourcc_code('X', '0', 'L', '0')
240 
241 /* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
242 #define DRM_FORMAT_Y0L2		fourcc_code('Y', '0', 'L', '2')
243 /* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
244 #define DRM_FORMAT_X0L2		fourcc_code('X', '0', 'L', '2')
245 
246 /*
247  * 1-plane YUV 4:2:0
248  * In these formats, the component ordering is specified (Y, followed by U
249  * then V), but the exact Linear layout is undefined.
250  * These formats can only be used with a non-Linear modifier.
251  */
252 #define DRM_FORMAT_YUV420_8BIT	fourcc_code('Y', 'U', '0', '8')
253 #define DRM_FORMAT_YUV420_10BIT	fourcc_code('Y', 'U', '1', '0')
254 
255 /*
256  * 2 plane RGB + A
257  * index 0 = RGB plane, same format as the corresponding non _A8 format has
258  * index 1 = A plane, [7:0] A
259  */
260 #define DRM_FORMAT_XRGB8888_A8	fourcc_code('X', 'R', 'A', '8')
261 #define DRM_FORMAT_XBGR8888_A8	fourcc_code('X', 'B', 'A', '8')
262 #define DRM_FORMAT_RGBX8888_A8	fourcc_code('R', 'X', 'A', '8')
263 #define DRM_FORMAT_BGRX8888_A8	fourcc_code('B', 'X', 'A', '8')
264 #define DRM_FORMAT_RGB888_A8	fourcc_code('R', '8', 'A', '8')
265 #define DRM_FORMAT_BGR888_A8	fourcc_code('B', '8', 'A', '8')
266 #define DRM_FORMAT_RGB565_A8	fourcc_code('R', '5', 'A', '8')
267 #define DRM_FORMAT_BGR565_A8	fourcc_code('B', '5', 'A', '8')
268 
269 /*
270  * 2 plane YCbCr
271  * index 0 = Y plane, [7:0] Y
272  * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
273  * or
274  * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
275  */
276 #define DRM_FORMAT_NV12		fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
277 #define DRM_FORMAT_NV21		fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
278 #define DRM_FORMAT_NV16		fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
279 #define DRM_FORMAT_NV61		fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
280 #define DRM_FORMAT_NV24		fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
281 #define DRM_FORMAT_NV42		fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
282 /*
283  * 2 plane YCbCr
284  * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
285  * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
286  */
287 #define DRM_FORMAT_NV15		fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
288 
289 /*
290  * 2 plane YCbCr MSB aligned
291  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
292  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
293  */
294 #define DRM_FORMAT_P210		fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
295 
296 /*
297  * 2 plane YCbCr MSB aligned
298  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
299  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
300  */
301 #define DRM_FORMAT_P010		fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
302 
303 /*
304  * 2 plane YCbCr MSB aligned
305  * index 0 = Y plane, [15:0] Y:x [12:4] little endian
306  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
307  */
308 #define DRM_FORMAT_P012		fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
309 
310 /*
311  * 2 plane YCbCr MSB aligned
312  * index 0 = Y plane, [15:0] Y little endian
313  * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
314  */
315 #define DRM_FORMAT_P016		fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
316 
317 /* 3 plane non-subsampled (444) YCbCr
318  * 16 bits per component, but only 10 bits are used and 6 bits are padded
319  * index 0: Y plane, [15:0] Y:x [10:6] little endian
320  * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
321  * index 2: Cr plane, [15:0] Cr:x [10:6] little endian
322  */
323 #define DRM_FORMAT_Q410		fourcc_code('Q', '4', '1', '0')
324 
325 /* 3 plane non-subsampled (444) YCrCb
326  * 16 bits per component, but only 10 bits are used and 6 bits are padded
327  * index 0: Y plane, [15:0] Y:x [10:6] little endian
328  * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
329  * index 2: Cb plane, [15:0] Cb:x [10:6] little endian
330  */
331 #define DRM_FORMAT_Q401		fourcc_code('Q', '4', '0', '1')
332 
333 /*
334  * 3 plane YCbCr
335  * index 0: Y plane, [7:0] Y
336  * index 1: Cb plane, [7:0] Cb
337  * index 2: Cr plane, [7:0] Cr
338  * or
339  * index 1: Cr plane, [7:0] Cr
340  * index 2: Cb plane, [7:0] Cb
341  */
342 #define DRM_FORMAT_YUV410	fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
343 #define DRM_FORMAT_YVU410	fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
344 #define DRM_FORMAT_YUV411	fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
345 #define DRM_FORMAT_YVU411	fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
346 #define DRM_FORMAT_YUV420	fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
347 #define DRM_FORMAT_YVU420	fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
348 #define DRM_FORMAT_YUV422	fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
349 #define DRM_FORMAT_YVU422	fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
350 #define DRM_FORMAT_YUV444	fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
351 #define DRM_FORMAT_YVU444	fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
352 
353 
354 /*
355  * Format Modifiers:
356  *
357  * Format modifiers describe, typically, a re-ordering or modification
358  * of the data in a plane of an FB.  This can be used to express tiled/
359  * swizzled formats, or compression, or a combination of the two.
360  *
361  * The upper 8 bits of the format modifier are a vendor-id as assigned
362  * below.  The lower 56 bits are assigned as vendor sees fit.
