1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4
5
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <linux/notifier.h>
32 #include <asm/signal.h>
33
34 #include <linux/kvm.h>
35 #include <linux/kvm_para.h>
36
37 #include <linux/kvm_types.h>
38
39 #include <asm/kvm_host.h>
40 #include <linux/kvm_dirty_ring.h>
41
42 #ifndef KVM_MAX_VCPU_IDS
43 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
44 #endif
45
46 /*
47 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
48 * in kvm, other bits are visible for userspace which are defined in
49 * include/linux/kvm_h.
50 */
51 #define KVM_MEMSLOT_INVALID (1UL << 16)
52
53 /*
54 * Bit 63 of the memslot generation number is an "update in-progress flag",
55 * e.g. is temporarily set for the duration of install_new_memslots().
56 * This flag effectively creates a unique generation number that is used to
57 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
58 * i.e. may (or may not) have come from the previous memslots generation.
59 *
60 * This is necessary because the actual memslots update is not atomic with
61 * respect to the generation number update. Updating the generation number
62 * first would allow a vCPU to cache a spte from the old memslots using the
63 * new generation number, and updating the generation number after switching
64 * to the new memslots would allow cache hits using the old generation number
65 * to reference the defunct memslots.
66 *
67 * This mechanism is used to prevent getting hits in KVM's caches while a
68 * memslot update is in-progress, and to prevent cache hits *after* updating
69 * the actual generation number against accesses that were inserted into the
70 * cache *before* the memslots were updated.
71 */
72 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
73
74 /* Two fragments for cross MMIO pages. */
75 #define KVM_MAX_MMIO_FRAGMENTS 2
76
77 #ifndef KVM_ADDRESS_SPACE_NUM
78 #define KVM_ADDRESS_SPACE_NUM 1
79 #endif
80
81 /*
82 * For the normal pfn, the highest 12 bits should be zero,
83 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
84 * mask bit 63 to indicate the noslot pfn.
85 */
86 #define KVM_PFN_ERR_MASK (0x7ffULL << 52)
87 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
88 #define KVM_PFN_NOSLOT (0x1ULL << 63)
89
90 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
91 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
92 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
93
94 /*
95 * error pfns indicate that the gfn is in slot but faild to
96 * translate it to pfn on host.
97 */
is_error_pfn(kvm_pfn_t pfn)98 static inline bool is_error_pfn(kvm_pfn_t pfn)
99 {
100 return !!(pfn & KVM_PFN_ERR_MASK);
101 }
102
103 /*
104 * error_noslot pfns indicate that the gfn can not be
105 * translated to pfn - it is not in slot or failed to
106 * translate it to pfn.
107 */
is_error_noslot_pfn(kvm_pfn_t pfn)108 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
109 {
110 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
111 }
112
113 /* noslot pfn indicates that the gfn is not in slot. */
is_noslot_pfn(kvm_pfn_t pfn)114 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
115 {
116 return pfn == KVM_PFN_NOSLOT;
117 }
118
119 /*
120 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
121 * provide own defines and kvm_is_error_hva
122 */
123 #ifndef KVM_HVA_ERR_BAD
124
125 #define KVM_HVA_ERR_BAD (PAGE_OFFSET)
126 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
127
kvm_is_error_hva(unsigned long addr)128 static inline bool kvm_is_error_hva(unsigned long addr)
129 {
130 return addr >= PAGE_OFFSET;
131 }
132
133 #endif
134
135 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
136
is_error_page(struct page * page)137 static inline bool is_error_page(struct page *page)
138 {
139 return IS_ERR(page);
140 }
141
142 #define KVM_REQUEST_MASK GENMASK(7,0)
143 #define KVM_REQUEST_NO_WAKEUP BIT(8)
144 #define KVM_REQUEST_WAIT BIT(9)
145 /*
146 * Architecture-independent vcpu->requests bit members
147 * Bits 4-7 are reserved for more arch-independent bits.
148 */
149 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
150 #define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
151 #define KVM_REQ_UNBLOCK 2
152 #define KVM_REQ_UNHALT 3
153 #define KVM_REQ_VM_DEAD (4 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
154 #define KVM_REQUEST_ARCH_BASE 8
155
156 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
157 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
158 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
159 })
160 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
161
162 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
163 unsigned long *vcpu_bitmap);
164 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
165 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
166 struct kvm_vcpu *except);
167 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
168 unsigned long *vcpu_bitmap);
169
170 #define KVM_USERSPACE_IRQ_SOURCE_ID 0
171 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
172
173 extern struct mutex kvm_lock;
174 extern struct list_head vm_list;
175
176 struct kvm_io_range {
177 gpa_t addr;
178 int len;
179 struct kvm_io_device *dev;
180 };
181
182 #define NR_IOBUS_DEVS 1000
183
184 struct kvm_io_bus {
185 int dev_count;
186 int ioeventfd_count;
187 struct kvm_io_range range[];
188 };
189
190 enum kvm_bus {
191 KVM_MMIO_BUS,
192 KVM_PIO_BUS,
193 KVM_VIRTIO_CCW_NOTIFY_BUS,
194 KVM_FAST_MMIO_BUS,
195 KVM_NR_BUSES
196 };
197
198 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
199 int len, const void *val);
200 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
201 gpa_t addr, int len, const void *val, long cookie);
202 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
203 int len, void *val);
204 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
205 int len, struct kvm_io_device *dev);
206 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
207 struct kvm_io_device *dev);
208 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
209 gpa_t addr);
210
211 #ifdef CONFIG_KVM_ASYNC_PF
212 struct kvm_async_pf {
213 struct work_struct work;
214 struct list_head link;
215 struct list_head queue;
216 struct kvm_vcpu *vcpu;
217 struct mm_struct *mm;
218 gpa_t cr2_or_gpa;
219 unsigned long addr;
220 struct kvm_arch_async_pf arch;
221 bool wakeup_all;
222 bool notpresent_injected;
223 };
224
225 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
226 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
227 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
228 unsigned long hva, struct kvm_arch_async_pf *arch);
229 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
230 #endif
231
232 #ifdef KVM_ARCH_WANT_MMU_NOTIFIER
233 struct kvm_gfn_range {
234 struct kvm_memory_slot *slot;
235 gfn_t start;
236 gfn_t end;
237 pte_t pte;
238 bool may_block;
239 };
240 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
241 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
242 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
243 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
244 #endif
245
246 enum {
247 OUTSIDE_GUEST_MODE,
248 IN_GUEST_MODE,
249 EXITING_GUEST_MODE,
250 READING_SHADOW_PAGE_TABLES,
251 };
252
253 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA)
254
255 struct kvm_host_map {
256 /*
257 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
258 * a 'struct page' for it. When using mem= kernel parameter some memory
259 * can be used as guest memory but they are not managed by host
260 * kernel).
