1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4 
5 
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <linux/notifier.h>
32 #include <asm/signal.h>
33 
34 #include <linux/kvm.h>
35 #include <linux/kvm_para.h>
36 
37 #include <linux/kvm_types.h>
38 
39 #include <asm/kvm_host.h>
40 #include <linux/kvm_dirty_ring.h>
41 
42 #ifndef KVM_MAX_VCPU_IDS
43 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
44 #endif
45 
46 /*
47  * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
48  * in kvm, other bits are visible for userspace which are defined in
49  * include/linux/kvm_h.
50  */
51 #define KVM_MEMSLOT_INVALID	(1UL << 16)
52 
53 /*
54  * Bit 63 of the memslot generation number is an "update in-progress flag",
55  * e.g. is temporarily set for the duration of install_new_memslots().
56  * This flag effectively creates a unique generation number that is used to
57  * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
58  * i.e. may (or may not) have come from the previous memslots generation.
59  *
60  * This is necessary because the actual memslots update is not atomic with
61  * respect to the generation number update.  Updating the generation number
62  * first would allow a vCPU to cache a spte from the old memslots using the
63  * new generation number, and updating the generation number after switching
64  * to the new memslots would allow cache hits using the old generation number
65  * to reference the defunct memslots.
66  *
67  * This mechanism is used to prevent getting hits in KVM's caches while a
68  * memslot update is in-progress, and to prevent cache hits *after* updating
69  * the actual generation number against accesses that were inserted into the
70  * cache *before* the memslots were updated.
71  */
72 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS	BIT_ULL(63)
73 
74 /* Two fragments for cross MMIO pages. */
75 #define KVM_MAX_MMIO_FRAGMENTS	2
76 
77 #ifndef KVM_ADDRESS_SPACE_NUM
78 #define KVM_ADDRESS_SPACE_NUM	1
79 #endif
80 
81 /*
82  * For the normal pfn, the highest 12 bits should be zero,
83  * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
84  * mask bit 63 to indicate the noslot pfn.
85  */
86 #define KVM_PFN_ERR_MASK	(0x7ffULL << 52)
87 #define KVM_PFN_ERR_NOSLOT_MASK	(0xfffULL << 52)
88 #define KVM_PFN_NOSLOT		(0x1ULL << 63)
89 
90 #define KVM_PFN_ERR_FAULT	(KVM_PFN_ERR_MASK)
91 #define KVM_PFN_ERR_HWPOISON	(KVM_PFN_ERR_MASK + 1)
92 #define KVM_PFN_ERR_RO_FAULT	(KVM_PFN_ERR_MASK + 2)
93 
94 /*
95  * error pfns indicate that the gfn is in slot but faild to
96  * translate it to pfn on host.
97  */
is_error_pfn(kvm_pfn_t pfn)98 static inline bool is_error_pfn(kvm_pfn_t pfn)
99 {
100 	return !!(pfn & KVM_PFN_ERR_MASK);
101 }
102 
103 /*
104  * error_noslot pfns indicate that the gfn can not be
105  * translated to pfn - it is not in slot or failed to
106  * translate it to pfn.
107  */
is_error_noslot_pfn(kvm_pfn_t pfn)108 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
109 {
110 	return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
111 }
112 
113 /* noslot pfn indicates that the gfn is not in slot. */
is_noslot_pfn(kvm_pfn_t pfn)114 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
115 {
116 	return pfn == KVM_PFN_NOSLOT;
117 }
118 
119 /*
120  * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
121  * provide own defines and kvm_is_error_hva
122  */
123 #ifndef KVM_HVA_ERR_BAD
124 
125 #define KVM_HVA_ERR_BAD		(PAGE_OFFSET)
126 #define KVM_HVA_ERR_RO_BAD	(PAGE_OFFSET + PAGE_SIZE)
127 
kvm_is_error_hva(unsigned long addr)128 static inline bool kvm_is_error_hva(unsigned long addr)
129 {
130 	return addr >= PAGE_OFFSET;
131 }
132 
133 #endif
134 
135 #define KVM_ERR_PTR_BAD_PAGE	(ERR_PTR(-ENOENT))
136 
is_error_page(struct page * page)137 static inline bool is_error_page(struct page *page)
138 {
139 	return IS_ERR(page);
140 }
141 
142 #define KVM_REQUEST_MASK           GENMASK(7,0)
143 #define KVM_REQUEST_NO_WAKEUP      BIT(8)
144 #define KVM_REQUEST_WAIT           BIT(9)
145 /*
146  * Architecture-independent vcpu->requests bit members
147  * Bits 4-7 are reserved for more arch-independent bits.
148  */
149 #define KVM_REQ_TLB_FLUSH         (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
150 #define KVM_REQ_MMU_RELOAD        (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
151 #define KVM_REQ_UNBLOCK           2
152 #define KVM_REQ_UNHALT            3
153 #define KVM_REQ_VM_DEAD           (4 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
154 #define KVM_REQUEST_ARCH_BASE     8
155 
156 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
157 	BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
158 	(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
159 })
160 #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
161 
162 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
163 				 unsigned long *vcpu_bitmap);
164 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
165 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
166 				      struct kvm_vcpu *except);
167 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
168 				unsigned long *vcpu_bitmap);
169 
170 #define KVM_USERSPACE_IRQ_SOURCE_ID		0
171 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID	1
172 
173 extern struct mutex kvm_lock;
174 extern struct list_head vm_list;
175 
176 struct kvm_io_range {
177 	gpa_t addr;
178 	int len;
179 	struct kvm_io_device *dev;
180 };
181 
182 #define NR_IOBUS_DEVS 1000
183 
184 struct kvm_io_bus {
185 	int dev_count;
186 	int ioeventfd_count;
187 	struct kvm_io_range range[];
188 };
189 
190 enum kvm_bus {
191 	KVM_MMIO_BUS,
192 	KVM_PIO_BUS,
193 	KVM_VIRTIO_CCW_NOTIFY_BUS,
194 	KVM_FAST_MMIO_BUS,
195 	KVM_NR_BUSES
196 };
197 
198 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
199 		     int len, const void *val);
200 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
201 			    gpa_t addr, int len, const void *val, long cookie);
202 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
203 		    int len, void *val);
204 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
205 			    int len, struct kvm_io_device *dev);
206 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
207 			      struct kvm_io_device *dev);
208 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
209 					 gpa_t addr);
210 
211 #ifdef CONFIG_KVM_ASYNC_PF
212 struct kvm_async_pf {
213 	struct work_struct work;
214 	struct list_head link;
215 	struct list_head queue;
216 	struct kvm_vcpu *vcpu;
217 	struct mm_struct *mm;
218 	gpa_t cr2_or_gpa;
219 	unsigned long addr;
220 	struct kvm_arch_async_pf arch;
221 	bool   wakeup_all;
222 	bool notpresent_injected;
223 };
224 
225 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
226 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
227 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
228 			unsigned long hva, struct kvm_arch_async_pf *arch);
229 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
230 #endif
231 
232 #ifdef KVM_ARCH_WANT_MMU_NOTIFIER
233 struct kvm_gfn_range {
234 	struct kvm_memory_slot *slot;
235 	gfn_t start;
236 	gfn_t end;
237 	pte_t pte;
238 	bool may_block;
239 };
240 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
241 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
242 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
243 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
244 #endif
245 
246 enum {
247 	OUTSIDE_GUEST_MODE,
248 	IN_GUEST_MODE,
249 	EXITING_GUEST_MODE,
250 	READING_SHADOW_PAGE_TABLES,
251 };
252 
253 #define KVM_UNMAPPED_PAGE	((void *) 0x500 + POISON_POINTER_DELTA)
254 
255 struct kvm_host_map {
256 	/*
257 	 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
258 	 * a 'struct page' for it. When using mem= kernel parameter some memory
259 	 * can be used as guest memory but they are not managed by host
260 	 * kernel).