363  */
364 
365 /* Vendor Ids: */
366 #define DRM_FORMAT_MOD_VENDOR_NONE    0
367 #define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
368 #define DRM_FORMAT_MOD_VENDOR_AMD     0x02
369 #define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
370 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
371 #define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
372 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
373 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
374 #define DRM_FORMAT_MOD_VENDOR_ARM     0x08
375 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
376 #define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
377 
378 /* add more to the end as needed */
379 
380 #define DRM_FORMAT_RESERVED	      ((1ULL << 56) - 1)
381 
382 #define fourcc_mod_get_vendor(modifier) \
383 	(((modifier) >> 56) & 0xff)
384 
385 #define fourcc_mod_is_vendor(modifier, vendor) \
386 	(fourcc_mod_get_vendor(modifier) == DRM_FORMAT_MOD_VENDOR_## vendor)
387 
388 #define fourcc_mod_code(vendor, val) \
389 	((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
390 
391 /*
392  * Format Modifier tokens:
393  *
394  * When adding a new token please document the layout with a code comment,
395  * similar to the fourcc codes above. drm_fourcc.h is considered the
396  * authoritative source for all of these.
397  *
398  * Generic modifier names:
399  *
400  * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
401  * for layouts which are common across multiple vendors. To preserve
402  * compatibility, in cases where a vendor-specific definition already exists and
403  * a generic name for it is desired, the common name is a purely symbolic alias
404  * and must use the same numerical value as the original definition.
405  *
406  * Note that generic names should only be used for modifiers which describe
407  * generic layouts (such as pixel re-ordering), which may have
408  * independently-developed support across multiple vendors.
409  *
410  * In future cases where a generic layout is identified before merging with a
411  * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
412  * 'NONE' could be considered. This should only be for obvious, exceptional
413  * cases to avoid polluting the 'GENERIC' namespace with modifiers which only
414  * apply to a single vendor.
415  *
416  * Generic names should not be used for cases where multiple hardware vendors
417  * have implementations of the same standardised compression scheme (such as
418  * AFBC). In those cases, all implementations should use the same format
419  * modifier(s), reflecting the vendor of the standard.
420  */
421 
422 #define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
423 
424 /*
425  * Invalid Modifier
426  *
427  * This modifier can be used as a sentinel to terminate the format modifiers
428  * list, or to initialize a variable with an invalid modifier. It might also be
429  * used to report an error back to userspace for certain APIs.
430  */
431 #define DRM_FORMAT_MOD_INVALID	fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
432 
433 /*
434  * Linear Layout
435  *
436  * Just plain linear layout. Note that this is different from no specifying any
437  * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
438  * which tells the driver to also take driver-internal information into account
439  * and so might actually result in a tiled framebuffer.
440  */
441 #define DRM_FORMAT_MOD_LINEAR	fourcc_mod_code(NONE, 0)
442 
443 /*
444  * Deprecated: use DRM_FORMAT_MOD_LINEAR instead
445  *
446  * The "none" format modifier doesn't actually mean that the modifier is
447  * implicit, instead it means that the layout is linear. Whether modifiers are
448  * used is out-of-band information carried in an API-specific way (e.g. in a
449  * flag for drm_mode_fb_cmd2).
450  */
451 #define DRM_FORMAT_MOD_NONE	0
452 
453 /* Intel framebuffer modifiers */
454 
455 /*
456  * Intel X-tiling layout
457  *
458  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
459  * in row-major layout. Within the tile bytes are laid out row-major, with
460  * a platform-dependent stride. On top of that the memory can apply
461  * platform-depending swizzling of some higher address bits into bit6.
462  *
463  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
464  * On earlier platforms the is highly platforms specific and not useful for
465  * cross-driver sharing. It exists since on a given platform it does uniquely
466  * identify the layout in a simple way for i915-specific userspace, which
467  * facilitated conversion of userspace to modifiers. Additionally the exact
468  * format on some really old platforms is not known.
469  */
470 #define I915_FORMAT_MOD_X_TILED	fourcc_mod_code(INTEL, 1)
471 
472 /*
473  * Intel Y-tiling layout
474  *
475  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
476  * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
477  * chunks column-major, with a platform-dependent height. On top of that the
478  * memory can apply platform-depending swizzling of some higher address bits
479  * into bit6.
480  *
481  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
482  * On earlier platforms the is highly platforms specific and not useful for
483  * cross-driver sharing. It exists since on a given platform it does uniquely
484  * identify the layout in a simple way for i915-specific userspace, which
485  * facilitated conversion of userspace to modifiers. Additionally the exact
486  * format on some really old platforms is not known.
487  */
488 #define I915_FORMAT_MOD_Y_TILED	fourcc_mod_code(INTEL, 2)
489 
490 /*
491  * Intel Yf-tiling layout
492  *
493  * This is a tiled layout using 4Kb tiles in row-major layout.
494  * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
495  * are arranged in four groups (two wide, two high) with column-major layout.
496  * Each group therefore consits out of four 256 byte units, which are also laid
497  * out as 2x2 column-major.
498  * 256 byte units are made out of four 64 byte blocks of pixels, producing
499  * either a square block or a 2:1 unit.
500  * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
501  * in pixel depends on the pixel depth.
502  */
503 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
504 
505 /*
506  * Intel color control surface (CCS) for render compression
507  *
508  * The framebuffer format must be one of the 8:8:8:8 RGB formats.
509  * The main surface will be plane index 0 and must be Y/Yf-tiled,
510  * the CCS will be plane index 1.
511  *
512  * Each CCS tile matches a 1024x512 pixel area of the main surface.