261 * If 'pfn' is not managed by the host kernel, this field is
262 * initialized to KVM_UNMAPPED_PAGE.
263 */
264 struct page *page;
265 void *hva;
266 kvm_pfn_t pfn;
267 kvm_pfn_t gfn;
268 };
269
270 /*
271 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
272 * directly to check for that.
273 */
kvm_vcpu_mapped(struct kvm_host_map * map)274 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
275 {
276 return !!map->hva;
277 }
278
kvm_vcpu_can_poll(ktime_t cur,ktime_t stop)279 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
280 {
281 return single_task_running() && !need_resched() && ktime_before(cur, stop);
282 }
283
284 /*
285 * Sometimes a large or cross-page mmio needs to be broken up into separate
286 * exits for userspace servicing.
287 */
288 struct kvm_mmio_fragment {
289 gpa_t gpa;
290 void *data;
291 unsigned len;
292 };
293
294 struct kvm_vcpu {
295 struct kvm *kvm;
296 #ifdef CONFIG_PREEMPT_NOTIFIERS
297 struct preempt_notifier preempt_notifier;
298 #endif
299 int cpu;
300 int vcpu_id; /* id given by userspace at creation */
301 int vcpu_idx; /* index in kvm->vcpus array */
302 int srcu_idx;
303 int mode;
304 u64 requests;
305 unsigned long guest_debug;
306
307 int pre_pcpu;
308 struct list_head blocked_vcpu_list;
309
310 struct mutex mutex;
311 struct kvm_run *run;
312
313 struct rcuwait wait;
314 struct pid __rcu *pid;
315 int sigset_active;
316 sigset_t sigset;
317 unsigned int halt_poll_ns;
318 bool valid_wakeup;
319
320 #ifdef CONFIG_HAS_IOMEM
321 int mmio_needed;
322 int mmio_read_completed;
323 int mmio_is_write;
324 int mmio_cur_fragment;
325 int mmio_nr_fragments;
326 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
327 #endif
328
329 #ifdef CONFIG_KVM_ASYNC_PF
330 struct {
331 u32 queued;
332 struct list_head queue;
333 struct list_head done;
334 spinlock_t lock;
335 } async_pf;
336 #endif
337
338 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
339 /*
340 * Cpu relax intercept or pause loop exit optimization
341 * in_spin_loop: set when a vcpu does a pause loop exit
342 * or cpu relax intercepted.
343 * dy_eligible: indicates whether vcpu is eligible for directed yield.
344 */
345 struct {
346 bool in_spin_loop;
347 bool dy_eligible;
348 } spin_loop;
349 #endif
350 bool preempted;
351 bool ready;
352 struct kvm_vcpu_arch arch;
353 struct kvm_vcpu_stat stat;
354 char stats_id[KVM_STATS_NAME_SIZE];
355 struct kvm_dirty_ring dirty_ring;
356
357 /*
358 * The index of the most recently used memslot by this vCPU. It's ok
359 * if this becomes stale due to memslot changes since we always check
360 * it is a valid slot.
361 */
362 int last_used_slot;
363 };
364
365 /* must be called with irqs disabled */
guest_enter_irqoff(void)366 static __always_inline void guest_enter_irqoff(void)
367 {
368 /*
369 * This is running in ioctl context so its safe to assume that it's the
370 * stime pending cputime to flush.
371 */
372 instrumentation_begin();
373 vtime_account_guest_enter();
374 instrumentation_end();
375
376 /*
377 * KVM does not hold any references to rcu protected data when it
378 * switches CPU into a guest mode. In fact switching to a guest mode
379 * is very similar to exiting to userspace from rcu point of view. In
380 * addition CPU may stay in a guest mode for quite a long time (up to
381 * one time slice). Lets treat guest mode as quiescent state, just like
382 * we do with user-mode execution.
383 */
384 if (!context_tracking_guest_enter()) {
385 instrumentation_begin();
386 rcu_virt_note_context_switch(smp_processor_id());
387 instrumentation_end();
388 }
389 }
390
guest_exit_irqoff(void)391 static __always_inline void guest_exit_irqoff(void)
392 {
393 context_tracking_guest_exit();
394
395 instrumentation_begin();
396 /* Flush the guest cputime we spent on the guest */
397 vtime_account_guest_exit();
398 instrumentation_end();
399 }
400
guest_exit(void)401 static inline void guest_exit(void)
402 {
403 unsigned long flags;
404
405 local_irq_save(flags);
406 guest_exit_irqoff();
407 local_irq_restore(flags);
408 }
409
kvm_vcpu_exiting_guest_mode(struct kvm_vcpu * vcpu)410 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
411 {
412 /*
413 * The memory barrier ensures a previous write to vcpu->requests cannot
414 * be reordered with the read of vcpu->mode. It pairs with the general
415 * memory barrier following the write of vcpu->mode in VCPU RUN.
416 */
417 smp_mb__before_atomic();
418 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
419 }
420
421 /*
422 * Some of the bitops functions do not support too long bitmaps.
423 * This number must be determined not to exceed such limits.
424 */
425 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
426
427 struct kvm_memory_slot {
428 gfn_t base_gfn;
429 unsigned long npages;
430 unsigned long *dirty_bitmap;
431 struct kvm_arch_memory_slot arch;
432 unsigned long userspace_addr;
433 u32 flags;
434 short id;
435 u16 as_id;
436 };
437
kvm_slot_dirty_track_enabled(struct kvm_memory_slot * slot)438 static inline bool kvm_slot_dirty_track_enabled(struct kvm_memory_slot *slot)
439 {
440 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
441 }
442
kvm_dirty_bitmap_bytes(struct kvm_memory_slot * memslot)443 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
444 {
445 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
446 }
447
kvm_second_dirty_bitmap(struct kvm_memory_slot * memslot)448 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
449 {
450 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
451
452 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
453 }
454
455 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
456 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
457 #endif
458
459 struct kvm_s390_adapter_int {
460 u64 ind_addr;
461 u64 summary_addr;
462 u64 ind_offset;
463 u32 summary_offset;
464 u32 adapter_id;
465 };
466
467 struct kvm_hv_sint {
468 u32 vcpu;
469 u32 sint;
470 };
471
472 struct kvm_kernel_irq_routing_entry {
473 u32 gsi;
474 u32 type;
475 int (*set)(struct kvm_kernel_irq_routing_entry *e,
476 struct kvm *kvm, int irq_source_id, int level,
477 bool line_status);
478 union {
479 struct {
480 unsigned irqchip;
481 unsigned pin;
482 } irqchip;
483 struct {
484 u32 address_lo;
485 u32 address_hi;
486 u32 data;
487 u32 flags;
488 u32 devid;
489 } msi;
490 struct kvm_s390_adapter_int adapter;
491 struct kvm_hv_sint hv_sint;
492 };
493 struct hlist_node link;
494 };
495
496 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
497 struct kvm_irq_routing_table {
498 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
499 u32 nr_rt_entries;
500 /*
501 * Array indexed by gsi. Each entry contains list of irq chips
502 * the gsi is connected to.
