1 /*
2 * Copyright (c) 2015-2016, ARM Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #ifndef CCN_PRIVATE_H
8 #define CCN_PRIVATE_H
9
10 /*
11 * A CCN implementation can have a maximum of 64 Request nodes with node IDs
12 * from 0-63. These IDs are split across the three types of Request nodes
13 * i.e. RN-F, RN-D and RN-I.
14 */
15 #define MAX_RN_NODES 64
16
17 /* Enum used to loop through the 3 types of Request nodes */
18 typedef enum rn_types {
19 RN_TYPE_RNF = 0,
20 RN_TYPE_RNI,
21 RN_TYPE_RND,
22 NUM_RN_TYPES
23 } rn_types_t;
24
25 /* Macro to convert a region id to its base address */
26 #define region_id_to_base(id) ((id) << 16)
27
28 /*
29 * Macro to calculate the number of master interfaces resident on a RN-I/RN-D.
30 * Value of first two bits of the RN-I/D node type + 1 == Maximum number of
31 * ACE-Lite or ACE-Lite+DVM interfaces supported on this node. E.g.
32 *
33 * 0x14 : RN-I with 1 ACE-Lite interface
34 * 0x15 : RN-I with 2 ACE-Lite interfaces
35 * 0x16 : RN-I with 3 ACE-Lite interfaces
36 */
37 #define rn_type_id_to_master_cnt(id) (((id) & 0x3) + 1)
38
39 /*
40 * Constants used to identify a region in the programmer's view. These are
41 * common for all regions.
42 */
43 #define REGION_ID_LIMIT 256
44 #define REGION_ID_OFFSET 0xFF00
45
46 #define REGION_NODE_ID_SHIFT 8
47 #define REGION_NODE_ID_MASK 0x7f
48 #define get_node_id(id_reg) (((id_reg) >> REGION_NODE_ID_SHIFT) \
49 & REGION_NODE_ID_MASK)
50
51 #define REGION_NODE_TYPE_SHIFT 0
52 #define REGION_NODE_TYPE_MASK 0x1f
53 #define get_node_type(id_reg) (((id_reg) >> REGION_NODE_TYPE_SHIFT) \
54 & REGION_NODE_TYPE_MASK)
55
56 /* Common offsets of registers to enter or exit a snoop/dvm domain */
57 #define DOMAIN_CTRL_STAT_OFFSET 0x0200
58 #define DOMAIN_CTRL_SET_OFFSET 0x0210
59 #define DOMAIN_CTRL_CLR_OFFSET 0x0220
60
61 /*
62 * Thess macros are used to determine if an operation to add or remove a Request
63 * node from the snoop/dvm domain has completed. 'rn_id_map' is a bit map of
64 * nodes. It was used to program the SET or CLEAR control register. The type of
65 * register is specified by 'op_reg_offset'. 'status_reg' is the bit map of
66 * nodes currently present in the snoop/dvm domain. 'rn_id_map' and 'status_reg'
67 * are logically ANDed and the result it stored back in the 'status_reg'. There
68 * are two outcomes of this operation:
69 *
70 * 1. If the DOMAIN_CTRL_SET_OFFSET register was programmed, then the set bits in
71 * 'rn_id_map' should appear in 'status_reg' when the operation completes. So
72 * after the AND operation, at some point of time 'status_reg' should equal
73 * 'rn_id_map'.
74 *
75 * 2. If the DOMAIN_CTRL_CLR_OFFSET register was programmed, then the set bits in
76 * 'rn_id_map' should disappear in 'status_reg' when the operation
77 * completes. So after the AND operation, at some point of time 'status_reg'
78 * should equal 0.
79 */
80 #define WAIT_FOR_DOMAIN_CTRL_OP_COMPLETION(region_id, stat_reg_offset, \
81 op_reg_offset, rn_id_map) \
82 { \
83 unsigned long long status_reg; \
84 do { \
85 status_reg = ccn_reg_read((ccn_plat_desc->periphbase), \
86 (region_id), \
87 (stat_reg_offset)); \
88 status_reg &= (rn_id_map); \
89 } while ((op_reg_offset) == DOMAIN_CTRL_SET_OFFSET ? \
90 (rn_id_map) != status_reg : status_reg); \
91 }
92
93 /*
94 * Region ID of the Miscellaneous Node is always 0 as its located at the base of
95 * the programmer's view.