513  * To match certain aspects of the 3D hardware the CCS is
514  * considered to be made up of normal 128Bx32 Y tiles, Thus
515  * the CCS pitch must be specified in multiples of 128 bytes.
516  *
517  * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
518  * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
519  * But that fact is not relevant unless the memory is accessed
520  * directly.
521  */
522 #define I915_FORMAT_MOD_Y_TILED_CCS	fourcc_mod_code(INTEL, 4)
523 #define I915_FORMAT_MOD_Yf_TILED_CCS	fourcc_mod_code(INTEL, 5)
524 
525 /*
526  * Intel color control surfaces (CCS) for Gen-12 render compression.
527  *
528  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
529  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
530  * main surface. In other words, 4 bits in CCS map to a main surface cache
531  * line pair. The main surface pitch is required to be a multiple of four
532  * Y-tile widths.
533  */
534 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
535 
536 /*
537  * Intel color control surfaces (CCS) for Gen-12 media compression
538  *
539  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
540  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
541  * main surface. In other words, 4 bits in CCS map to a main surface cache
542  * line pair. The main surface pitch is required to be a multiple of four
543  * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
544  * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
545  * planes 2 and 3 for the respective CCS.
546  */
547 #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
548 
549 /*
550  * Intel Color Control Surface with Clear Color (CCS) for Gen-12 render
551  * compression.
552  *
553  * The main surface is Y-tiled and is at plane index 0 whereas CCS is linear
554  * and at index 1. The clear color is stored at index 2, and the pitch should
555  * be ignored. The clear color structure is 256 bits. The first 128 bits
556  * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
557  * by 32 bits. The raw clear color is consumed by the 3d engine and generates
558  * the converted clear color of size 64 bits. The first 32 bits store the Lower
559  * Converted Clear Color value and the next 32 bits store the Higher Converted
560  * Clear Color value when applicable. The Converted Clear Color values are
561  * consumed by the DE. The last 64 bits are used to store Color Discard Enable
562  * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
563  * corresponds to an area of 4x1 tiles in the main surface. The main surface
564  * pitch is required to be a multiple of 4 tile widths.
565  */
566 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8)
567 
568 /*
569  * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
570  *
571  * Macroblocks are laid in a Z-shape, and each pixel data is following the
572  * standard NV12 style.
573  * As for NV12, an image is the result of two frame buffers: one for Y,
574  * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
575  * Alignment requirements are (for each buffer):
576  * - multiple of 128 pixels for the width
577  * - multiple of  32 pixels for the height
578  *
579  * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
580  */
581 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE	fourcc_mod_code(SAMSUNG, 1)
582 
583 /*
584  * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
585  *
586  * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
587  * layout. For YCbCr formats Cb/Cr components are taken in such a way that
588  * they correspond to their 16x16 luma block.
589  */
590 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE	fourcc_mod_code(SAMSUNG, 2)
591 
592 /*
593  * Qualcomm Compressed Format
594  *
595  * Refers to a compressed variant of the base format that is compressed.
596  * Implementation may be platform and base-format specific.
597  *
598  * Each macrotile consists of m x n (mostly 4 x 4) tiles.
599  * Pixel data pitch/stride is aligned with macrotile width.
600  * Pixel data height is aligned with macrotile height.
601  * Entire pixel data buffer is aligned with 4k(bytes).
602  */
603 #define DRM_FORMAT_MOD_QCOM_COMPRESSED	fourcc_mod_code(QCOM, 1)
604 
605 /* Vivante framebuffer modifiers */
606 
607 /*
608  * Vivante 4x4 tiling layout
609  *
610  * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
611  * layout.
612  */
613 #define DRM_FORMAT_MOD_VIVANTE_TILED		fourcc_mod_code(VIVANTE, 1)
614 
615 /*
616  * Vivante 64x64 super-tiling layout
617  *
618  * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
619  * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
620  * major layout.
621  *
622  * For more information: see
623  * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
624  */
625 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED	fourcc_mod_code(VIVANTE, 2)
626 
627 /*
628  * Vivante 4x4 tiling layout for dual-pipe
629  *
630  * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
631  * different base address. Offsets from the base addresses are therefore halved
632  * compared to the non-split tiled layout.
633  */
634 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED	fourcc_mod_code(VIVANTE, 3)
635 
636 /*
637  * Vivante 64x64 super-tiling layout for dual-pipe
638  *
639  * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
640  * starts at a different base address. Offsets from the base addresses are
641  * therefore halved compared to the non-split super-tiled layout.
642  */
643 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
644 
645 /* NVIDIA frame buffer modifiers */
646 
647 /*
648  * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
649  *
650  * Pixels are arranged in simple tiles of 16 x 16 bytes.
651  */
652 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
653 
654 /*
655  * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
656  * and Tegra GPUs starting with Tegra K1.
657  *
658  * Pixels are arranged in Groups of Bytes (GOBs).  GOB size and layout varies
659  * based on the architecture generation.  GOBs themselves are then arranged in
660  * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
661  * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
662  * a block depth or height of "4").
663  *
664  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
665  * in full detail.
666  *
667  *       Macro
668  * Bits  Param Description
669  * ----  ----- -----------------------------------------------------------------
670  *
671  *  3:0  h     log2(height) of each block, in GOBs.  Placed here for
672  *             compatibility with the existing
673  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
674  *
675  *  4:4  -     Must be 1, to indicate block-linear layout.  Necessary for
676  *             compatibility with the existing
677  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
678  *
679  *  8:5  -     Reserved (To support 3D-surfaces with variable log2(depth) block
680  *             size).  Must be zero.
