1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 /*
3  *
4  * Copyright (c) 2011, Microsoft Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
17  * Place - Suite 330, Boston, MA 02111-1307 USA.
18  *
19  * Authors:
20  *   Haiyang Zhang <haiyangz@microsoft.com>
21  *   Hank Janssen  <hjanssen@microsoft.com>
22  *   K. Y. Srinivasan <kys@microsoft.com>
23  *
24  */
25 
26 #ifndef _UAPI_HYPERV_H
27 #define _UAPI_HYPERV_H
28 
29 #include <linux/types.h>
30 
31 /*
32  * Framework version for util services.
33  */
34 #define UTIL_FW_MINOR  0
35 
36 #define UTIL_WS2K8_FW_MAJOR  1
37 #define UTIL_WS2K8_FW_VERSION     (UTIL_WS2K8_FW_MAJOR << 16 | UTIL_FW_MINOR)
38 
39 #define UTIL_FW_MAJOR  3
40 #define UTIL_FW_VERSION     (UTIL_FW_MAJOR << 16 | UTIL_FW_MINOR)
41 
42 
43 /*
44  * Implementation of host controlled snapshot of the guest.
45  */
46 
47 #define VSS_OP_REGISTER 128
48 
49 /*
50   Daemon code with full handshake support.
51  */
52 #define VSS_OP_REGISTER1 129
53 
54 enum hv_vss_op {
55 	VSS_OP_CREATE = 0,
56 	VSS_OP_DELETE,
57 	VSS_OP_HOT_BACKUP,
58 	VSS_OP_GET_DM_INFO,
59 	VSS_OP_BU_COMPLETE,
60 	/*
61 	 * Following operations are only supported with IC version >= 5.0
62 	 */
63 	VSS_OP_FREEZE, /* Freeze the file systems in the VM */
64 	VSS_OP_THAW, /* Unfreeze the file systems */
65 	VSS_OP_AUTO_RECOVER,
66 	VSS_OP_COUNT /* Number of operations, must be last */
67 };
68 
69 
70 /*
71  * Header for all VSS messages.
72  */
73 struct hv_vss_hdr {
74 	__u8 operation;
75 	__u8 reserved[7];
76 } __attribute__((packed));
77 
78 
79 /*
80  * Flag values for the hv_vss_check_feature. Linux supports only
81  * one value.
82  */
83 #define VSS_HBU_NO_AUTO_RECOVERY	0x00000005
84 
85 struct hv_vss_check_feature {
86 	__u32 flags;
87 } __attribute__((packed));
88 
89 struct hv_vss_check_dm_info {
90 	__u32 flags;
91 } __attribute__((packed));
92 
93 struct hv_vss_msg {
94 	union {
95 		struct hv_vss_hdr vss_hdr;
96 		int error;
97 	};
98 	union {
99 		struct hv_vss_check_feature vss_cf;
100 		struct hv_vss_check_dm_info dm_info;
101 	};
102 } __attribute__((packed));
103 
104 /*
105  * Implementation of a host to guest copy facility.
106  */
107 
108 #define FCOPY_VERSION_0 0
109 #define FCOPY_VERSION_1 1
110 #define FCOPY_CURRENT_VERSION FCOPY_VERSION_1
111 #define W_MAX_PATH 260
112 
113 enum hv_fcopy_op {
114 	START_FILE_COPY = 0,
115 	WRITE_TO_FILE,
116 	COMPLETE_FCOPY,
117 	CANCEL_FCOPY,
118 };
119 
120 struct hv_fcopy_hdr {
121 	__u32 operation;
122 	__u8 service_id0[16]; /* currently unused */
123 	__u8 service_id1[16]; /* currently unused */
124 } __attribute__((packed));
125 
126 #define OVER_WRITE	0x1
127 #define CREATE_PATH	0x2
128 
129 struct hv_start_fcopy {
130 	struct hv_fcopy_hdr hdr;
131 	__u16 file_name[W_MAX_PATH];
132 	__u16 path_name[W_MAX_PATH];
133 	__u32 copy_flags;
134 	__u64 file_size;
135 } __attribute__((packed));
136 
137 /*
138  * The file is chunked into fragments.
139  */
140 #define DATA_FRAGMENT	(6 * 1024)
141 
142 struct hv_do_fcopy {
143 	struct hv_fcopy_hdr hdr;
144 	__u32   pad;
145 	__u64	offset;
146 	__u32	size;
147 	__u8	data[DATA_FRAGMENT];
148 } __attribute__((packed));
149 
150 /*
151  * An implementation of HyperV key value pair (KVP) functionality for Linux.