261 	 * If 'pfn' is not managed by the host kernel, this field is
262 	 * initialized to KVM_UNMAPPED_PAGE.
263 	 */
264 	struct page *page;
265 	void *hva;
266 	kvm_pfn_t pfn;
267 	kvm_pfn_t gfn;
268 };
269 
270 /*
271  * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
272  * directly to check for that.
273  */
kvm_vcpu_mapped(struct kvm_host_map * map)274 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
275 {
276 	return !!map->hva;
277 }
278 
kvm_vcpu_can_poll(ktime_t cur,ktime_t stop)279 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
280 {
281 	return single_task_running() && !need_resched() && ktime_before(cur, stop);
282 }
283 
284 /*
285  * Sometimes a large or cross-page mmio needs to be broken up into separate
286  * exits for userspace servicing.
287  */
288 struct kvm_mmio_fragment {
289 	gpa_t gpa;
290 	void *data;
291 	unsigned len;
292 };
293 
294 struct kvm_vcpu {
295 	struct kvm *kvm;
296 #ifdef CONFIG_PREEMPT_NOTIFIERS
297 	struct preempt_notifier preempt_notifier;
298 #endif
299 	int cpu;
300 	int vcpu_id; /* id given by userspace at creation */
301 	int vcpu_idx; /* index in kvm->vcpus array */
302 	int srcu_idx;
303 	int mode;
304 	u64 requests;
305 	unsigned long guest_debug;
306 
307 	int pre_pcpu;
308 	struct list_head blocked_vcpu_list;
309 
310 	struct mutex mutex;
311 	struct kvm_run *run;
312 
313 	struct rcuwait wait;
314 	struct pid __rcu *pid;
315 	int sigset_active;
316 	sigset_t sigset;
317 	unsigned int halt_poll_ns;
318 	bool valid_wakeup;
319 
320 #ifdef CONFIG_HAS_IOMEM
321 	int mmio_needed;
322 	int mmio_read_completed;
323 	int mmio_is_write;
324 	int mmio_cur_fragment;
325 	int mmio_nr_fragments;
326 	struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
327 #endif
328 
329 #ifdef CONFIG_KVM_ASYNC_PF
330 	struct {
331 		u32 queued;
332 		struct list_head queue;
333 		struct list_head done;
334 		spinlock_t lock;
335 	} async_pf;
336 #endif
337 
338 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
339 	/*
340 	 * Cpu relax intercept or pause loop exit optimization
341 	 * in_spin_loop: set when a vcpu does a pause loop exit
342 	 *  or cpu relax intercepted.
343 	 * dy_eligible: indicates whether vcpu is eligible for directed yield.
344 	 */
345 	struct {
346 		bool in_spin_loop;
347 		bool dy_eligible;
348 	} spin_loop;
349 #endif
350 	bool preempted;
351 	bool ready;
352 	struct kvm_vcpu_arch arch;
353 	struct kvm_vcpu_stat stat;
354 	char stats_id[KVM_STATS_NAME_SIZE];
355 	struct kvm_dirty_ring dirty_ring;
356 
357 	/*
358 	 * The index of the most recently used memslot by this vCPU. It's ok
359 	 * if this becomes stale due to memslot changes since we always check
360 	 * it is a valid slot.
361 	 */
362 	int last_used_slot;
363 };
364 
365 /* must be called with irqs disabled */
guest_enter_irqoff(void)366 static __always_inline void guest_enter_irqoff(void)
367 {
368 	/*
369 	 * This is running in ioctl context so its safe to assume that it's the
370 	 * stime pending cputime to flush.
371 	 */
372 	instrumentation_begin();
373 	vtime_account_guest_enter();
374 	instrumentation_end();
375 
376 	/*
377 	 * KVM does not hold any references to rcu protected data when it
378 	 * switches CPU into a guest mode. In fact switching to a guest mode
379 	 * is very similar to exiting to userspace from rcu point of view. In
380 	 * addition CPU may stay in a guest mode for quite a long time (up to
381 	 * one time slice). Lets treat guest mode as quiescent state, just like
382 	 * we do with user-mode execution.
383 	 */
384 	if (!context_tracking_guest_enter()) {
385 		instrumentation_begin();
386 		rcu_virt_note_context_switch(smp_processor_id());
387 		instrumentation_end();
388 	}
389 }
390 
guest_exit_irqoff(void)391 static __always_inline void guest_exit_irqoff(void)
392 {
393 	context_tracking_guest_exit();
394 
395 	instrumentation_begin();
396 	/* Flush the guest cputime we spent on the guest */
397 	vtime_account_guest_exit();
398 	instrumentation_end();
399 }
400 
guest_exit(void)401 static inline void guest_exit(void)
402 {
403 	unsigned long flags;
404 
405 	local_irq_save(flags);
406 	guest_exit_irqoff();
407 	local_irq_restore(flags);
408 }
409 
kvm_vcpu_exiting_guest_mode(struct kvm_vcpu * vcpu)410 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
411 {
412 	/*
413 	 * The memory barrier ensures a previous write to vcpu->requests cannot
414 	 * be reordered with the read of vcpu->mode.  It pairs with the general
415 	 * memory barrier following the write of vcpu->mode in VCPU RUN.
416 	 */
417 	smp_mb__before_atomic();
418 	return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
419 }
420 
421 /*
422  * Some of the bitops functions do not support too long bitmaps.
423  * This number must be determined not to exceed such limits.
424  */
425 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
426 
427 struct kvm_memory_slot {
428 	gfn_t base_gfn;
429 	unsigned long npages;
430 	unsigned long *dirty_bitmap;
431 	struct kvm_arch_memory_slot arch;
432 	unsigned long userspace_addr;
433 	u32 flags;
434 	short id;
435 	u16 as_id;
436 };
437 
kvm_slot_dirty_track_enabled(struct kvm_memory_slot * slot)438 static inline bool kvm_slot_dirty_track_enabled(struct kvm_memory_slot *slot)
439 {
440 	return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
441 }
442 
kvm_dirty_bitmap_bytes(struct kvm_memory_slot * memslot)443 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
444 {
445 	return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
446 }
447 
kvm_second_dirty_bitmap(struct kvm_memory_slot * memslot)448 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
449 {
450 	unsigned long len = kvm_dirty_bitmap_bytes(memslot);
451 
452 	return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
453 }
454 
455 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
456 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
457 #endif
458 
459 struct kvm_s390_adapter_int {
460 	u64 ind_addr;
461 	u64 summary_addr;
462 	u64 ind_offset;
463 	u32 summary_offset;
464 	u32 adapter_id;
465 };
466 
467 struct kvm_hv_sint {
468 	u32 vcpu;
469 	u32 sint;
470 };
471 
472 struct kvm_kernel_irq_routing_entry {
473 	u32 gsi;
474 	u32 type;
475 	int (*set)(struct kvm_kernel_irq_routing_entry *e,
476 		   struct kvm *kvm, int irq_source_id, int level,
477 		   bool line_status);
478 	union {
479 		struct {
480 			unsigned irqchip;
481 			unsigned pin;
482 		} irqchip;
483 		struct {
484 			u32 address_lo;
485 			u32 address_hi;
486 			u32 data;
487 			u32 flags;
488 			u32 devid;
489 		} msi;
490 		struct kvm_s390_adapter_int adapter;
491 		struct kvm_hv_sint hv_sint;
492 	};
493 	struct hlist_node link;
494 };
495 
496 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
497 struct kvm_irq_routing_table {
498 	int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
499 	u32 nr_rt_entries;
500 	/*
501 	 * Array indexed by gsi. Each entry contains list of irq chips
502 	 * the gsi is connected to.