681  *
682  *             Note there is no log2(width) parameter.  Some portions of the
683  *             hardware support a block width of two gobs, but it is impractical
684  *             to use due to lack of support elsewhere, and has no known
685  *             benefits.
686  *
687  * 11:9  -     Reserved (To support 2D-array textures with variable array stride
688  *             in blocks, specified via log2(tile width in blocks)).  Must be
689  *             zero.
690  *
691  * 19:12 k     Page Kind.  This value directly maps to a field in the page
692  *             tables of all GPUs >= NV50.  It affects the exact layout of bits
693  *             in memory and can be derived from the tuple
694  *
695  *               (format, GPU model, compression type, samples per pixel)
696  *
697  *             Where compression type is defined below.  If GPU model were
698  *             implied by the format modifier, format, or memory buffer, page
699  *             kind would not need to be included in the modifier itself, but
700  *             since the modifier should define the layout of the associated
701  *             memory buffer independent from any device or other context, it
702  *             must be included here.
703  *
704  * 21:20 g     GOB Height and Page Kind Generation.  The height of a GOB changed
705  *             starting with Fermi GPUs.  Additionally, the mapping between page
706  *             kind and bit layout has changed at various points.
707  *
708  *               0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
709  *               1 = Gob Height 4, G80 - GT2XX Page Kind mapping
710  *               2 = Gob Height 8, Turing+ Page Kind mapping
711  *               3 = Reserved for future use.
712  *
713  * 22:22 s     Sector layout.  On Tegra GPUs prior to Xavier, there is a further
714  *             bit remapping step that occurs at an even lower level than the
715  *             page kind and block linear swizzles.  This causes the layout of
716  *             surfaces mapped in those SOC's GPUs to be incompatible with the
717  *             equivalent mapping on other GPUs in the same system.
718  *
719  *               0 = Tegra K1 - Tegra Parker/TX2 Layout.
720  *               1 = Desktop GPU and Tegra Xavier+ Layout
721  *
722  * 25:23 c     Lossless Framebuffer Compression type.
723  *
724  *               0 = none
725  *               1 = ROP/3D, layout 1, exact compression format implied by Page
726  *                   Kind field
727  *               2 = ROP/3D, layout 2, exact compression format implied by Page
728  *                   Kind field
729  *               3 = CDE horizontal
730  *               4 = CDE vertical
731  *               5 = Reserved for future use
732  *               6 = Reserved for future use
733  *               7 = Reserved for future use
734  *
735  * 55:25 -     Reserved for future use.  Must be zero.
736  */
737 #define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
738 	fourcc_mod_code(NVIDIA, (0x10 | \
739 				 ((h) & 0xf) | \
740 				 (((k) & 0xff) << 12) | \
741 				 (((g) & 0x3) << 20) | \
742 				 (((s) & 0x1) << 22) | \
743 				 (((c) & 0x7) << 23)))
744 
745 /* To grandfather in prior block linear format modifiers to the above layout,
746  * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
747  * with block-linear layouts, is remapped within drivers to the value 0xfe,
748  * which corresponds to the "generic" kind used for simple single-sample
749  * uncompressed color formats on Fermi - Volta GPUs.
750  */
751 static inline __u64
drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)752 drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)
753 {
754 	if (!(modifier & 0x10) || (modifier & (0xff << 12)))
755 		return modifier;
756 	else
757 		return modifier | (0xfe << 12);
758 }
759 
760 /*
761  * 16Bx2 Block Linear layout, used by Tegra K1 and later
762  *
763  * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
764  * vertically by a power of 2 (1 to 32 GOBs) to form a block.
765  *
766  * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
767  *
768  * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
769  * Valid values are:
770  *
771  * 0 == ONE_GOB
772  * 1 == TWO_GOBS
773  * 2 == FOUR_GOBS
774  * 3 == EIGHT_GOBS
775  * 4 == SIXTEEN_GOBS
776  * 5 == THIRTYTWO_GOBS
777  *
778  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
779  * in full detail.
780  */
781 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
782 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
783 
784 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
785 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
786 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
787 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
788 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
789 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
790 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
791 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
792 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
793 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
794 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
795 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
796 
797 /*
798  * Some Broadcom modifiers take parameters, for example the number of
799  * vertical lines in the image. Reserve the lower 32 bits for modifier
800  * type, and the next 24 bits for parameters. Top 8 bits are the
801  * vendor code.
802  */
803 #define __fourcc_mod_broadcom_param_shift 8
804 #define __fourcc_mod_broadcom_param_bits 48
805 #define fourcc_mod_broadcom_code(val, params) \
806 	fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
807 #define fourcc_mod_broadcom_param(m) \
808 	((int)(((m) >> __fourcc_mod_broadcom_param_shift) &	\
809 	       ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
810 #define fourcc_mod_broadcom_mod(m) \
811 	((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<	\
812 		 __fourcc_mod_broadcom_param_shift))
813 
814 /*
815  * Broadcom VC4 "T" format
816  *
817  * This is the primary layout that the V3D GPU can texture from (it
818  * can't do linear).  The T format has:
819  *
820  * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
821  *   pixels at 32 bit depth.
822  *
823  * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
824  *   16x16 pixels).
825  *
826  * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
827  *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
828  *   they're (TR, BR, BL, TL), where bottom left is start of memory.