503 */
504 struct hlist_head map[];
505 };
506 #endif
507
508 #ifndef KVM_PRIVATE_MEM_SLOTS
509 #define KVM_PRIVATE_MEM_SLOTS 0
510 #endif
511
512 #define KVM_MEM_SLOTS_NUM SHRT_MAX
513 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_PRIVATE_MEM_SLOTS)
514
515 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
kvm_arch_vcpu_memslots_id(struct kvm_vcpu * vcpu)516 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
517 {
518 return 0;
519 }
520 #endif
521
522 /*
523 * Note:
524 * memslots are not sorted by id anymore, please use id_to_memslot()
525 * to get the memslot by its id.
526 */
527 struct kvm_memslots {
528 u64 generation;
529 /* The mapping table from slot id to the index in memslots[]. */
530 short id_to_index[KVM_MEM_SLOTS_NUM];
531 atomic_t last_used_slot;
532 int used_slots;
533 struct kvm_memory_slot memslots[];
534 };
535
536 struct kvm {
537 #ifdef KVM_HAVE_MMU_RWLOCK
538 rwlock_t mmu_lock;
539 #else
540 spinlock_t mmu_lock;
541 #endif /* KVM_HAVE_MMU_RWLOCK */
542
543 struct mutex slots_lock;
544
545 /*
546 * Protects the arch-specific fields of struct kvm_memory_slots in
547 * use by the VM. To be used under the slots_lock (above) or in a
548 * kvm->srcu critical section where acquiring the slots_lock would
549 * lead to deadlock with the synchronize_srcu in
550 * install_new_memslots.
551 */
552 struct mutex slots_arch_lock;
553 struct mm_struct *mm; /* userspace tied to this vm */
554 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
555 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
556
557 /* Used to wait for completion of MMU notifiers. */
558 spinlock_t mn_invalidate_lock;
559 unsigned long mn_active_invalidate_count;
560 struct rcuwait mn_memslots_update_rcuwait;
561
562 /*
563 * created_vcpus is protected by kvm->lock, and is incremented
564 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
565 * incremented after storing the kvm_vcpu pointer in vcpus,
566 * and is accessed atomically.
567 */
568 atomic_t online_vcpus;
569 int created_vcpus;
570 int last_boosted_vcpu;
571 struct list_head vm_list;
572 struct mutex lock;
573 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
574 #ifdef CONFIG_HAVE_KVM_EVENTFD
575 struct {
576 spinlock_t lock;
577 struct list_head items;
578 struct list_head resampler_list;
579 struct mutex resampler_lock;
580 } irqfds;
581 struct list_head ioeventfds;
582 #endif
583 struct kvm_vm_stat stat;
584 struct kvm_arch arch;
585 refcount_t users_count;
586 #ifdef CONFIG_KVM_MMIO
587 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
588 spinlock_t ring_lock;
589 struct list_head coalesced_zones;
590 #endif
591
592 struct mutex irq_lock;
593 #ifdef CONFIG_HAVE_KVM_IRQCHIP
594 /*
595 * Update side is protected by irq_lock.
596 */
597 struct kvm_irq_routing_table __rcu *irq_routing;
598 #endif
599 #ifdef CONFIG_HAVE_KVM_IRQFD
600 struct hlist_head irq_ack_notifier_list;
601 #endif
602
603 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
604 struct mmu_notifier mmu_notifier;
605 unsigned long mmu_notifier_seq;
606 long mmu_notifier_count;
607 unsigned long mmu_notifier_range_start;
608 unsigned long mmu_notifier_range_end;
609 #endif
610 struct list_head devices;
611 u64 manual_dirty_log_protect;
612 struct dentry *debugfs_dentry;
613 struct kvm_stat_data **debugfs_stat_data;
614 struct srcu_struct srcu;
615 struct srcu_struct irq_srcu;
616 pid_t userspace_pid;
617 unsigned int max_halt_poll_ns;
618 u32 dirty_ring_size;
619 bool vm_bugged;
620 bool vm_dead;
621
622 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
623 struct notifier_block pm_notifier;
624 #endif
625 char stats_id[KVM_STATS_NAME_SIZE];
626 };
627
628 #define kvm_err(fmt, ...) \
629 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
630 #define kvm_info(fmt, ...) \
631 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
632 #define kvm_debug(fmt, ...) \
633 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
634 #define kvm_debug_ratelimited(fmt, ...) \
635 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
636 ## __VA_ARGS__)
637 #define kvm_pr_unimpl(fmt, ...) \
638 pr_err_ratelimited("kvm [%i]: " fmt, \
639 task_tgid_nr(current), ## __VA_ARGS__)
640
641 /* The guest did something we don't support. */
642 #define vcpu_unimpl(vcpu, fmt, ...) \
643 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
644 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
645
646 #define vcpu_debug(vcpu, fmt, ...) \
647 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
648 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \
649 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
650 ## __VA_ARGS__)
651 #define vcpu_err(vcpu, fmt, ...) \
652 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
653
kvm_vm_dead(struct kvm * kvm)654 static inline void kvm_vm_dead(struct kvm *kvm)
655 {
656 kvm->vm_dead = true;
657 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
658 }
659
kvm_vm_bugged(struct kvm * kvm)660 static inline void kvm_vm_bugged(struct kvm *kvm)
661 {
662 kvm->vm_bugged = true;
663 kvm_vm_dead(kvm);
664 }
665
666
667 #define KVM_BUG(cond, kvm, fmt...) \
668 ({ \
669 int __ret = (cond); \
670 \
671 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \
672 kvm_vm_bugged(kvm); \
673 unlikely(__ret); \
674 })
675
676 #define KVM_BUG_ON(cond, kvm) \
677 ({ \
678 int __ret = (cond); \
679 \
680 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
681 kvm_vm_bugged(kvm); \
682 unlikely(__ret); \
683 })
684
kvm_dirty_log_manual_protect_and_init_set(struct kvm * kvm)685 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
686 {
687 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
688 }
689
kvm_get_bus(struct kvm * kvm,enum kvm_bus idx)690 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
691 {
692 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
693 lockdep_is_held(&kvm->slots_lock) ||
694 !refcount_read(&kvm->users_count));
695 }
696
kvm_get_vcpu(struct kvm * kvm,int i)697 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
698 {
699 int num_vcpus = atomic_read(&kvm->online_vcpus);
700 i = array_index_nospec(i, num_vcpus);
701
702 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
703 smp_rmb();
704 return kvm->vcpus[i];
705 }
706
707 #define kvm_for_each_vcpu(idx, vcpup, kvm) \
708 for (idx = 0; \
709 idx < atomic_read(&kvm->online_vcpus) && \
710 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
711 idx++)
712
kvm_get_vcpu_by_id(struct kvm * kvm,int id)713 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
714 {
715 struct kvm_vcpu *vcpu = NULL;
716 int i;
717
718 if (id < 0)
719 return NULL;
720 if (id < KVM_MAX_VCPUS)
721 vcpu = kvm_get_vcpu(kvm, id);
722 if (vcpu && vcpu->vcpu_id == id)
723 return vcpu;
724 kvm_for_each_vcpu(i, vcpu, kvm)
725 if (vcpu->vcpu_id == id)
726 return vcpu;
727 return NULL;
728 }
729
730 #define kvm_for_each_memslot(memslot, slots) \
731 for (memslot = &slots->memslots[0]; \
732 memslot < slots->memslots + slots->used_slots; memslot++) \
733 if (WARN_ON_ONCE(!memslot->npages)) { \
734 } else
735
736 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu);
737
738 void vcpu_load(struct kvm_vcpu *vcpu);
739 void vcpu_put(struct kvm_vcpu *vcpu);
740
741 #ifdef __KVM_HAVE_IOAPIC
742 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
743 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
744 #else
kvm_arch_post_irq_ack_notifier_list_update(struct kvm * kvm)745 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
746 {
747 }
kvm_arch_post_irq_routing_update(struct kvm * kvm)748 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
749 {
750 }
751 #endif
752
753 #ifdef CONFIG_HAVE_KVM_IRQFD
754 int kvm_irqfd_init(void);
755 void kvm_irqfd_exit(void);
756 #else
kvm_irqfd_init(void)757 static inline int kvm_irqfd_init(void)
758 {
759 return 0;
760 }
761
kvm_irqfd_exit(void)762 static inline void kvm_irqfd_exit(void)
763 {
764 }
765 #endif
766 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
767 struct module *module);
768 void kvm_exit(void);
769
770 void kvm_get_kvm(struct kvm *kvm);
771 bool kvm_get_kvm_safe(struct kvm *kvm);
772 void kvm_put_kvm(struct kvm *kvm);
773 bool file_is_kvm(struct file *file);