96 */
97 #define MN_REGION_ID 0
98
99 #define MN_REGION_ID_START 0
100 #define DEBUG_REGION_ID_START 1
101 #define HNI_REGION_ID_START 8
102 #define SBSX_REGION_ID_START 16
103 #define HNF_REGION_ID_START 32
104 #define XP_REGION_ID_START 64
105 #define RNI_REGION_ID_START 128
106
107 /* Selected register offsets from the base of a HNF region */
108 #define HNF_CFG_CTRL_OFFSET 0x0000
109 #define HNF_SAM_CTRL_OFFSET 0x0008
110 #define HNF_PSTATE_REQ_OFFSET 0x0010
111 #define HNF_PSTATE_STAT_OFFSET 0x0018
112 #define HNF_SDC_STAT_OFFSET DOMAIN_CTRL_STAT_OFFSET
113 #define HNF_SDC_SET_OFFSET DOMAIN_CTRL_SET_OFFSET
114 #define HNF_SDC_CLR_OFFSET DOMAIN_CTRL_CLR_OFFSET
115 #define HNF_AUX_CTRL_OFFSET 0x0500
116
117 /* Selected register offsets from the base of a MN region */
118 #define MN_SAR_OFFSET 0x0000
119 #define MN_RNF_NODEID_OFFSET 0x0180
120 #define MN_RNI_NODEID_OFFSET 0x0190
121 #define MN_RND_NODEID_OFFSET 0x01A0
122 #define MN_HNF_NODEID_OFFSET 0x01B0
123 #define MN_HNI_NODEID_OFFSET 0x01C0
124 #define MN_SN_NODEID_OFFSET 0x01D0
125 #define MN_DDC_STAT_OFFSET DOMAIN_CTRL_STAT_OFFSET
126 #define MN_DDC_SET_OFFSET DOMAIN_CTRL_SET_OFFSET
127 #define MN_DDC_CLR_OFFSET DOMAIN_CTRL_CLR_OFFSET
128 #define MN_PERIPH_ID_0_1_OFFSET 0xFE0
129 #define MN_ID_OFFSET REGION_ID_OFFSET
130
131 /* HNF System Address Map register bit masks and shifts */
132 #define HNF_SAM_CTRL_SN_ID_MASK 0x7f
133 #define HNF_SAM_CTRL_SN0_ID_SHIFT 0
134 #define HNF_SAM_CTRL_SN1_ID_SHIFT 8
135 #define HNF_SAM_CTRL_SN2_ID_SHIFT 16
136
137 #define HNF_SAM_CTRL_TAB0_MASK ULL(0x3f)
138 #define HNF_SAM_CTRL_TAB0_SHIFT 48
139 #define HNF_SAM_CTRL_TAB1_MASK ULL(0x3f)
140 #define HNF_SAM_CTRL_TAB1_SHIFT 56
141
142 #define HNF_SAM_CTRL_3SN_ENB_SHIFT 32
143 #define HNF_SAM_CTRL_3SN_ENB_MASK ULL(0x01)
144
145 /*
146 * Macro to create a value suitable for programming into a HNF SAM Control
147 * register for enabling 3SN striping.