829  *
830  * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
831  *   tiles) or right-to-left (odd rows of 4k tiles).
832  */
833 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
834 
835 /*
836  * Broadcom SAND format
837  *
838  * This is the native format that the H.264 codec block uses.  For VC4
839  * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
840  *
841  * The image can be considered to be split into columns, and the
842  * columns are placed consecutively into memory.  The width of those
843  * columns can be either 32, 64, 128, or 256 pixels, but in practice
844  * only 128 pixel columns are used.
845  *
846  * The pitch between the start of each column is set to optimally
847  * switch between SDRAM banks. This is passed as the number of lines
848  * of column width in the modifier (we can't use the stride value due
849  * to various core checks that look at it , so you should set the
850  * stride to width*cpp).
851  *
852  * Note that the column height for this format modifier is the same
853  * for all of the planes, assuming that each column contains both Y
854  * and UV.  Some SAND-using hardware stores UV in a separate tiled
855  * image from Y to reduce the column height, which is not supported
856  * with these modifiers.
857  */
858 
859 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
860 	fourcc_mod_broadcom_code(2, v)
861 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
862 	fourcc_mod_broadcom_code(3, v)
863 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
864 	fourcc_mod_broadcom_code(4, v)
865 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
866 	fourcc_mod_broadcom_code(5, v)
867 
868 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
869 	DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
870 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
871 	DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
872 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
873 	DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
874 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
875 	DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
876 
877 /* Broadcom UIF format
878  *
879  * This is the common format for the current Broadcom multimedia
880  * blocks, including V3D 3.x and newer, newer video codecs, and
881  * displays.
882  *
883  * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
884  * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
885  * stored in columns, with padding between the columns to ensure that
886  * moving from one column to the next doesn't hit the same SDRAM page
887  * bank.
888  *
889  * To calculate the padding, it is assumed that each hardware block
890  * and the software driving it knows the platform's SDRAM page size,
891  * number of banks, and XOR address, and that it's identical between
892  * all blocks using the format.  This tiling modifier will use XOR as
893  * necessary to reduce the padding.  If a hardware block can't do XOR,
894  * the assumption is that a no-XOR tiling modifier will be created.
895  */
896 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
897 
898 /*
899  * Arm Framebuffer Compression (AFBC) modifiers
900  *
901  * AFBC is a proprietary lossless image compression protocol and format.
902  * It provides fine-grained random access and minimizes the amount of data
903  * transferred between IP blocks.
904  *
905  * AFBC has several features which may be supported and/or used, which are
906  * represented using bits in the modifier. Not all combinations are valid,
907  * and different devices or use-cases may support different combinations.
908  *
909  * Further information on the use of AFBC modifiers can be found in
910  * Documentation/gpu/afbc.rst
911  */
912 
913 /*
914  * The top 4 bits (out of the 56 bits alloted for specifying vendor specific
915  * modifiers) denote the category for modifiers. Currently we have three
916  * categories of modifiers ie AFBC, MISC and AFRC. We can have a maximum of
917  * sixteen different categories.
918  */
919 #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
920 	fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
921 
922 #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
923 #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
924 
925 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
926 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
927 
928 /*
929  * AFBC superblock size
930  *
931  * Indicates the superblock size(s) used for the AFBC buffer. The buffer
932  * size (in pixels) must be aligned to a multiple of the superblock size.
933  * Four lowest significant bits(LSBs) are reserved for block size.
934  *
935  * Where one superblock size is specified, it applies to all planes of the
936  * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
937  * the first applies to the Luma plane and the second applies to the Chroma
938  * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
939  * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
940  */
941 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
942 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
943 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
944 #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4      (3ULL)
945 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
946 
947 /*
948  * AFBC lossless colorspace transform
949  *
950  * Indicates that the buffer makes use of the AFBC lossless colorspace
951  * transform.
952  */
953 #define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
954 
955 /*
956  * AFBC block-split
957  *
958  * Indicates that the payload of each superblock is split. The second
959  * half of the payload is positioned at a predefined offset from the start
960  * of the superblock payload.
961  */
962 #define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
963 
964 /*
965  * AFBC sparse layout
966  *
967  * This flag indicates that the payload of each superblock must be stored at a
968  * predefined position relative to the other superblocks in the same AFBC
969  * buffer. This order is the same order used by the header buffer. In this mode
970  * each superblock is given the same amount of space as an uncompressed
971  * superblock of the particular format would require, rounding up to the next
972  * multiple of 128 bytes in size.
973  */
974 #define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
975 
976 /*
977  * AFBC copy-block restrict
978  *
979  * Buffers with this flag must obey the copy-block restriction. The restriction
980  * is such that there are no copy-blocks referring across the border of 8x8
981  * blocks. For the subsampled data the 8x8 limitation is also subsampled.
982  */
983 #define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
984 
985 /*
986  * AFBC tiled layout
987  *
988  * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
989  * superblocks inside a tile are stored together in memory. 8x8 tiles are used
990  * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
991  * larger bpp formats. The order between the tiles is scan line.
992  * When the tiled layout is used, the buffer size (in pixels) must be aligned
993  * to the tile size.
994  */
995 #define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
996 
997 /*
998  * AFBC solid color blocks
999  *
1000  * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
1001  * can be reduced if a whole superblock is a single color.
1002  */
1003 #define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
1004 
1005 /*
1006  * AFBC double-buffer
1007  *
1008  * Indicates that the buffer is allocated in a layout safe for front-buffer
1009  * rendering.