503 	 */
504 	struct hlist_head map[];
505 };
506 #endif
507 
508 #ifndef KVM_PRIVATE_MEM_SLOTS
509 #define KVM_PRIVATE_MEM_SLOTS 0
510 #endif
511 
512 #define KVM_MEM_SLOTS_NUM SHRT_MAX
513 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_PRIVATE_MEM_SLOTS)
514 
515 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
kvm_arch_vcpu_memslots_id(struct kvm_vcpu * vcpu)516 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
517 {
518 	return 0;
519 }
520 #endif
521 
522 /*
523  * Note:
524  * memslots are not sorted by id anymore, please use id_to_memslot()
525  * to get the memslot by its id.
526  */
527 struct kvm_memslots {
528 	u64 generation;
529 	/* The mapping table from slot id to the index in memslots[]. */
530 	short id_to_index[KVM_MEM_SLOTS_NUM];
531 	atomic_t last_used_slot;
532 	int used_slots;
533 	struct kvm_memory_slot memslots[];
534 };
535 
536 struct kvm {
537 #ifdef KVM_HAVE_MMU_RWLOCK
538 	rwlock_t mmu_lock;
539 #else
540 	spinlock_t mmu_lock;
541 #endif /* KVM_HAVE_MMU_RWLOCK */
542 
543 	struct mutex slots_lock;
544 
545 	/*
546 	 * Protects the arch-specific fields of struct kvm_memory_slots in
547 	 * use by the VM. To be used under the slots_lock (above) or in a
548 	 * kvm->srcu critical section where acquiring the slots_lock would
549 	 * lead to deadlock with the synchronize_srcu in
550 	 * install_new_memslots.
551 	 */
552 	struct mutex slots_arch_lock;
553 	struct mm_struct *mm; /* userspace tied to this vm */
554 	struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
555 	struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
556 
557 	/* Used to wait for completion of MMU notifiers.  */
558 	spinlock_t mn_invalidate_lock;
559 	unsigned long mn_active_invalidate_count;
560 	struct rcuwait mn_memslots_update_rcuwait;
561 
562 	/*
563 	 * created_vcpus is protected by kvm->lock, and is incremented
564 	 * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
565 	 * incremented after storing the kvm_vcpu pointer in vcpus,
566 	 * and is accessed atomically.
567 	 */
568 	atomic_t online_vcpus;
569 	int created_vcpus;
570 	int last_boosted_vcpu;
571 	struct list_head vm_list;
572 	struct mutex lock;
573 	struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
574 #ifdef CONFIG_HAVE_KVM_EVENTFD
575 	struct {
576 		spinlock_t        lock;
577 		struct list_head  items;
578 		struct list_head  resampler_list;
579 		struct mutex      resampler_lock;
580 	} irqfds;
581 	struct list_head ioeventfds;
582 #endif
583 	struct kvm_vm_stat stat;
584 	struct kvm_arch arch;
585 	refcount_t users_count;
586 #ifdef CONFIG_KVM_MMIO
587 	struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
588 	spinlock_t ring_lock;
589 	struct list_head coalesced_zones;
590 #endif
591 
592 	struct mutex irq_lock;
593 #ifdef CONFIG_HAVE_KVM_IRQCHIP
594 	/*
595 	 * Update side is protected by irq_lock.
596 	 */
597 	struct kvm_irq_routing_table __rcu *irq_routing;
598 #endif
599 #ifdef CONFIG_HAVE_KVM_IRQFD
600 	struct hlist_head irq_ack_notifier_list;
601 #endif
602 
603 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
604 	struct mmu_notifier mmu_notifier;
605 	unsigned long mmu_notifier_seq;
606 	long mmu_notifier_count;
607 	unsigned long mmu_notifier_range_start;
608 	unsigned long mmu_notifier_range_end;
609 #endif
610 	struct list_head devices;
611 	u64 manual_dirty_log_protect;
612 	struct dentry *debugfs_dentry;
613 	struct kvm_stat_data **debugfs_stat_data;
614 	struct srcu_struct srcu;
615 	struct srcu_struct irq_srcu;
616 	pid_t userspace_pid;
617 	unsigned int max_halt_poll_ns;
618 	u32 dirty_ring_size;
619 	bool vm_bugged;
620 	bool vm_dead;
621 
622 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
623 	struct notifier_block pm_notifier;
624 #endif
625 	char stats_id[KVM_STATS_NAME_SIZE];
626 };
627 
628 #define kvm_err(fmt, ...) \
629 	pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
630 #define kvm_info(fmt, ...) \
631 	pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
632 #define kvm_debug(fmt, ...) \
633 	pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
634 #define kvm_debug_ratelimited(fmt, ...) \
635 	pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
636 			     ## __VA_ARGS__)
637 #define kvm_pr_unimpl(fmt, ...) \
638 	pr_err_ratelimited("kvm [%i]: " fmt, \
639 			   task_tgid_nr(current), ## __VA_ARGS__)
640 
641 /* The guest did something we don't support. */
642 #define vcpu_unimpl(vcpu, fmt, ...)					\
643 	kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,			\
644 			(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
645 
646 #define vcpu_debug(vcpu, fmt, ...)					\
647 	kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
648 #define vcpu_debug_ratelimited(vcpu, fmt, ...)				\
649 	kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
650 			      ## __VA_ARGS__)
651 #define vcpu_err(vcpu, fmt, ...)					\
652 	kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
653 
kvm_vm_dead(struct kvm * kvm)654 static inline void kvm_vm_dead(struct kvm *kvm)
655 {
656 	kvm->vm_dead = true;
657 	kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
658 }
659 
kvm_vm_bugged(struct kvm * kvm)660 static inline void kvm_vm_bugged(struct kvm *kvm)
661 {
662 	kvm->vm_bugged = true;
663 	kvm_vm_dead(kvm);
664 }
665 
666 
667 #define KVM_BUG(cond, kvm, fmt...)				\
668 ({								\
669 	int __ret = (cond);					\
670 								\
671 	if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt))		\
672 		kvm_vm_bugged(kvm);				\
673 	unlikely(__ret);					\
674 })
675 
676 #define KVM_BUG_ON(cond, kvm)					\
677 ({								\
678 	int __ret = (cond);					\
679 								\
680 	if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))		\
681 		kvm_vm_bugged(kvm);				\
682 	unlikely(__ret);					\
683 })
684 
kvm_dirty_log_manual_protect_and_init_set(struct kvm * kvm)685 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
686 {
687 	return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
688 }
689 
kvm_get_bus(struct kvm * kvm,enum kvm_bus idx)690 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
691 {
692 	return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
693 				      lockdep_is_held(&kvm->slots_lock) ||
694 				      !refcount_read(&kvm->users_count));
695 }
696 
kvm_get_vcpu(struct kvm * kvm,int i)697 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
698 {
699 	int num_vcpus = atomic_read(&kvm->online_vcpus);
700 	i = array_index_nospec(i, num_vcpus);
701 
702 	/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
703 	smp_rmb();
704 	return kvm->vcpus[i];
705 }
706 
707 #define kvm_for_each_vcpu(idx, vcpup, kvm) \
708 	for (idx = 0; \
709 	     idx < atomic_read(&kvm->online_vcpus) && \
710 	     (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
711 	     idx++)
712 
kvm_get_vcpu_by_id(struct kvm * kvm,int id)713 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
714 {
715 	struct kvm_vcpu *vcpu = NULL;
716 	int i;
717 
718 	if (id < 0)
719 		return NULL;
720 	if (id < KVM_MAX_VCPUS)
721 		vcpu = kvm_get_vcpu(kvm, id);
722 	if (vcpu && vcpu->vcpu_id == id)
723 		return vcpu;
724 	kvm_for_each_vcpu(i, vcpu, kvm)
725 		if (vcpu->vcpu_id == id)
726 			return vcpu;
727 	return NULL;
728 }
729 
730 #define kvm_for_each_memslot(memslot, slots)				\
731 	for (memslot = &slots->memslots[0];				\
732 	     memslot < slots->memslots + slots->used_slots; memslot++)	\
733 		if (WARN_ON_ONCE(!memslot->npages)) {			\
734 		} else
735 
736 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu);
737 
738 void vcpu_load(struct kvm_vcpu *vcpu);
739 void vcpu_put(struct kvm_vcpu *vcpu);
740 
741 #ifdef __KVM_HAVE_IOAPIC
742 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
743 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
744 #else
kvm_arch_post_irq_ack_notifier_list_update(struct kvm * kvm)745 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
746 {
747 }
kvm_arch_post_irq_routing_update(struct kvm * kvm)748 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
749 {
750 }
751 #endif
752 
753 #ifdef CONFIG_HAVE_KVM_IRQFD
754 int kvm_irqfd_init(void);
755 void kvm_irqfd_exit(void);
756 #else
kvm_irqfd_init(void)757 static inline int kvm_irqfd_init(void)
758 {
759 	return 0;
760 }
761 
kvm_irqfd_exit(void)762 static inline void kvm_irqfd_exit(void)
763 {
764 }
765 #endif
766 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
767 		  struct module *module);
768 void kvm_exit(void);
769 
770 void kvm_get_kvm(struct kvm *kvm);
771 bool kvm_get_kvm_safe(struct kvm *kvm);