774 void kvm_put_kvm_no_destroy(struct kvm *kvm);
775
__kvm_memslots(struct kvm * kvm,int as_id)776 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
777 {
778 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
779 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
780 lockdep_is_held(&kvm->slots_lock) ||
781 !refcount_read(&kvm->users_count));
782 }
783
kvm_memslots(struct kvm * kvm)784 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
785 {
786 return __kvm_memslots(kvm, 0);
787 }
788
kvm_vcpu_memslots(struct kvm_vcpu * vcpu)789 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
790 {
791 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
792
793 return __kvm_memslots(vcpu->kvm, as_id);
794 }
795
796 static inline
id_to_memslot(struct kvm_memslots * slots,int id)797 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
798 {
799 int index = slots->id_to_index[id];
800 struct kvm_memory_slot *slot;
801
802 if (index < 0)
803 return NULL;
804
805 slot = &slots->memslots[index];
806
807 WARN_ON(slot->id != id);
808 return slot;
809 }
810
811 /*
812 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
813 * - create a new memory slot
814 * - delete an existing memory slot
815 * - modify an existing memory slot
816 * -- move it in the guest physical memory space
817 * -- just change its flags
818 *
819 * Since flags can be changed by some of these operations, the following
820 * differentiation is the best we can do for __kvm_set_memory_region():
821 */
822 enum kvm_mr_change {
823 KVM_MR_CREATE,
824 KVM_MR_DELETE,
825 KVM_MR_MOVE,
826 KVM_MR_FLAGS_ONLY,
827 };
828
829 int kvm_set_memory_region(struct kvm *kvm,
830 const struct kvm_userspace_memory_region *mem);
831 int __kvm_set_memory_region(struct kvm *kvm,
832 const struct kvm_userspace_memory_region *mem);
833 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
834 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
835 int kvm_arch_prepare_memory_region(struct kvm *kvm,
836 struct kvm_memory_slot *memslot,
837 const struct kvm_userspace_memory_region *mem,
838 enum kvm_mr_change change);
839 void kvm_arch_commit_memory_region(struct kvm *kvm,
840 const struct kvm_userspace_memory_region *mem,
841 struct kvm_memory_slot *old,
842 const struct kvm_memory_slot *new,
843 enum kvm_mr_change change);
844 /* flush all memory translations */
845 void kvm_arch_flush_shadow_all(struct kvm *kvm);
846 /* flush memory translations pointing to 'slot' */
847 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
848 struct kvm_memory_slot *slot);
849
850 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
851 struct page **pages, int nr_pages);
852
853 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
854 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
855 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
856 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
857 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
858 bool *writable);
859 void kvm_release_page_clean(struct page *page);
860 void kvm_release_page_dirty(struct page *page);
861 void kvm_set_page_accessed(struct page *page);
862
863 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
864 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
865 bool *writable);
866 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
867 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
868 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
869 bool atomic, bool *async, bool write_fault,
870 bool *writable, hva_t *hva);
871
872 void kvm_release_pfn_clean(kvm_pfn_t pfn);
873 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
874 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
875 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
876
877 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty);
878 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
879 int len);
880 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
881 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
882 void *data, unsigned long len);
883 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
884 void *data, unsigned int offset,
885 unsigned long len);
886 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
887 int offset, int len);
888 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
889 unsigned long len);
890 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
891 void *data, unsigned long len);
892 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
893 void *data, unsigned int offset,
894 unsigned long len);
895 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
896 gpa_t gpa, unsigned long len);
897
898 #define __kvm_get_guest(kvm, gfn, offset, v) \
899 ({ \
900 unsigned long __addr = gfn_to_hva(kvm, gfn); \
901 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
902 int __ret = -EFAULT; \
903 \
904 if (!kvm_is_error_hva(__addr)) \
905 __ret = get_user(v, __uaddr); \
906 __ret; \
907 })
908
909 #define kvm_get_guest(kvm, gpa, v) \
910 ({ \
911 gpa_t __gpa = gpa; \
912 struct kvm *__kvm = kvm; \
913 \
914 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \
915 offset_in_page(__gpa), v); \
916 })
917
918 #define __kvm_put_guest(kvm, gfn, offset, v) \
919 ({ \
920 unsigned long __addr = gfn_to_hva(kvm, gfn); \
921 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
922 int __ret = -EFAULT; \
923 \
924 if (!kvm_is_error_hva(__addr)) \
925 __ret = put_user(v, __uaddr); \
926 if (!__ret) \
927 mark_page_dirty(kvm, gfn); \
928 __ret; \
929 })
930
931 #define kvm_put_guest(kvm, gpa, v) \
932 ({ \
933 gpa_t __gpa = gpa; \
934 struct kvm *__kvm = kvm; \
935 \
936 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \
937 offset_in_page(__gpa), v); \
938 })
939
940 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
941 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
942 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
943 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
944 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
945 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, gfn_t gfn);
946 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
947
948 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
949 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
950 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
951 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
952 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
953 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
954 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
955 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
956 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
957 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
958 int len);
959 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
960 unsigned long len);
961 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
962 unsigned long len);
963 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
964 int offset, int len);
965 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
966 unsigned long len);
967 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
968
969 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
970 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
971
972 void kvm_vcpu_block(struct kvm_vcpu *vcpu);
973 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
974 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
975 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
976 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
977 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
978 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
979
980 void kvm_flush_remote_tlbs(struct kvm *kvm);
981 void kvm_reload_remote_mmus(struct kvm *kvm);
982
983 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
984 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
985 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
986 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
987 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
988 #endif
989
990 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
991 unsigned long end);