1010  */
1011 #define AFBC_FORMAT_MOD_DB      (1ULL << 10)
1012 
1013 /*
1014  * AFBC buffer content hints
1015  *
1016  * Indicates that the buffer includes per-superblock content hints.
1017  */
1018 #define AFBC_FORMAT_MOD_BCH     (1ULL << 11)
1019 
1020 /* AFBC uncompressed storage mode
1021  *
1022  * Indicates that the buffer is using AFBC uncompressed storage mode.
1023  * In this mode all superblock payloads in the buffer use the uncompressed
1024  * storage mode, which is usually only used for data which cannot be compressed.
1025  * The buffer layout is the same as for AFBC buffers without USM set, this only
1026  * affects the storage mode of the individual superblocks. Note that even a
1027  * buffer without USM set may use uncompressed storage mode for some or all
1028  * superblocks, USM just guarantees it for all.
1029  */
1030 #define AFBC_FORMAT_MOD_USM	(1ULL << 12)
1031 
1032 /*
1033  * Arm Fixed-Rate Compression (AFRC) modifiers
1034  *
1035  * AFRC is a proprietary fixed rate image compression protocol and format,
1036  * designed to provide guaranteed bandwidth and memory footprint
1037  * reductions in graphics and media use-cases.
1038  *
1039  * AFRC buffers consist of one or more planes, with the same components
1040  * and meaning as an uncompressed buffer using the same pixel format.
1041  *
1042  * Within each plane, the pixel/luma/chroma values are grouped into
1043  * "coding unit" blocks which are individually compressed to a
1044  * fixed size (in bytes). All coding units within a given plane of a buffer
1045  * store the same number of values, and have the same compressed size.
1046  *
1047  * The coding unit size is configurable, allowing different rates of compression.
1048  *
1049  * The start of each AFRC buffer plane must be aligned to an alignment granule which
1050  * depends on the coding unit size.
1051  *
1052  * Coding Unit Size   Plane Alignment
1053  * ----------------   ---------------
1054  * 16 bytes           1024 bytes
1055  * 24 bytes           512  bytes
1056  * 32 bytes           2048 bytes
1057  *
1058  * Coding units are grouped into paging tiles. AFRC buffer dimensions must be aligned
1059  * to a multiple of the paging tile dimensions.
1060  * The dimensions of each paging tile depend on whether the buffer is optimised for
1061  * scanline (SCAN layout) or rotated (ROT layout) access.
1062  *
1063  * Layout   Paging Tile Width   Paging Tile Height
1064  * ------   -----------------   ------------------
1065  * SCAN     16 coding units     4 coding units
1066  * ROT      8  coding units     8 coding units
1067  *
1068  * The dimensions of each coding unit depend on the number of components
1069  * in the compressed plane and whether the buffer is optimised for
1070  * scanline (SCAN layout) or rotated (ROT layout) access.
1071  *
1072  * Number of Components in Plane   Layout      Coding Unit Width   Coding Unit Height
1073  * -----------------------------   ---------   -----------------   ------------------
1074  * 1                               SCAN        16 samples          4 samples
1075  * Example: 16x4 luma samples in a 'Y' plane
1076  *          16x4 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1077  * -----------------------------   ---------   -----------------   ------------------
1078  * 1                               ROT         8 samples           8 samples
1079  * Example: 8x8 luma samples in a 'Y' plane
1080  *          8x8 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1081  * -----------------------------   ---------   -----------------   ------------------
1082  * 2                               DONT CARE   8 samples           4 samples
1083  * Example: 8x4 chroma pairs in the 'UV' plane of a semi-planar YUV buffer
1084  * -----------------------------   ---------   -----------------   ------------------
1085  * 3                               DONT CARE   4 samples           4 samples
1086  * Example: 4x4 pixels in an RGB buffer without alpha
1087  * -----------------------------   ---------   -----------------   ------------------
1088  * 4                               DONT CARE   4 samples           4 samples
1089  * Example: 4x4 pixels in an RGB buffer with alpha
1090  */
1091 
1092 #define DRM_FORMAT_MOD_ARM_TYPE_AFRC 0x02
1093 
1094 #define DRM_FORMAT_MOD_ARM_AFRC(__afrc_mode) \
1095 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFRC, __afrc_mode)
1096 
1097 /*
1098  * AFRC coding unit size modifier.
1099  *
1100  * Indicates the number of bytes used to store each compressed coding unit for
1101  * one or more planes in an AFRC encoded buffer. The coding unit size for chrominance
1102  * is the same for both Cb and Cr, which may be stored in separate planes.
1103  *
1104  * AFRC_FORMAT_MOD_CU_SIZE_P0 indicates the number of bytes used to store
1105  * each compressed coding unit in the first plane of the buffer. For RGBA buffers
1106  * this is the only plane, while for semi-planar and fully-planar YUV buffers,
1107  * this corresponds to the luma plane.
1108  *
1109  * AFRC_FORMAT_MOD_CU_SIZE_P12 indicates the number of bytes used to store
1110  * each compressed coding unit in the second and third planes in the buffer.
1111  * For semi-planar and fully-planar YUV buffers, this corresponds to the chroma plane(s).
1112  *
1113  * For single-plane buffers, AFRC_FORMAT_MOD_CU_SIZE_P0 must be specified
1114  * and AFRC_FORMAT_MOD_CU_SIZE_P12 must be zero.