772 void kvm_put_kvm(struct kvm *kvm);
773 bool file_is_kvm(struct file *file);
774 void kvm_put_kvm_no_destroy(struct kvm *kvm);
775 
__kvm_memslots(struct kvm * kvm,int as_id)776 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
777 {
778 	as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
779 	return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
780 			lockdep_is_held(&kvm->slots_lock) ||
781 			!refcount_read(&kvm->users_count));
782 }
783 
kvm_memslots(struct kvm * kvm)784 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
785 {
786 	return __kvm_memslots(kvm, 0);
787 }
788 
kvm_vcpu_memslots(struct kvm_vcpu * vcpu)789 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
790 {
791 	int as_id = kvm_arch_vcpu_memslots_id(vcpu);
792 
793 	return __kvm_memslots(vcpu->kvm, as_id);
794 }
795 
796 static inline
id_to_memslot(struct kvm_memslots * slots,int id)797 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
798 {
799 	int index = slots->id_to_index[id];
800 	struct kvm_memory_slot *slot;
801 
802 	if (index < 0)
803 		return NULL;
804 
805 	slot = &slots->memslots[index];
806 
807 	WARN_ON(slot->id != id);
808 	return slot;
809 }
810 
811 /*
812  * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
813  * - create a new memory slot
814  * - delete an existing memory slot
815  * - modify an existing memory slot
816  *   -- move it in the guest physical memory space
817  *   -- just change its flags
818  *
819  * Since flags can be changed by some of these operations, the following
820  * differentiation is the best we can do for __kvm_set_memory_region():
821  */
822 enum kvm_mr_change {
823 	KVM_MR_CREATE,
824 	KVM_MR_DELETE,
825 	KVM_MR_MOVE,
826 	KVM_MR_FLAGS_ONLY,
827 };
828 
829 int kvm_set_memory_region(struct kvm *kvm,
830 			  const struct kvm_userspace_memory_region *mem);
831 int __kvm_set_memory_region(struct kvm *kvm,
832 			    const struct kvm_userspace_memory_region *mem);
833 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
834 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
835 int kvm_arch_prepare_memory_region(struct kvm *kvm,
836 				struct kvm_memory_slot *memslot,
837 				const struct kvm_userspace_memory_region *mem,
838 				enum kvm_mr_change change);
839 void kvm_arch_commit_memory_region(struct kvm *kvm,
840 				const struct kvm_userspace_memory_region *mem,
841 				struct kvm_memory_slot *old,
842 				const struct kvm_memory_slot *new,
843 				enum kvm_mr_change change);
844 /* flush all memory translations */
845 void kvm_arch_flush_shadow_all(struct kvm *kvm);
846 /* flush memory translations pointing to 'slot' */
847 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
848 				   struct kvm_memory_slot *slot);
849 
850 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
851 			    struct page **pages, int nr_pages);
852 
853 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
854 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
855 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
856 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
857 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
858 				      bool *writable);
859 void kvm_release_page_clean(struct page *page);
860 void kvm_release_page_dirty(struct page *page);
861 void kvm_set_page_accessed(struct page *page);
862 
863 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
864 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
865 		      bool *writable);
866 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
867 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
868 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
869 			       bool atomic, bool *async, bool write_fault,
870 			       bool *writable, hva_t *hva);
871 
872 void kvm_release_pfn_clean(kvm_pfn_t pfn);
873 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
874 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
875 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
876 
877 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty);
878 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
879 			int len);
880 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
881 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
882 			   void *data, unsigned long len);
883 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
884 				 void *data, unsigned int offset,
885 				 unsigned long len);
886 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
887 			 int offset, int len);
888 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
889 		    unsigned long len);
890 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
891 			   void *data, unsigned long len);
892 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
893 				  void *data, unsigned int offset,
894 				  unsigned long len);
895 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
896 			      gpa_t gpa, unsigned long len);
897 
898 #define __kvm_get_guest(kvm, gfn, offset, v)				\
899 ({									\
900 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
901 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
902 	int __ret = -EFAULT;						\
903 									\
904 	if (!kvm_is_error_hva(__addr))					\
905 		__ret = get_user(v, __uaddr);				\
906 	__ret;								\
907 })
908 
909 #define kvm_get_guest(kvm, gpa, v)					\
910 ({									\
911 	gpa_t __gpa = gpa;						\
912 	struct kvm *__kvm = kvm;					\
913 									\
914 	__kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,			\
915 			offset_in_page(__gpa), v);			\
916 })
917 
918 #define __kvm_put_guest(kvm, gfn, offset, v)				\
919 ({									\
920 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
921 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
922 	int __ret = -EFAULT;						\
923 									\
924 	if (!kvm_is_error_hva(__addr))					\
925 		__ret = put_user(v, __uaddr);				\
926 	if (!__ret)							\
927 		mark_page_dirty(kvm, gfn);				\
928 	__ret;								\
929 })
930 
931 #define kvm_put_guest(kvm, gpa, v)					\
932 ({									\
933 	gpa_t __gpa = gpa;						\
934 	struct kvm *__kvm = kvm;					\
935 									\
936 	__kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,			\
937 			offset_in_page(__gpa), v);			\
938 })
939 
940 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
941 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
942 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
943 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
944 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
945 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, gfn_t gfn);
946 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
947 
948 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
949 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
950 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
951 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
952 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
953 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
954 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
955 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
956 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
957 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
958 			     int len);
959 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
960 			       unsigned long len);
961 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
962 			unsigned long len);
963 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
964 			      int offset, int len);
965 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
966 			 unsigned long len);
967 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
968 
969 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
970 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
971 
972 void kvm_vcpu_block(struct kvm_vcpu *vcpu);
973 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
974 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
975 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
976 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
977 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
978 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
979 
980 void kvm_flush_remote_tlbs(struct kvm *kvm);
981 void kvm_reload_remote_mmus(struct kvm *kvm);
982 
983 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
984 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
985 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
986 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