992 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
993 unsigned long end);
994
995 long kvm_arch_dev_ioctl(struct file *filp,
996 unsigned int ioctl, unsigned long arg);
997 long kvm_arch_vcpu_ioctl(struct file *filp,
998 unsigned int ioctl, unsigned long arg);
999 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1000
1001 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1002
1003 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1004 struct kvm_memory_slot *slot,
1005 gfn_t gfn_offset,
1006 unsigned long mask);
1007 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1008
1009 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1010 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1011 const struct kvm_memory_slot *memslot);
1012 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1013 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1014 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1015 int *is_dirty, struct kvm_memory_slot **memslot);
1016 #endif
1017
1018 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1019 bool line_status);
1020 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1021 struct kvm_enable_cap *cap);
1022 long kvm_arch_vm_ioctl(struct file *filp,
1023 unsigned int ioctl, unsigned long arg);
1024
1025 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1026 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1027
1028 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1029 struct kvm_translation *tr);
1030
1031 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1032 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1033 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1034 struct kvm_sregs *sregs);
1035 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1036 struct kvm_sregs *sregs);
1037 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1038 struct kvm_mp_state *mp_state);
1039 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1040 struct kvm_mp_state *mp_state);
1041 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1042 struct kvm_guest_debug *dbg);
1043 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1044
1045 int kvm_arch_init(void *opaque);
1046 void kvm_arch_exit(void);
1047
1048 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
1049
1050 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1051 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1052 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1053 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1054 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1055 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1056
1057 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1058 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1059 #endif
1060
1061 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1062 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1063 #endif
1064
1065 int kvm_arch_hardware_enable(void);
1066 void kvm_arch_hardware_disable(void);
1067 int kvm_arch_hardware_setup(void *opaque);
1068 void kvm_arch_hardware_unsetup(void);
1069 int kvm_arch_check_processor_compat(void *opaque);
1070 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1071 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1072 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1073 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1074 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1075 int kvm_arch_post_init_vm(struct kvm *kvm);
1076 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1077 int kvm_arch_create_vm_debugfs(struct kvm *kvm);
1078
1079 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1080 /*
1081 * All architectures that want to use vzalloc currently also
1082 * need their own kvm_arch_alloc_vm implementation.
1083 */
kvm_arch_alloc_vm(void)1084 static inline struct kvm *kvm_arch_alloc_vm(void)
1085 {
1086 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
1087 }
1088 #endif
1089
__kvm_arch_free_vm(struct kvm * kvm)1090 static inline void __kvm_arch_free_vm(struct kvm *kvm)
1091 {
1092 kvfree(kvm);
1093 }
1094
1095 #ifndef __KVM_HAVE_ARCH_VM_FREE
kvm_arch_free_vm(struct kvm * kvm)1096 static inline void kvm_arch_free_vm(struct kvm *kvm)
1097 {
1098 __kvm_arch_free_vm(kvm);
1099 }
1100 #endif
1101
1102 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
kvm_arch_flush_remote_tlb(struct kvm * kvm)1103 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1104 {
1105 return -ENOTSUPP;
1106 }
1107 #endif
1108
1109 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1110 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1111 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1112 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1113 #else
kvm_arch_register_noncoherent_dma(struct kvm * kvm)1114 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1115 {
1116 }
1117
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)1118 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1119 {
1120 }
1121
kvm_arch_has_noncoherent_dma(struct kvm * kvm)1122 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1123 {
1124 return false;
1125 }
1126 #endif
1127 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1128 void kvm_arch_start_assignment(struct kvm *kvm);
1129 void kvm_arch_end_assignment(struct kvm *kvm);
1130 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1131 #else
kvm_arch_start_assignment(struct kvm * kvm)1132 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1133 {
1134 }
1135
kvm_arch_end_assignment(struct kvm * kvm)1136 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1137 {
1138 }
1139
kvm_arch_has_assigned_device(struct kvm * kvm)1140 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1141 {
1142 return false;
1143 }
1144 #endif
1145
kvm_arch_vcpu_get_wait(struct kvm_vcpu * vcpu)1146 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1147 {
1148 #ifdef __KVM_HAVE_ARCH_WQP
1149 return vcpu->arch.waitp;
1150 #else
1151 return &vcpu->wait;
1152 #endif
1153 }
1154
1155 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1156 /*
1157 * returns true if the virtual interrupt controller is initialized and
1158 * ready to accept virtual IRQ. On some architectures the virtual interrupt
1159 * controller is dynamically instantiated and this is not always true.
1160 */
1161 bool kvm_arch_intc_initialized(struct kvm *kvm);
1162 #else
kvm_arch_intc_initialized(struct kvm * kvm)1163 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1164 {
1165 return true;
1166 }
1167 #endif
1168
1169 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1170 void kvm_arch_destroy_vm(struct kvm *kvm);
1171 void kvm_arch_sync_events(struct kvm *kvm);
1172
1173 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1174
1175 bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
1176 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn);
1177 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn);
1178
1179 struct kvm_irq_ack_notifier {
1180 struct hlist_node link;
1181 unsigned gsi;
1182 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1183 };
1184
1185 int kvm_irq_map_gsi(struct kvm *kvm,
1186 struct kvm_kernel_irq_routing_entry *entries, int gsi);
1187 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1188
1189 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1190 bool line_status);
1191 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1192 int irq_source_id, int level, bool line_status);
1193 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1194 struct kvm *kvm, int irq_source_id,
1195 int level, bool line_status);
1196 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1197 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1198 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1199 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1200 struct kvm_irq_ack_notifier *kian);
1201 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1202 struct kvm_irq_ack_notifier *kian);
1203 int kvm_request_irq_source_id(struct kvm *kvm);
1204 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1205 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1206
1207 /*
1208 * Returns a pointer to the memslot at slot_index if it contains gfn.