1115  * For semi-planar and fully-planar buffers, both AFRC_FORMAT_MOD_CU_SIZE_P0 and
1116  * AFRC_FORMAT_MOD_CU_SIZE_P12 must be specified.
1117  */
1118 #define AFRC_FORMAT_MOD_CU_SIZE_MASK 0xf
1119 #define AFRC_FORMAT_MOD_CU_SIZE_16 (1ULL)
1120 #define AFRC_FORMAT_MOD_CU_SIZE_24 (2ULL)
1121 #define AFRC_FORMAT_MOD_CU_SIZE_32 (3ULL)
1122 
1123 #define AFRC_FORMAT_MOD_CU_SIZE_P0(__afrc_cu_size) (__afrc_cu_size)
1124 #define AFRC_FORMAT_MOD_CU_SIZE_P12(__afrc_cu_size) ((__afrc_cu_size) << 4)
1125 
1126 /*
1127  * AFRC scanline memory layout.
1128  *
1129  * Indicates if the buffer uses the scanline-optimised layout
1130  * for an AFRC encoded buffer, otherwise, it uses the rotation-optimised layout.
1131  * The memory layout is the same for all planes.
1132  */
1133 #define AFRC_FORMAT_MOD_LAYOUT_SCAN (1ULL << 8)
1134 
1135 /*
1136  * Arm 16x16 Block U-Interleaved modifier
1137  *
1138  * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
1139  * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
1140  * in the block are reordered.
1141  */
1142 #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
1143 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
1144 
1145 /*
1146  * Allwinner tiled modifier
1147  *
1148  * This tiling mode is implemented by the VPU found on all Allwinner platforms,
1149  * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
1150  * planes.
1151  *
1152  * With this tiling, the luminance samples are disposed in tiles representing
1153  * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
1154  * The pixel order in each tile is linear and the tiles are disposed linearly,
1155  * both in row-major order.
1156  */
1157 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
1158 
1159 /*
1160  * Amlogic Video Framebuffer Compression modifiers
1161  *
1162  * Amlogic uses a proprietary lossless image compression protocol and format
1163  * for their hardware video codec accelerators, either video decoders or
1164  * video input encoders.
1165  *
1166  * It considerably reduces memory bandwidth while writing and reading
1167  * frames in memory.
1168  *
1169  * The underlying storage is considered to be 3 components, 8bit or 10-bit
1170  * per component YCbCr 420, single plane :
1171  * - DRM_FORMAT_YUV420_8BIT
1172  * - DRM_FORMAT_YUV420_10BIT
1173  *
1174  * The first 8 bits of the mode defines the layout, then the following 8 bits
1175  * defines the options changing the layout.
1176  *
1177  * Not all combinations are valid, and different SoCs may support different
1178  * combinations of layout and options.
1179  */
1180 #define __fourcc_mod_amlogic_layout_mask 0xff
1181 #define __fourcc_mod_amlogic_options_shift 8
1182 #define __fourcc_mod_amlogic_options_mask 0xff
1183 
1184 #define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
1185 	fourcc_mod_code(AMLOGIC, \
1186 			((__layout) & __fourcc_mod_amlogic_layout_mask) | \
1187 			(((__options) & __fourcc_mod_amlogic_options_mask) \
1188 			 << __fourcc_mod_amlogic_options_shift))
1189 
1190 /* Amlogic FBC Layouts */
1191 
1192 /*
1193  * Amlogic FBC Basic Layout
1194  *
1195  * The basic layout is composed of:
1196  * - a body content organized in 64x32 superblocks with 4096 bytes per
1197  *   superblock in default mode.
1198  * - a 32 bytes per 128x64 header block
1199  *
1200  * This layout is transferrable between Amlogic SoCs supporting this modifier.
1201  */
1202 #define AMLOGIC_FBC_LAYOUT_BASIC		(1ULL)
1203 
1204 /*
1205  * Amlogic FBC Scatter Memory layout
1206  *
1207  * Indicates the header contains IOMMU references to the compressed
1208  * frames content to optimize memory access and layout.
1209  *
1210  * In this mode, only the header memory address is needed, thus the
1211  * content memory organization is tied to the current producer
1212  * execution and cannot be saved/dumped neither transferrable between
1213  * Amlogic SoCs supporting this modifier.
1214  *
1215  * Due to the nature of the layout, these buffers are not expected to
1216  * be accessible by the user-space clients, but only accessible by the
1217  * hardware producers and consumers.
1218  *
1219  * The user-space clients should expect a failure while trying to mmap
1220  * the DMA-BUF handle returned by the producer.
1221  */
1222 #define AMLOGIC_FBC_LAYOUT_SCATTER		(2ULL)
1223 
1224 /* Amlogic FBC Layout Options Bit Mask */
1225 
1226 /*
1227  * Amlogic FBC Memory Saving mode
1228  *
1229  * Indicates the storage is packed when pixel size is multiple of word
1230  * boudaries, i.e. 8bit should be stored in this mode to save allocation
1231  * memory.
1232  *
1233  * This mode reduces body layout to 3072 bytes per 64x32 superblock with
1234  * the basic layout and 3200 bytes per 64x32 superblock combined with
1235  * the scatter layout.