987 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
988 #endif
989 
990 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
991 				   unsigned long end);
992 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
993 				   unsigned long end);
994 
995 long kvm_arch_dev_ioctl(struct file *filp,
996 			unsigned int ioctl, unsigned long arg);
997 long kvm_arch_vcpu_ioctl(struct file *filp,
998 			 unsigned int ioctl, unsigned long arg);
999 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1000 
1001 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1002 
1003 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1004 					struct kvm_memory_slot *slot,
1005 					gfn_t gfn_offset,
1006 					unsigned long mask);
1007 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1008 
1009 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1010 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1011 					const struct kvm_memory_slot *memslot);
1012 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1013 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1014 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1015 		      int *is_dirty, struct kvm_memory_slot **memslot);
1016 #endif
1017 
1018 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1019 			bool line_status);
1020 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1021 			    struct kvm_enable_cap *cap);
1022 long kvm_arch_vm_ioctl(struct file *filp,
1023 		       unsigned int ioctl, unsigned long arg);
1024 
1025 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1026 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1027 
1028 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1029 				    struct kvm_translation *tr);
1030 
1031 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1032 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1033 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1034 				  struct kvm_sregs *sregs);
1035 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1036 				  struct kvm_sregs *sregs);
1037 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1038 				    struct kvm_mp_state *mp_state);
1039 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1040 				    struct kvm_mp_state *mp_state);
1041 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1042 					struct kvm_guest_debug *dbg);
1043 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1044 
1045 int kvm_arch_init(void *opaque);
1046 void kvm_arch_exit(void);
1047 
1048 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
1049 
1050 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1051 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1052 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1053 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1054 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1055 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1056 
1057 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1058 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1059 #endif
1060 
1061 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1062 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1063 #endif
1064 
1065 int kvm_arch_hardware_enable(void);
1066 void kvm_arch_hardware_disable(void);
1067 int kvm_arch_hardware_setup(void *opaque);
1068 void kvm_arch_hardware_unsetup(void);
1069 int kvm_arch_check_processor_compat(void *opaque);
1070 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1071 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1072 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1073 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1074 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1075 int kvm_arch_post_init_vm(struct kvm *kvm);
1076 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1077 int kvm_arch_create_vm_debugfs(struct kvm *kvm);
1078 
1079 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1080 /*
1081  * All architectures that want to use vzalloc currently also
1082  * need their own kvm_arch_alloc_vm implementation.
1083  */
kvm_arch_alloc_vm(void)1084 static inline struct kvm *kvm_arch_alloc_vm(void)
1085 {
1086 	return kzalloc(sizeof(struct kvm), GFP_KERNEL);
1087 }
1088 #endif
1089 
__kvm_arch_free_vm(struct kvm * kvm)1090 static inline void __kvm_arch_free_vm(struct kvm *kvm)
1091 {
1092 	kvfree(kvm);
1093 }
1094 
1095 #ifndef __KVM_HAVE_ARCH_VM_FREE
kvm_arch_free_vm(struct kvm * kvm)1096 static inline void kvm_arch_free_vm(struct kvm *kvm)
1097 {
1098 	__kvm_arch_free_vm(kvm);
1099 }
1100 #endif
1101 
1102 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
kvm_arch_flush_remote_tlb(struct kvm * kvm)1103 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1104 {
1105 	return -ENOTSUPP;
1106 }
1107 #endif
1108 
1109 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1110 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1111 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1112 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1113 #else
kvm_arch_register_noncoherent_dma(struct kvm * kvm)1114 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1115 {
1116 }
1117 
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)1118 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1119 {
1120 }
1121 
kvm_arch_has_noncoherent_dma(struct kvm * kvm)1122 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1123 {
1124 	return false;
1125 }
1126 #endif
1127 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1128 void kvm_arch_start_assignment(struct kvm *kvm);
1129 void kvm_arch_end_assignment(struct kvm *kvm);
1130 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1131 #else
kvm_arch_start_assignment(struct kvm * kvm)1132 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1133 {
1134 }
1135 
kvm_arch_end_assignment(struct kvm * kvm)1136 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1137 {
1138 }
1139 
kvm_arch_has_assigned_device(struct kvm * kvm)1140 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1141 {
1142 	return false;
1143 }
1144 #endif
1145 
kvm_arch_vcpu_get_wait(struct kvm_vcpu * vcpu)1146 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1147 {
1148 #ifdef __KVM_HAVE_ARCH_WQP
1149 	return vcpu->arch.waitp;
1150 #else
1151 	return &vcpu->wait;
1152 #endif
1153 }
1154 
1155 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1156 /*
1157  * returns true if the virtual interrupt controller is initialized and
1158  * ready to accept virtual IRQ. On some architectures the virtual interrupt
1159  * controller is dynamically instantiated and this is not always true.
1160  */
1161 bool kvm_arch_intc_initialized(struct kvm *kvm);
1162 #else
kvm_arch_intc_initialized(struct kvm * kvm)1163 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1164 {
1165 	return true;
1166 }
1167 #endif
1168 
1169 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1170 void kvm_arch_destroy_vm(struct kvm *kvm);
1171 void kvm_arch_sync_events(struct kvm *kvm);
1172 
1173 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1174 
1175 bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
1176 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn);
1177 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn);
1178 
1179 struct kvm_irq_ack_notifier {
1180 	struct hlist_node link;
1181 	unsigned gsi;
1182 	void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1183 };
1184 
1185 int kvm_irq_map_gsi(struct kvm *kvm,
1186 		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
1187 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1188 
1189 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1190 		bool line_status);
1191 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1192 		int irq_source_id, int level, bool line_status);
1193 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1194 			       struct kvm *kvm, int irq_source_id,
1195 			       int level, bool line_status);
1196 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1197 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1198 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1199 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1200 				   struct kvm_irq_ack_notifier *kian);
1201 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1202 				   struct kvm_irq_ack_notifier *kian);
1203 int kvm_request_irq_source_id(struct kvm *kvm);
1204 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1205 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1206 
1207 /*
1208  * Returns a pointer to the memslot at slot_index if it contains gfn.