1209 * Otherwise returns NULL.
1210 */
1211 static inline struct kvm_memory_slot *
try_get_memslot(struct kvm_memslots * slots,int slot_index,gfn_t gfn)1212 try_get_memslot(struct kvm_memslots *slots, int slot_index, gfn_t gfn)
1213 {
1214 struct kvm_memory_slot *slot;
1215
1216 if (slot_index < 0 || slot_index >= slots->used_slots)
1217 return NULL;
1218
1219 /*
1220 * slot_index can come from vcpu->last_used_slot which is not kept
1221 * in sync with userspace-controllable memslot deletion. So use nospec
1222 * to prevent the CPU from speculating past the end of memslots[].
1223 */
1224 slot_index = array_index_nospec(slot_index, slots->used_slots);
1225 slot = &slots->memslots[slot_index];
1226
1227 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1228 return slot;
1229 else
1230 return NULL;
1231 }
1232
1233 /*
1234 * Returns a pointer to the memslot that contains gfn and records the index of
1235 * the slot in index. Otherwise returns NULL.
1236 *
1237 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!
1238 */
1239 static inline struct kvm_memory_slot *
search_memslots(struct kvm_memslots * slots,gfn_t gfn,int * index)1240 search_memslots(struct kvm_memslots *slots, gfn_t gfn, int *index)
1241 {
1242 int start = 0, end = slots->used_slots;
1243 struct kvm_memory_slot *memslots = slots->memslots;
1244 struct kvm_memory_slot *slot;
1245
1246 if (unlikely(!slots->used_slots))
1247 return NULL;
1248
1249 while (start < end) {
1250 int slot = start + (end - start) / 2;
1251
1252 if (gfn >= memslots[slot].base_gfn)
1253 end = slot;
1254 else
1255 start = slot + 1;
1256 }
1257
1258 slot = try_get_memslot(slots, start, gfn);
1259 if (slot) {
1260 *index = start;
1261 return slot;
1262 }
1263
1264 return NULL;
1265 }
1266
1267 /*
1268 * __gfn_to_memslot() and its descendants are here because it is called from
1269 * non-modular code in arch/powerpc/kvm/book3s_64_vio{,_hv}.c. gfn_to_memslot()
1270 * itself isn't here as an inline because that would bloat other code too much.
1271 */
1272 static inline struct kvm_memory_slot *
__gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn)1273 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1274 {
1275 struct kvm_memory_slot *slot;
1276 int slot_index = atomic_read(&slots->last_used_slot);
1277
1278 slot = try_get_memslot(slots, slot_index, gfn);
1279 if (slot)
1280 return slot;
1281
1282 slot = search_memslots(slots, gfn, &slot_index);
1283 if (slot) {
1284 atomic_set(&slots->last_used_slot, slot_index);
1285 return slot;
1286 }
1287
1288 return NULL;
1289 }
1290
1291 static inline unsigned long
__gfn_to_hva_memslot(const struct kvm_memory_slot * slot,gfn_t gfn)1292 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1293 {
1294 /*
1295 * The index was checked originally in search_memslots. To avoid
1296 * that a malicious guest builds a Spectre gadget out of e.g. page
1297 * table walks, do not let the processor speculate loads outside
1298 * the guest's registered memslots.
1299 */
1300 unsigned long offset = gfn - slot->base_gfn;
1301 offset = array_index_nospec(offset, slot->npages);
1302 return slot->userspace_addr + offset * PAGE_SIZE;
1303 }
1304
memslot_id(struct kvm * kvm,gfn_t gfn)1305 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1306 {
1307 return gfn_to_memslot(kvm, gfn)->id;
1308 }
1309
1310 static inline gfn_t
hva_to_gfn_memslot(unsigned long hva,struct kvm_memory_slot * slot)1311 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1312 {
1313 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1314
1315 return slot->base_gfn + gfn_offset;
1316 }
1317
gfn_to_gpa(gfn_t gfn)1318 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1319 {
1320 return (gpa_t)gfn << PAGE_SHIFT;
1321 }
1322
gpa_to_gfn(gpa_t gpa)1323 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1324 {
1325 return (gfn_t)(gpa >> PAGE_SHIFT);
1326 }
1327
pfn_to_hpa(kvm_pfn_t pfn)1328 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1329 {
1330 return (hpa_t)pfn << PAGE_SHIFT;
1331 }
1332
kvm_vcpu_gpa_to_page(struct kvm_vcpu * vcpu,gpa_t gpa)1333 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1334 gpa_t gpa)
1335 {
1336 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1337 }
1338
kvm_is_error_gpa(struct kvm * kvm,gpa_t gpa)1339 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1340 {
1341 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1342
1343 return kvm_is_error_hva(hva);
1344 }
1345
1346 enum kvm_stat_kind {
1347 KVM_STAT_VM,
1348 KVM_STAT_VCPU,
1349 };
1350
1351 struct kvm_stat_data {
1352 struct kvm *kvm;
1353 const struct _kvm_stats_desc *desc;
1354 enum kvm_stat_kind kind;
1355 };
1356
1357 struct _kvm_stats_desc {
1358 struct kvm_stats_desc desc;
1359 char name[KVM_STATS_NAME_SIZE];
1360 };
1361
1362 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \
1363 .flags = type | unit | base | \
1364 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \
1365 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \
1366 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \
1367 .exponent = exp, \
1368 .size = sz, \
1369 .bucket_size = bsz
1370
1371 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1372 { \
1373 { \
1374 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1375 .offset = offsetof(struct kvm_vm_stat, generic.stat) \
1376 }, \
1377 .name = #stat, \
1378 }
1379 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1380 { \
1381 { \
1382 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1383 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1384 }, \
1385 .name = #stat, \
1386 }
1387 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1388 { \
1389 { \
1390 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1391 .offset = offsetof(struct kvm_vm_stat, stat) \
1392 }, \
1393 .name = #stat, \
1394 }
1395 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1396 { \
1397 { \
1398 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1399 .offset = offsetof(struct kvm_vcpu_stat, stat) \
1400 }, \
1401 .name = #stat, \
1402 }
1403 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1404 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \
1405 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1406
1407 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \
1408 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \
1409 unit, base, exponent, 1, 0)
1410 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \
1411 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \
1412 unit, base, exponent, 1, 0)
1413 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \
1414 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \
1415 unit, base, exponent, 1, 0)
1416 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \
1417 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \
1418 unit, base, exponent, sz, bsz)
1419 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \
1420 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \
1421 unit, base, exponent, sz, 0)
1422
1423 /* Cumulative counter, read/write */
1424 #define STATS_DESC_COUNTER(SCOPE, name) \
1425 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \
1426 KVM_STATS_BASE_POW10, 0)
1427 /* Instantaneous counter, read only */
1428 #define STATS_DESC_ICOUNTER(SCOPE, name) \
1429 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \
1430 KVM_STATS_BASE_POW10, 0)
1431 /* Peak counter, read/write */
1432 #define STATS_DESC_PCOUNTER(SCOPE, name) \
1433 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \
1434 KVM_STATS_BASE_POW10, 0)
1435
1436 /* Cumulative time in nanosecond */
1437 #define STATS_DESC_TIME_NSEC(SCOPE, name) \
1438 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1439 KVM_STATS_BASE_POW10, -9)
1440 /* Linear histogram for time in nanosecond */
1441 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \
1442 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1443 KVM_STATS_BASE_POW10, -9, sz, bsz)
1444 /* Logarithmic histogram for time in nanosecond */
1445 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \
1446 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1447 KVM_STATS_BASE_POW10, -9, sz)
1448
1449 #define KVM_GENERIC_VM_STATS() \
1450 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \
1451 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
1452
1453 #define KVM_GENERIC_VCPU_STATS() \
1454 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \
1455 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \
1456 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \
1457 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \
1458 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \
1459 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \
1460 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \
1461 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \
1462 HALT_POLL_HIST_COUNT), \
1463 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \
1464 HALT_POLL_HIST_COUNT), \
1465 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \
1466 HALT_POLL_HIST_COUNT)
1467
1468 extern struct dentry *kvm_debugfs_dir;
1469
1470 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
1471 const struct _kvm_stats_desc *desc,
1472 void *stats, size_t size_stats,
1473 char __user *user_buffer, size_t size, loff_t *offset);
1474
1475 /**
1476 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
1477 * statistics data.