1236  */
1237 #define AMLOGIC_FBC_OPTION_MEM_SAVING		(1ULL << 0)
1238 
1239 /*
1240  * AMD modifiers
1241  *
1242  * Memory layout:
1243  *
1244  * without DCC:
1245  *   - main surface
1246  *
1247  * with DCC & without DCC_RETILE:
1248  *   - main surface in plane 0
1249  *   - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set)
1250  *
1251  * with DCC & DCC_RETILE:
1252  *   - main surface in plane 0
1253  *   - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned)
1254  *   - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned)
1255  *
1256  * For multi-plane formats the above surfaces get merged into one plane for
1257  * each format plane, based on the required alignment only.
1258  *
1259  * Bits  Parameter                Notes
1260  * ----- ------------------------ ---------------------------------------------
1261  *
1262  *   7:0 TILE_VERSION             Values are AMD_FMT_MOD_TILE_VER_*
1263  *  12:8 TILE                     Values are AMD_FMT_MOD_TILE_<version>_*
1264  *    13 DCC
1265  *    14 DCC_RETILE
1266  *    15 DCC_PIPE_ALIGN
1267  *    16 DCC_INDEPENDENT_64B
1268  *    17 DCC_INDEPENDENT_128B
1269  * 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_*
1270  *    20 DCC_CONSTANT_ENCODE
1271  * 23:21 PIPE_XOR_BITS            Only for some chips
1272  * 26:24 BANK_XOR_BITS            Only for some chips
1273  * 29:27 PACKERS                  Only for some chips
1274  * 32:30 RB                       Only for some chips
1275  * 35:33 PIPE                     Only for some chips
1276  * 55:36 -                        Reserved for future use, must be zero
1277  */
1278 #define AMD_FMT_MOD fourcc_mod_code(AMD, 0)
1279 
1280 #define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD)
1281 
1282 /* Reserve 0 for GFX8 and older */
1283 #define AMD_FMT_MOD_TILE_VER_GFX9 1
1284 #define AMD_FMT_MOD_TILE_VER_GFX10 2
1285 #define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3
1286 
1287 /*
1288  * 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical
1289  * version.
1290  */
1291 #define AMD_FMT_MOD_TILE_GFX9_64K_S 9
1292 
1293 /*
1294  * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has
1295  * GFX9 as canonical version.
1296  */
1297 #define AMD_FMT_MOD_TILE_GFX9_64K_D 10
1298 #define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25
1299 #define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26
1300 #define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27
1301 
1302 #define AMD_FMT_MOD_DCC_BLOCK_64B 0
1303 #define AMD_FMT_MOD_DCC_BLOCK_128B 1
1304 #define AMD_FMT_MOD_DCC_BLOCK_256B 2
1305 
1306 #define AMD_FMT_MOD_TILE_VERSION_SHIFT 0
1307 #define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF
1308 #define AMD_FMT_MOD_TILE_SHIFT 8
1309 #define AMD_FMT_MOD_TILE_MASK 0x1F
1310 
1311 /* Whether DCC compression is enabled. */
1312 #define AMD_FMT_MOD_DCC_SHIFT 13
1313 #define AMD_FMT_MOD_DCC_MASK 0x1
1314 
1315 /*
1316  * Whether to include two DCC surfaces, one which is rb & pipe aligned, and
1317  * one which is not-aligned.
1318  */
1319 #define AMD_FMT_MOD_DCC_RETILE_SHIFT 14
1320 #define AMD_FMT_MOD_DCC_RETILE_MASK 0x1
1321 
1322 /* Only set if DCC_RETILE = false */
1323 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15
1324 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1
1325 
1326 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16
1327 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1
1328 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17
1329 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1
1330 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18
1331 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3
1332 
1333 /*
1334  * DCC supports embedding some clear colors directly in the DCC surface.
1335  * However, on older GPUs the rendering HW ignores the embedded clear color
1336  * and prefers the driver provided color. This necessitates doing a fastclear
1337  * eliminate operation before a process transfers control.
1338  *
1339  * If this bit is set that means the fastclear eliminate is not needed for these
1340  * embeddable colors.
1341  */
1342 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20
1343 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1
1344 
1345 /*
1346  * The below fields are for accounting for per GPU differences. These are only
1347  * relevant for GFX9 and later and if the tile field is *_X/_T.
1348  *
1349  * PIPE_XOR_BITS = always needed
1350  * BANK_XOR_BITS = only for TILE_VER_GFX9
1351  * PACKERS = only for TILE_VER_GFX10_RBPLUS
1352  * RB = only for TILE_VER_GFX9 & DCC
1353  * PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN)
1354  */
1355 #define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21
1356 #define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7
1357 #define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24
1358 #define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7
1359 #define AMD_FMT_MOD_PACKERS_SHIFT 27
1360 #define AMD_FMT_MOD_PACKERS_MASK 0x7
1361 #define AMD_FMT_MOD_RB_SHIFT 30
1362 #define AMD_FMT_MOD_RB_MASK 0x7
1363 #define AMD_FMT_MOD_PIPE_SHIFT 33
1364 #define AMD_FMT_MOD_PIPE_MASK 0x7
1365 
1366 #define AMD_FMT_MOD_SET(field, value) \
1367 	((uint64_t)(value) << AMD_FMT_MOD_##field##_SHIFT)
1368 #define AMD_FMT_MOD_GET(field, value) \
1369 	(((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK)
1370 #define AMD_FMT_MOD_CLEAR(field) \
1371 	(~((uint64_t)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT))
1372 
1373 #if defined(__cplusplus)
1374 }
1375 #endif
1376 
1377 #endif /* DRM_FOURCC_H */
1378