1209  * Otherwise returns NULL.
1210  */
1211 static inline struct kvm_memory_slot *
try_get_memslot(struct kvm_memslots * slots,int slot_index,gfn_t gfn)1212 try_get_memslot(struct kvm_memslots *slots, int slot_index, gfn_t gfn)
1213 {
1214 	struct kvm_memory_slot *slot;
1215 
1216 	if (slot_index < 0 || slot_index >= slots->used_slots)
1217 		return NULL;
1218 
1219 	/*
1220 	 * slot_index can come from vcpu->last_used_slot which is not kept
1221 	 * in sync with userspace-controllable memslot deletion. So use nospec
1222 	 * to prevent the CPU from speculating past the end of memslots[].
1223 	 */
1224 	slot_index = array_index_nospec(slot_index, slots->used_slots);
1225 	slot = &slots->memslots[slot_index];
1226 
1227 	if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1228 		return slot;
1229 	else
1230 		return NULL;
1231 }
1232 
1233 /*
1234  * Returns a pointer to the memslot that contains gfn and records the index of
1235  * the slot in index. Otherwise returns NULL.
1236  *
1237  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!
1238  */
1239 static inline struct kvm_memory_slot *
search_memslots(struct kvm_memslots * slots,gfn_t gfn,int * index)1240 search_memslots(struct kvm_memslots *slots, gfn_t gfn, int *index)
1241 {
1242 	int start = 0, end = slots->used_slots;
1243 	struct kvm_memory_slot *memslots = slots->memslots;
1244 	struct kvm_memory_slot *slot;
1245 
1246 	if (unlikely(!slots->used_slots))
1247 		return NULL;
1248 
1249 	while (start < end) {
1250 		int slot = start + (end - start) / 2;
1251 
1252 		if (gfn >= memslots[slot].base_gfn)
1253 			end = slot;
1254 		else
1255 			start = slot + 1;
1256 	}
1257 
1258 	slot = try_get_memslot(slots, start, gfn);
1259 	if (slot) {
1260 		*index = start;
1261 		return slot;
1262 	}
1263 
1264 	return NULL;
1265 }
1266 
1267 /*
1268  * __gfn_to_memslot() and its descendants are here because it is called from
1269  * non-modular code in arch/powerpc/kvm/book3s_64_vio{,_hv}.c. gfn_to_memslot()
1270  * itself isn't here as an inline because that would bloat other code too much.
1271  */
1272 static inline struct kvm_memory_slot *
__gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn)1273 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1274 {
1275 	struct kvm_memory_slot *slot;
1276 	int slot_index = atomic_read(&slots->last_used_slot);
1277 
1278 	slot = try_get_memslot(slots, slot_index, gfn);
1279 	if (slot)
1280 		return slot;
1281 
1282 	slot = search_memslots(slots, gfn, &slot_index);
1283 	if (slot) {
1284 		atomic_set(&slots->last_used_slot, slot_index);
1285 		return slot;
1286 	}
1287 
1288 	return NULL;
1289 }
1290 
1291 static inline unsigned long
__gfn_to_hva_memslot(const struct kvm_memory_slot * slot,gfn_t gfn)1292 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1293 {
1294 	/*
1295 	 * The index was checked originally in search_memslots.  To avoid
1296 	 * that a malicious guest builds a Spectre gadget out of e.g. page
1297 	 * table walks, do not let the processor speculate loads outside
1298 	 * the guest's registered memslots.
1299 	 */
1300 	unsigned long offset = gfn - slot->base_gfn;
1301 	offset = array_index_nospec(offset, slot->npages);
1302 	return slot->userspace_addr + offset * PAGE_SIZE;
1303 }
1304 
memslot_id(struct kvm * kvm,gfn_t gfn)1305 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1306 {
1307 	return gfn_to_memslot(kvm, gfn)->id;
1308 }
1309 
1310 static inline gfn_t
hva_to_gfn_memslot(unsigned long hva,struct kvm_memory_slot * slot)1311 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1312 {
1313 	gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1314 
1315 	return slot->base_gfn + gfn_offset;
1316 }
1317 
gfn_to_gpa(gfn_t gfn)1318 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1319 {
1320 	return (gpa_t)gfn << PAGE_SHIFT;
1321 }
1322 
gpa_to_gfn(gpa_t gpa)1323 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1324 {
1325 	return (gfn_t)(gpa >> PAGE_SHIFT);
1326 }
1327 
pfn_to_hpa(kvm_pfn_t pfn)1328 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1329 {
1330 	return (hpa_t)pfn << PAGE_SHIFT;
1331 }
1332 
kvm_vcpu_gpa_to_page(struct kvm_vcpu * vcpu,gpa_t gpa)1333 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1334 						gpa_t gpa)
1335 {
1336 	return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1337 }
1338 
kvm_is_error_gpa(struct kvm * kvm,gpa_t gpa)1339 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1340 {
1341 	unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1342 
1343 	return kvm_is_error_hva(hva);
1344 }
1345 
1346 enum kvm_stat_kind {
1347 	KVM_STAT_VM,
1348 	KVM_STAT_VCPU,
1349 };
1350 
1351 struct kvm_stat_data {
1352 	struct kvm *kvm;
1353 	const struct _kvm_stats_desc *desc;
1354 	enum kvm_stat_kind kind;
1355 };
1356 
1357 struct _kvm_stats_desc {
1358 	struct kvm_stats_desc desc;
1359 	char name[KVM_STATS_NAME_SIZE];
1360 };
1361 
1362 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz)		       \
1363 	.flags = type | unit | base |					       \
1364 		 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) |	       \
1365 		 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) |	       \
1366 		 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK),	       \
1367 	.exponent = exp,						       \
1368 	.size = sz,							       \
1369 	.bucket_size = bsz
1370 
1371 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1372 	{								       \
1373 		{							       \
1374 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1375 			.offset = offsetof(struct kvm_vm_stat, generic.stat)   \
1376 		},							       \
1377 		.name = #stat,						       \
1378 	}
1379 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1380 	{								       \
1381 		{							       \
1382 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1383 			.offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1384 		},							       \
1385 		.name = #stat,						       \
1386 	}
1387 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1388 	{								       \
1389 		{							       \
1390 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1391 			.offset = offsetof(struct kvm_vm_stat, stat)	       \
1392 		},							       \
1393 		.name = #stat,						       \
1394 	}
1395 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1396 	{								       \
1397 		{							       \
1398 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1399 			.offset = offsetof(struct kvm_vcpu_stat, stat)	       \
1400 		},							       \
1401 		.name = #stat,						       \
1402 	}
1403 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1404 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz)		       \
1405 	SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1406 
1407 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent)	       \
1408 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE,		       \
1409 		unit, base, exponent, 1, 0)
1410 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent)		       \
1411 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT,			       \
1412 		unit, base, exponent, 1, 0)
1413 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent)		       \
1414 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK,			       \
1415 		unit, base, exponent, 1, 0)
1416 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz)     \
1417 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST,		       \
1418 		unit, base, exponent, sz, bsz)
1419 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz)	       \
1420 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST,		       \
1421 		unit, base, exponent, sz, 0)
1422 
1423 /* Cumulative counter, read/write */
1424 #define STATS_DESC_COUNTER(SCOPE, name)					       \
1425 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1426 		KVM_STATS_BASE_POW10, 0)
1427 /* Instantaneous counter, read only */
1428 #define STATS_DESC_ICOUNTER(SCOPE, name)				       \
1429 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1430 		KVM_STATS_BASE_POW10, 0)
1431 /* Peak counter, read/write */
1432 #define STATS_DESC_PCOUNTER(SCOPE, name)				       \
1433 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1434 		KVM_STATS_BASE_POW10, 0)
1435 
1436 /* Cumulative time in nanosecond */
1437 #define STATS_DESC_TIME_NSEC(SCOPE, name)				       \
1438 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1439 		KVM_STATS_BASE_POW10, -9)
1440 /* Linear histogram for time in nanosecond */
1441 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz)		       \