1478 *
1479 * @data: start address of the stats data
1480 * @size: the number of bucket of the stats data
1481 * @value: the new value used to update the linear histogram's bucket
1482 * @bucket_size: the size (width) of a bucket
1483 */
kvm_stats_linear_hist_update(u64 * data,size_t size,u64 value,size_t bucket_size)1484 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
1485 u64 value, size_t bucket_size)
1486 {
1487 size_t index = div64_u64(value, bucket_size);
1488
1489 index = min(index, size - 1);
1490 ++data[index];
1491 }
1492
1493 /**
1494 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
1495 * statistics data.
1496 *
1497 * @data: start address of the stats data
1498 * @size: the number of bucket of the stats data
1499 * @value: the new value used to update the logarithmic histogram's bucket
1500 */
kvm_stats_log_hist_update(u64 * data,size_t size,u64 value)1501 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
1502 {
1503 size_t index = fls64(value);
1504
1505 index = min(index, size - 1);
1506 ++data[index];
1507 }
1508
1509 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \
1510 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
1511 #define KVM_STATS_LOG_HIST_UPDATE(array, value) \
1512 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
1513
1514
1515 extern const struct kvm_stats_header kvm_vm_stats_header;
1516 extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
1517 extern const struct kvm_stats_header kvm_vcpu_stats_header;
1518 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
1519
1520 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_notifier_retry(struct kvm * kvm,unsigned long mmu_seq)1521 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1522 {
1523 if (unlikely(kvm->mmu_notifier_count))
1524 return 1;
1525 /*
1526 * Ensure the read of mmu_notifier_count happens before the read
1527 * of mmu_notifier_seq. This interacts with the smp_wmb() in
1528 * mmu_notifier_invalidate_range_end to make sure that the caller
1529 * either sees the old (non-zero) value of mmu_notifier_count or
1530 * the new (incremented) value of mmu_notifier_seq.
1531 * PowerPC Book3s HV KVM calls this under a per-page lock
1532 * rather than under kvm->mmu_lock, for scalability, so
1533 * can't rely on kvm->mmu_lock to keep things ordered.
1534 */
1535 smp_rmb();
1536 if (kvm->mmu_notifier_seq != mmu_seq)
1537 return 1;
1538 return 0;
1539 }
1540
mmu_notifier_retry_hva(struct kvm * kvm,unsigned long mmu_seq,unsigned long hva)1541 static inline int mmu_notifier_retry_hva(struct kvm *kvm,
1542 unsigned long mmu_seq,
1543 unsigned long hva)
1544 {
1545 lockdep_assert_held(&kvm->mmu_lock);
1546 /*
1547 * If mmu_notifier_count is non-zero, then the range maintained by
1548 * kvm_mmu_notifier_invalidate_range_start contains all addresses that
1549 * might be being invalidated. Note that it may include some false
1550 * positives, due to shortcuts when handing concurrent invalidations.
1551 */
1552 if (unlikely(kvm->mmu_notifier_count) &&
1553 hva >= kvm->mmu_notifier_range_start &&
1554 hva < kvm->mmu_notifier_range_end)
1555 return 1;
1556 if (kvm->mmu_notifier_seq != mmu_seq)
1557 return 1;
1558 return 0;
1559 }
1560 #endif
1561
1562 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1563
1564 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1565
1566 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1567 int kvm_set_irq_routing(struct kvm *kvm,
1568 const struct kvm_irq_routing_entry *entries,
1569 unsigned nr,
1570 unsigned flags);
1571 int kvm_set_routing_entry(struct kvm *kvm,
1572 struct kvm_kernel_irq_routing_entry *e,
1573 const struct kvm_irq_routing_entry *ue);
1574 void kvm_free_irq_routing(struct kvm *kvm);
1575
1576 #else
1577
kvm_free_irq_routing(struct kvm * kvm)1578 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1579
1580 #endif
1581
1582 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1583
1584 #ifdef CONFIG_HAVE_KVM_EVENTFD
1585
1586 void kvm_eventfd_init(struct kvm *kvm);
1587 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1588
1589 #ifdef CONFIG_HAVE_KVM_IRQFD
1590 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1591 void kvm_irqfd_release(struct kvm *kvm);
1592 void kvm_irq_routing_update(struct kvm *);
1593 #else
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)1594 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1595 {
1596 return -EINVAL;
1597 }
1598
kvm_irqfd_release(struct kvm * kvm)1599 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1600 #endif
1601
1602 #else
1603
kvm_eventfd_init(struct kvm * kvm)1604 static inline void kvm_eventfd_init(struct kvm *kvm) {}
1605
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)1606 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1607 {
1608 return -EINVAL;
1609 }
1610
kvm_irqfd_release(struct kvm * kvm)1611 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1612
1613 #ifdef CONFIG_HAVE_KVM_IRQCHIP
kvm_irq_routing_update(struct kvm * kvm)1614 static inline void kvm_irq_routing_update(struct kvm *kvm)
1615 {
1616 }
1617 #endif
1618
kvm_ioeventfd(struct kvm * kvm,struct kvm_ioeventfd * args)1619 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1620 {
1621 return -ENOSYS;
1622 }
1623
1624 #endif /* CONFIG_HAVE_KVM_EVENTFD */
1625
1626 void kvm_arch_irq_routing_update(struct kvm *kvm);
1627
kvm_make_request(int req,struct kvm_vcpu * vcpu)1628 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1629 {
1630 /*
1631 * Ensure the rest of the request is published to kvm_check_request's
1632 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
1633 */
1634 smp_wmb();
1635 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1636 }
1637
kvm_request_pending(struct kvm_vcpu * vcpu)1638 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1639 {
1640 return READ_ONCE(vcpu->requests);
1641 }
1642
kvm_test_request(int req,struct kvm_vcpu * vcpu)1643 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1644 {
1645 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1646 }
1647
kvm_clear_request(int req,struct kvm_vcpu * vcpu)1648 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1649 {
1650 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1651 }
1652
kvm_check_request(int req,struct kvm_vcpu * vcpu)1653 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1654 {
1655 if (kvm_test_request(req, vcpu)) {
1656 kvm_clear_request(req, vcpu);
1657
1658 /*
1659 * Ensure the rest of the request is visible to kvm_check_request's
1660 * caller. Paired with the smp_wmb in kvm_make_request.