148 */
149 #define MAKE_HNF_SAM_CTRL_VALUE(sn0, sn1, sn2, tab0, tab1, three_sn_en) \
150 ((((sn0) & HNF_SAM_CTRL_SN_ID_MASK) << HNF_SAM_CTRL_SN0_ID_SHIFT) | \
151 (((sn1) & HNF_SAM_CTRL_SN_ID_MASK) << HNF_SAM_CTRL_SN1_ID_SHIFT) | \
152 (((sn2) & HNF_SAM_CTRL_SN_ID_MASK) << HNF_SAM_CTRL_SN2_ID_SHIFT) | \
153 (((tab0) & HNF_SAM_CTRL_TAB0_MASK) << HNF_SAM_CTRL_TAB0_SHIFT) | \
154 (((tab1) & HNF_SAM_CTRL_TAB1_MASK) << HNF_SAM_CTRL_TAB1_SHIFT) | \
155 (((three_sn_en) & HNF_SAM_CTRL_3SN_ENB_MASK) << HNF_SAM_CTRL_3SN_ENB_SHIFT))
156
157 /* Mask to read the power state value from an HN-F P-state register */
158 #define HNF_PSTATE_MASK 0xf
159
160 /* Macro to extract the run mode from a p-state value */
161 #define PSTATE_TO_RUN_MODE(pstate) (((pstate) & HNF_PSTATE_MASK) >> 2)
162
163 /*
164 * Helper macro that iterates through a given bit map. In each iteration,
165 * it returns the position of the set bit.
166 * It can be used by other utility macros to iterates through all nodes
167 * or masters given a bit map of them.
168 */
169 #define FOR_EACH_BIT(bit_pos, bit_map) \
170 for (bit_pos = __builtin_ctzll(bit_map); \
171 bit_map; \
172 bit_map &= ~(1ULL << (bit_pos)), \
173 bit_pos = __builtin_ctzll(bit_map))
174
175 /*
176 * Utility macro that iterates through a bit map of node IDs. In each
177 * iteration, it returns the ID of the next present node in the bit map. Node
178 * ID of a present node == Position of set bit == Number of zeroes trailing the
179 * bit.
180 */
181 #define FOR_EACH_PRESENT_NODE_ID(node_id, bit_map) \
182 FOR_EACH_BIT(node_id, bit_map)
183
184 /*
185 * Helper function to return number of set bits in bitmap
186 */
count_set_bits(unsigned long long bitmap)187 static inline unsigned int count_set_bits(unsigned long long bitmap)
188 {
189 unsigned int count = 0;
190
191 for (; bitmap; bitmap &= bitmap - 1)
192 ++count;
193
194 return count;
195 }
196
197 /*
198 * Utility macro that iterates through a bit map of node IDs. In each iteration,
199 * it returns the ID of the next present region corresponding to a node present
200 * in the bit map. Region ID of a present node is in between passed region id
201 * and region id + number of set bits in the bitmap i.e. the number of present
202 * nodes.
203 */
204 #define FOR_EACH_PRESENT_REGION_ID(region_id, bit_map) \
205 for (unsigned long long region_id_limit = count_set_bits(bit_map) \
206 + region_id; \
207 region_id < region_id_limit; \
208 region_id++)
209
210 /*
211 * Same macro as FOR_EACH_PRESENT_NODE, but renamed to indicate it traverses
212 * through a bit map of master interfaces.
213 */
214 #define FOR_EACH_PRESENT_MASTER_INTERFACE(iface_id, bit_map) \
215 FOR_EACH_BIT(iface_id, bit_map)
216
217 /*
218 * Macro that returns the node id bit map for the Miscellaneous Node
219 */
220 #define CCN_GET_MN_NODEID_MAP(periphbase) \
221 (1 << get_node_id(ccn_reg_read(periphbase, MN_REGION_ID, \
222 REGION_ID_OFFSET)))
223
224 /*
225 * This macro returns the bitmap of Home nodes on the basis of the
226 * 'mn_hn_id_reg_offset' parameter from the Miscellaneous node's (MN)
227 * programmer's view. The MN has a register which carries the bitmap of present
228 * Home nodes of each type i.e. HN-Fs, HN-Is & HN-Ds.
229 */
230 #define CCN_GET_HN_NODEID_MAP(periphbase, mn_hn_id_reg_offset) \
231 ccn_reg_read(periphbase, MN_REGION_ID, mn_hn_id_reg_offset)
232
233 #endif /* CCN_PRIVATE_H */
234