1442 	STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1443 		KVM_STATS_BASE_POW10, -9, sz, bsz)
1444 /* Logarithmic histogram for time in nanosecond */
1445 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz)			       \
1446 	STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1447 		KVM_STATS_BASE_POW10, -9, sz)
1448 
1449 #define KVM_GENERIC_VM_STATS()						       \
1450 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush),		       \
1451 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
1452 
1453 #define KVM_GENERIC_VCPU_STATS()					       \
1454 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll),		       \
1455 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll),		       \
1456 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid),		       \
1457 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup),			       \
1458 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns),	       \
1459 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns),		       \
1460 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns),		       \
1461 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist,     \
1462 			HALT_POLL_HIST_COUNT),				       \
1463 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist,	       \
1464 			HALT_POLL_HIST_COUNT),				       \
1465 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist,	       \
1466 			HALT_POLL_HIST_COUNT)
1467 
1468 extern struct dentry *kvm_debugfs_dir;
1469 
1470 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
1471 		       const struct _kvm_stats_desc *desc,
1472 		       void *stats, size_t size_stats,
1473 		       char __user *user_buffer, size_t size, loff_t *offset);
1474 
1475 /**
1476  * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
1477  * statistics data.
1478  *
1479  * @data: start address of the stats data
1480  * @size: the number of bucket of the stats data
1481  * @value: the new value used to update the linear histogram's bucket
1482  * @bucket_size: the size (width) of a bucket
1483  */
kvm_stats_linear_hist_update(u64 * data,size_t size,u64 value,size_t bucket_size)1484 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
1485 						u64 value, size_t bucket_size)
1486 {
1487 	size_t index = div64_u64(value, bucket_size);
1488 
1489 	index = min(index, size - 1);
1490 	++data[index];
1491 }
1492 
1493 /**
1494  * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
1495  * statistics data.
1496  *
1497  * @data: start address of the stats data
1498  * @size: the number of bucket of the stats data
1499  * @value: the new value used to update the logarithmic histogram's bucket
1500  */
kvm_stats_log_hist_update(u64 * data,size_t size,u64 value)1501 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
1502 {
1503 	size_t index = fls64(value);
1504 
1505 	index = min(index, size - 1);
1506 	++data[index];
1507 }
1508 
1509 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize)		       \
1510 	kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
1511 #define KVM_STATS_LOG_HIST_UPDATE(array, value)				       \
1512 	kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
1513 
1514 
1515 extern const struct kvm_stats_header kvm_vm_stats_header;
1516 extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
1517 extern const struct kvm_stats_header kvm_vcpu_stats_header;
1518 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
1519 
1520 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_notifier_retry(struct kvm * kvm,unsigned long mmu_seq)1521 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1522 {
1523 	if (unlikely(kvm->mmu_notifier_count))
1524 		return 1;
1525 	/*
1526 	 * Ensure the read of mmu_notifier_count happens before the read
1527 	 * of mmu_notifier_seq.  This interacts with the smp_wmb() in
1528 	 * mmu_notifier_invalidate_range_end to make sure that the caller
1529 	 * either sees the old (non-zero) value of mmu_notifier_count or
1530 	 * the new (incremented) value of mmu_notifier_seq.
1531 	 * PowerPC Book3s HV KVM calls this under a per-page lock
1532 	 * rather than under kvm->mmu_lock, for scalability, so
1533 	 * can't rely on kvm->mmu_lock to keep things ordered.
1534 	 */
1535 	smp_rmb();
1536 	if (kvm->mmu_notifier_seq != mmu_seq)
1537 		return 1;
1538 	return 0;
1539 }
1540 
mmu_notifier_retry_hva(struct kvm * kvm,unsigned long mmu_seq,unsigned long hva)1541 static inline int mmu_notifier_retry_hva(struct kvm *kvm,
1542 					 unsigned long mmu_seq,
1543 					 unsigned long hva)
1544 {
1545 	lockdep_assert_held(&kvm->mmu_lock);
1546 	/*
1547 	 * If mmu_notifier_count is non-zero, then the range maintained by
1548 	 * kvm_mmu_notifier_invalidate_range_start contains all addresses that
1549 	 * might be being invalidated. Note that it may include some false
1550 	 * positives, due to shortcuts when handing concurrent invalidations.
1551 	 */
1552 	if (unlikely(kvm->mmu_notifier_count) &&
1553 	    hva >= kvm->mmu_notifier_range_start &&
1554 	    hva < kvm->mmu_notifier_range_end)
1555 		return 1;
1556 	if (kvm->mmu_notifier_seq != mmu_seq)
1557 		return 1;
1558 	return 0;
1559 }
1560 #endif
1561 
1562 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1563 
1564 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1565 
1566 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1567 int kvm_set_irq_routing(struct kvm *kvm,
1568 			const struct kvm_irq_routing_entry *entries,
1569 			unsigned nr,
1570 			unsigned flags);
1571 int kvm_set_routing_entry(struct kvm *kvm,
1572 			  struct kvm_kernel_irq_routing_entry *e,
1573 			  const struct kvm_irq_routing_entry *ue);
1574 void kvm_free_irq_routing(struct kvm *kvm);
1575 
1576 #else
1577 
kvm_free_irq_routing(struct kvm * kvm)1578 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1579 
1580 #endif
1581 
1582 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1583 
1584 #ifdef CONFIG_HAVE_KVM_EVENTFD
1585 
1586 void kvm_eventfd_init(struct kvm *kvm);
1587 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1588 
1589 #ifdef CONFIG_HAVE_KVM_IRQFD
1590 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1591 void kvm_irqfd_release(struct kvm *kvm);
1592 void kvm_irq_routing_update(struct kvm *);
1593 #else
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)1594 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1595 {
1596 	return -EINVAL;
1597 }
1598 
kvm_irqfd_release(struct kvm * kvm)1599 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1600 #endif
1601 
1602 #else
1603 
kvm_eventfd_init(struct kvm * kvm)1604 static inline void kvm_eventfd_init(struct kvm *kvm) {}
1605 
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)1606 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1607 {
1608 	return -EINVAL;
1609 }
1610 
kvm_irqfd_release(struct kvm * kvm)1611 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1612 
1613 #ifdef CONFIG_HAVE_KVM_IRQCHIP
kvm_irq_routing_update(struct kvm * kvm)1614 static inline void kvm_irq_routing_update(struct kvm *kvm)
1615 {
1616 }
1617 #endif
1618 
kvm_ioeventfd(struct kvm * kvm,struct kvm_ioeventfd * args)1619 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1620 {
1621 	return -ENOSYS;
1622 }
1623 
1624 #endif /* CONFIG_HAVE_KVM_EVENTFD */
1625 
1626 void kvm_arch_irq_routing_update(struct kvm *kvm);
1627 
kvm_make_request(int req,struct kvm_vcpu * vcpu)1628 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1629 {
1630 	/*
1631 	 * Ensure the rest of the request is published to kvm_check_request's
1632 	 * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
1633 	 */
1634 	smp_wmb();
1635 	set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1636 }
1637 
kvm_request_pending(struct kvm_vcpu * vcpu)1638 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1639 {
1640 	return READ_ONCE(vcpu->requests);
1641 }
1642 
kvm_test_request(int req,struct kvm_vcpu * vcpu)1643 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1644 {
1645 	return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1646 }
1647 
kvm_clear_request(int req,struct kvm_vcpu * vcpu)1648 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1649 {
1650 	clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1651 }
1652 
kvm_check_request(int req,struct kvm_vcpu * vcpu)1653 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1654 {
1655 	if (kvm_test_request(req, vcpu)) {
1656 		kvm_clear_request(req, vcpu);
1657 
1658 		/*
1659 		 * Ensure the rest of the request is visible to kvm_check_request's
1660 		 * caller.  Paired with the smp_wmb in kvm_make_request.