152  *
153  *
154  * Copyright (C) 2010, Novell, Inc.
155  * Author : K. Y. Srinivasan <ksrinivasan@novell.com>
156  *
157  */
158 
159 /*
160  * Maximum value size - used for both key names and value data, and includes
161  * any applicable NULL terminators.
162  *
163  * Note:  This limit is somewhat arbitrary, but falls easily within what is
164  * supported for all native guests (back to Win 2000) and what is reasonable
165  * for the IC KVP exchange functionality.  Note that Windows Me/98/95 are
166  * limited to 255 character key names.
167  *
168  * MSDN recommends not storing data values larger than 2048 bytes in the
169  * registry.
170  *
171  * Note:  This value is used in defining the KVP exchange message - this value
172  * cannot be modified without affecting the message size and compatibility.
173  */
174 
175 /*
176  * bytes, including any null terminators
177  */
178 #define HV_KVP_EXCHANGE_MAX_VALUE_SIZE          (2048)
179 
180 
181 /*
182  * Maximum key size - the registry limit for the length of an entry name
183  * is 256 characters, including the null terminator
184  */
185 
186 #define HV_KVP_EXCHANGE_MAX_KEY_SIZE            (512)
187 
188 /*
189  * In Linux, we implement the KVP functionality in two components:
190  * 1) The kernel component which is packaged as part of the hv_utils driver
191  * is responsible for communicating with the host and responsible for
192  * implementing the host/guest protocol. 2) A user level daemon that is
193  * responsible for data gathering.
194  *
195  * Host/Guest Protocol: The host iterates over an index and expects the guest
196  * to assign a key name to the index and also return the value corresponding to
197  * the key. The host will have atmost one KVP transaction outstanding at any
198  * given point in time. The host side iteration stops when the guest returns
199  * an error. Microsoft has specified the following mapping of key names to
200  * host specified index:
201  *
202  *	Index		Key Name
203  *	0		FullyQualifiedDomainName
204  *	1		IntegrationServicesVersion
205  *	2		NetworkAddressIPv4
206  *	3		NetworkAddressIPv6
207  *	4		OSBuildNumber
208  *	5		OSName
209  *	6		OSMajorVersion
210  *	7		OSMinorVersion
211  *	8		OSVersion
212  *	9		ProcessorArchitecture
213  *
214  * The Windows host expects the Key Name and Key Value to be encoded in utf16.
215  *
216  * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the
217  * data gathering functionality in a user mode daemon. The user level daemon
218  * is also responsible for binding the key name to the index as well. The
219  * kernel and user-level daemon communicate using a connector channel.
220  *
221  * The user mode component first registers with the
222  * kernel component. Subsequently, the kernel component requests, data
223  * for the specified keys. In response to this message the user mode component
224  * fills in the value corresponding to the specified key. We overload the
225  * sequence field in the cn_msg header to define our KVP message types.
226  *
227  *
228  * The kernel component simply acts as a conduit for communication between the
229  * Windows host and the user-level daemon. The kernel component passes up the
230  * index received from the Host to the user-level daemon. If the index is
231  * valid (supported), the corresponding key as well as its
232  * value (both are strings) is returned. If the index is invalid
233  * (not supported), a NULL key string is returned.
234  */
235 
236 
237 /*
238  * Registry value types.
239  */
240 
241 #define REG_SZ 1
242 #define REG_U32 4
243 #define REG_U64 8
244 
245 /*
246  * As we look at expanding the KVP functionality to include
247  * IP injection functionality, we need to maintain binary
248  * compatibility with older daemons.
249  *
250  * The KVP opcodes are defined by the host and it was unfortunate
251  * that I chose to treat the registration operation as part of the
252  * KVP operations defined by the host.
253  * Here is the level of compatibility
254  * (between the user level daemon and the kernel KVP driver) that we
255  * will implement:
256  *
257  * An older daemon will always be supported on a newer driver.
258  * A given user level daemon will require a minimal version of the
259  * kernel driver.
260  * If we cannot handle the version differences, we will fail gracefully
261  * (this can happen when we have a user level daemon that is more
262  * advanced than the KVP driver.
263  *
264  * We will use values used in this handshake for determining if we have
265  * workable user level daemon and the kernel driver. We begin by taking the
266  * registration opcode out of the KVP opcode namespace. We will however,
267  * maintain compatibility with the existing user-level daemon code.
268  */
269 
270 /*
271  * Daemon code not supporting IP injection (legacy daemon).
272  */
273 
274 #define KVP_OP_REGISTER	4
275 
276 /*
277  * Daemon code supporting IP injection.