1661 */
1662 smp_mb__after_atomic();
1663 return true;
1664 } else {
1665 return false;
1666 }
1667 }
1668
1669 extern bool kvm_rebooting;
1670
1671 extern unsigned int halt_poll_ns;
1672 extern unsigned int halt_poll_ns_grow;
1673 extern unsigned int halt_poll_ns_grow_start;
1674 extern unsigned int halt_poll_ns_shrink;
1675
1676 struct kvm_device {
1677 const struct kvm_device_ops *ops;
1678 struct kvm *kvm;
1679 void *private;
1680 struct list_head vm_node;
1681 };
1682
1683 /* create, destroy, and name are mandatory */
1684 struct kvm_device_ops {
1685 const char *name;
1686
1687 /*
1688 * create is called holding kvm->lock and any operations not suitable
1689 * to do while holding the lock should be deferred to init (see
1690 * below).
1691 */
1692 int (*create)(struct kvm_device *dev, u32 type);
1693
1694 /*
1695 * init is called after create if create is successful and is called
1696 * outside of holding kvm->lock.
1697 */
1698 void (*init)(struct kvm_device *dev);
1699
1700 /*
1701 * Destroy is responsible for freeing dev.
1702 *
1703 * Destroy may be called before or after destructors are called
1704 * on emulated I/O regions, depending on whether a reference is
1705 * held by a vcpu or other kvm component that gets destroyed
1706 * after the emulated I/O.
1707 */
1708 void (*destroy)(struct kvm_device *dev);
1709
1710 /*
1711 * Release is an alternative method to free the device. It is
1712 * called when the device file descriptor is closed. Once
1713 * release is called, the destroy method will not be called
1714 * anymore as the device is removed from the device list of
1715 * the VM. kvm->lock is held.
1716 */
1717 void (*release)(struct kvm_device *dev);
1718
1719 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1720 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1721 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1722 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1723 unsigned long arg);
1724 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
1725 };
1726
1727 void kvm_device_get(struct kvm_device *dev);
1728 void kvm_device_put(struct kvm_device *dev);
1729 struct kvm_device *kvm_device_from_filp(struct file *filp);
1730 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
1731 void kvm_unregister_device_ops(u32 type);
1732
1733 extern struct kvm_device_ops kvm_mpic_ops;
1734 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1735 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1736
1737 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1738
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)1739 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1740 {
1741 vcpu->spin_loop.in_spin_loop = val;
1742 }
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)1743 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1744 {
1745 vcpu->spin_loop.dy_eligible = val;
1746 }
1747
1748 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1749
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)1750 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1751 {
1752 }
1753
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)1754 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1755 {
1756 }
1757 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1758
kvm_is_visible_memslot(struct kvm_memory_slot * memslot)1759 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
1760 {
1761 return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
1762 !(memslot->flags & KVM_MEMSLOT_INVALID));
1763 }
1764
1765 struct kvm_vcpu *kvm_get_running_vcpu(void);
1766 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
1767
1768 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1769 bool kvm_arch_has_irq_bypass(void);
1770 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1771 struct irq_bypass_producer *);
1772 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1773 struct irq_bypass_producer *);
1774 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1775 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1776 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1777 uint32_t guest_irq, bool set);
1778 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
1779 struct kvm_kernel_irq_routing_entry *);
1780 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1781
1782 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1783 /* If we wakeup during the poll time, was it a sucessful poll? */
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)1784 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1785 {
1786 return vcpu->valid_wakeup;
1787 }
1788
1789 #else
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)1790 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1791 {
1792 return true;
1793 }
1794 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1795
1796 #ifdef CONFIG_HAVE_KVM_NO_POLL
1797 /* Callback that tells if we must not poll */
1798 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
1799 #else
kvm_arch_no_poll(struct kvm_vcpu * vcpu)1800 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
1801 {
1802 return false;
1803 }
1804 #endif /* CONFIG_HAVE_KVM_NO_POLL */
1805
1806 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
1807 long kvm_arch_vcpu_async_ioctl(struct file *filp,
1808 unsigned int ioctl, unsigned long arg);
1809 #else
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1810 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
1811 unsigned int ioctl,
1812 unsigned long arg)
1813 {
1814 return -ENOIOCTLCMD;
1815 }
1816 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
1817
1818 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
1819 unsigned long start, unsigned long end);
1820
1821 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
1822 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
1823 #else
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)1824 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
1825 {
1826 return 0;
1827 }
1828 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
1829
1830 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
1831
1832 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
1833 uintptr_t data, const char *name,
1834 struct task_struct **thread_ptr);
1835
1836 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
kvm_handle_signal_exit(struct kvm_vcpu * vcpu)1837 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
1838 {
1839 vcpu->run->exit_reason = KVM_EXIT_INTR;
1840 vcpu->stat.signal_exits++;
1841 }
1842 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
1843
1844 /*
1845 * This defines how many reserved entries we want to keep before we
1846 * kick the vcpu to the userspace to avoid dirty ring full. This
1847 * value can be tuned to higher if e.g. PML is enabled on the host.
1848 */
1849 #define KVM_DIRTY_RING_RSVD_ENTRIES 64
1850
1851 /* Max number of entries allowed for each kvm dirty ring */
1852 #define KVM_DIRTY_RING_MAX_ENTRIES 65536
1853
1854 #endif
1855