1661 		 */
1662 		smp_mb__after_atomic();
1663 		return true;
1664 	} else {
1665 		return false;
1666 	}
1667 }
1668 
1669 extern bool kvm_rebooting;
1670 
1671 extern unsigned int halt_poll_ns;
1672 extern unsigned int halt_poll_ns_grow;
1673 extern unsigned int halt_poll_ns_grow_start;
1674 extern unsigned int halt_poll_ns_shrink;
1675 
1676 struct kvm_device {
1677 	const struct kvm_device_ops *ops;
1678 	struct kvm *kvm;
1679 	void *private;
1680 	struct list_head vm_node;
1681 };
1682 
1683 /* create, destroy, and name are mandatory */
1684 struct kvm_device_ops {
1685 	const char *name;
1686 
1687 	/*
1688 	 * create is called holding kvm->lock and any operations not suitable
1689 	 * to do while holding the lock should be deferred to init (see
1690 	 * below).
1691 	 */
1692 	int (*create)(struct kvm_device *dev, u32 type);
1693 
1694 	/*
1695 	 * init is called after create if create is successful and is called
1696 	 * outside of holding kvm->lock.
1697 	 */
1698 	void (*init)(struct kvm_device *dev);
1699 
1700 	/*
1701 	 * Destroy is responsible for freeing dev.
1702 	 *
1703 	 * Destroy may be called before or after destructors are called
1704 	 * on emulated I/O regions, depending on whether a reference is
1705 	 * held by a vcpu or other kvm component that gets destroyed
1706 	 * after the emulated I/O.
1707 	 */
1708 	void (*destroy)(struct kvm_device *dev);
1709 
1710 	/*
1711 	 * Release is an alternative method to free the device. It is
1712 	 * called when the device file descriptor is closed. Once
1713 	 * release is called, the destroy method will not be called
1714 	 * anymore as the device is removed from the device list of
1715 	 * the VM. kvm->lock is held.
1716 	 */
1717 	void (*release)(struct kvm_device *dev);
1718 
1719 	int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1720 	int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1721 	int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1722 	long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1723 		      unsigned long arg);
1724 	int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
1725 };
1726 
1727 void kvm_device_get(struct kvm_device *dev);
1728 void kvm_device_put(struct kvm_device *dev);
1729 struct kvm_device *kvm_device_from_filp(struct file *filp);
1730 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
1731 void kvm_unregister_device_ops(u32 type);
1732 
1733 extern struct kvm_device_ops kvm_mpic_ops;
1734 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1735 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1736 
1737 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1738 
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)1739 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1740 {
1741 	vcpu->spin_loop.in_spin_loop = val;
1742 }
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)1743 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1744 {
1745 	vcpu->spin_loop.dy_eligible = val;
1746 }
1747 
1748 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1749 
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)1750 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1751 {
1752 }
1753 
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)1754 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1755 {
1756 }
1757 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1758 
kvm_is_visible_memslot(struct kvm_memory_slot * memslot)1759 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
1760 {
1761 	return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
1762 		!(memslot->flags & KVM_MEMSLOT_INVALID));
1763 }
1764 
1765 struct kvm_vcpu *kvm_get_running_vcpu(void);
1766 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
1767 
1768 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1769 bool kvm_arch_has_irq_bypass(void);
1770 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1771 			   struct irq_bypass_producer *);
1772 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1773 			   struct irq_bypass_producer *);
1774 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1775 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1776 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1777 				  uint32_t guest_irq, bool set);
1778 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
1779 				  struct kvm_kernel_irq_routing_entry *);
1780 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1781 
1782 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1783 /* If we wakeup during the poll time, was it a sucessful poll? */
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)1784 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1785 {
1786 	return vcpu->valid_wakeup;
1787 }
1788 
1789 #else
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)1790 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1791 {
1792 	return true;
1793 }
1794 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1795 
1796 #ifdef CONFIG_HAVE_KVM_NO_POLL
1797 /* Callback that tells if we must not poll */
1798 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
1799 #else
kvm_arch_no_poll(struct kvm_vcpu * vcpu)1800 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
1801 {
1802 	return false;
1803 }
1804 #endif /* CONFIG_HAVE_KVM_NO_POLL */
1805 
1806 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
1807 long kvm_arch_vcpu_async_ioctl(struct file *filp,
1808 			       unsigned int ioctl, unsigned long arg);
1809 #else
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1810 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
1811 					     unsigned int ioctl,
1812 					     unsigned long arg)
1813 {
1814 	return -ENOIOCTLCMD;
1815 }
1816 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
1817 
1818 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
1819 					    unsigned long start, unsigned long end);
1820 
1821 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
1822 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
1823 #else
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)1824 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
1825 {
1826 	return 0;
1827 }
1828 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
1829 
1830 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
1831 
1832 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
1833 				uintptr_t data, const char *name,
1834 				struct task_struct **thread_ptr);
1835 
1836 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
kvm_handle_signal_exit(struct kvm_vcpu * vcpu)1837 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
1838 {
1839 	vcpu->run->exit_reason = KVM_EXIT_INTR;
1840 	vcpu->stat.signal_exits++;
1841 }
1842 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
1843 
1844 /*
1845  * This defines how many reserved entries we want to keep before we
1846  * kick the vcpu to the userspace to avoid dirty ring full.  This
1847  * value can be tuned to higher if e.g. PML is enabled on the host.
1848  */
1849 #define  KVM_DIRTY_RING_RSVD_ENTRIES  64
1850 
1851 /* Max number of entries allowed for each kvm dirty ring */
1852 #define  KVM_DIRTY_RING_MAX_ENTRIES  65536
1853 
1854 #endif
1855