278  * The KVP opcode field is used to communicate the
279  * registration information; so define a namespace that
280  * will be distinct from the host defined KVP opcode.
281  */
282 
283 #define KVP_OP_REGISTER1 100
284 
285 enum hv_kvp_exchg_op {
286 	KVP_OP_GET = 0,
287 	KVP_OP_SET,
288 	KVP_OP_DELETE,
289 	KVP_OP_ENUMERATE,
290 	KVP_OP_GET_IP_INFO,
291 	KVP_OP_SET_IP_INFO,
292 	KVP_OP_COUNT /* Number of operations, must be last. */
293 };
294 
295 enum hv_kvp_exchg_pool {
296 	KVP_POOL_EXTERNAL = 0,
297 	KVP_POOL_GUEST,
298 	KVP_POOL_AUTO,
299 	KVP_POOL_AUTO_EXTERNAL,
300 	KVP_POOL_AUTO_INTERNAL,
301 	KVP_POOL_COUNT /* Number of pools, must be last. */
302 };
303 
304 /*
305  * Some Hyper-V status codes.
306  */
307 
308 #define HV_S_OK				0x00000000
309 #define HV_E_FAIL			0x80004005
310 #define HV_S_CONT			0x80070103
311 #define HV_ERROR_NOT_SUPPORTED		0x80070032
312 #define HV_ERROR_MACHINE_LOCKED		0x800704F7
313 #define HV_ERROR_DEVICE_NOT_CONNECTED	0x8007048F
314 #define HV_INVALIDARG			0x80070057
315 #define HV_GUID_NOTFOUND		0x80041002
316 #define HV_ERROR_ALREADY_EXISTS		0x80070050
317 #define HV_ERROR_DISK_FULL		0x80070070
318 
319 #define ADDR_FAMILY_NONE	0x00
320 #define ADDR_FAMILY_IPV4	0x01
321 #define ADDR_FAMILY_IPV6	0x02
322 
323 #define MAX_ADAPTER_ID_SIZE	128
324 #define MAX_IP_ADDR_SIZE	1024
325 #define MAX_GATEWAY_SIZE	512
326 
327 
328 struct hv_kvp_ipaddr_value {
329 	__u16	adapter_id[MAX_ADAPTER_ID_SIZE];
330 	__u8	addr_family;
331 	__u8	dhcp_enabled;
332 	__u16	ip_addr[MAX_IP_ADDR_SIZE];
333 	__u16	sub_net[MAX_IP_ADDR_SIZE];
334 	__u16	gate_way[MAX_GATEWAY_SIZE];
335 	__u16	dns_addr[MAX_IP_ADDR_SIZE];
336 } __attribute__((packed));
337 
338 
339 struct hv_kvp_hdr {
340 	__u8 operation;
341 	__u8 pool;
342 	__u16 pad;
343 } __attribute__((packed));
344 
345 struct hv_kvp_exchg_msg_value {
346 	__u32 value_type;
347 	__u32 key_size;
348 	__u32 value_size;
349 	__u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
350 	union {
351 		__u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE];
352 		__u32 value_u32;
353 		__u64 value_u64;
354 	};
355 } __attribute__((packed));
356 
357 struct hv_kvp_msg_enumerate {
358 	__u32 index;
359 	struct hv_kvp_exchg_msg_value data;
360 } __attribute__((packed));
361 
362 struct hv_kvp_msg_get {
363 	struct hv_kvp_exchg_msg_value data;
364 };
365 
366 struct hv_kvp_msg_set {
367 	struct hv_kvp_exchg_msg_value data;
368 };
369 
370 struct hv_kvp_msg_delete {
371 	__u32 key_size;
372 	__u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
373 };
374 
375 struct hv_kvp_register {
376 	__u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
377 };
378 
379 struct hv_kvp_msg {
380 	union {
381 		struct hv_kvp_hdr	kvp_hdr;
382 		int error;
383 	};
384 	union {
385 		struct hv_kvp_msg_get		kvp_get;
386 		struct hv_kvp_msg_set		kvp_set;
387 		struct hv_kvp_msg_delete	kvp_delete;
388 		struct hv_kvp_msg_enumerate	kvp_enum_data;
389 		struct hv_kvp_ipaddr_value      kvp_ip_val;
390 		struct hv_kvp_register		kvp_register;
391 	} body;
392 } __attribute__((packed));
393 
394 struct hv_kvp_ip_msg {
395 	__u8 operation;
396 	__u8 pool;
397 	struct hv_kvp_ipaddr_value      kvp_ip_val;
398 } __attribute__((packed));
399 
400 #endif /* _UAPI_HYPERV_H */
401