1 /*
2   A version of malloc/free/realloc written by Doug Lea and released to the
3   public domain.  Send questions/comments/complaints/performance data
4   to dl@cs.oswego.edu
5 
6 * VERSION 2.6.6  Sun Mar  5 19:10:03 2000  Doug Lea  (dl at gee)
7 
8    Note: There may be an updated version of this malloc obtainable at
9 	   ftp://g.oswego.edu/pub/misc/malloc.c
10 	 Check before installing!
11 
12 * Why use this malloc?
13 
14   This is not the fastest, most space-conserving, most portable, or
15   most tunable malloc ever written. However it is among the fastest
16   while also being among the most space-conserving, portable and tunable.
17   Consistent balance across these factors results in a good general-purpose
18   allocator. For a high-level description, see
19      http://g.oswego.edu/dl/html/malloc.html
20 
21 * Synopsis of public routines
22 
23   (Much fuller descriptions are contained in the program documentation below.)
24 
25   malloc(size_t n);
26      Return a pointer to a newly allocated chunk of at least n bytes, or null
27      if no space is available.
28   free(Void_t* p);
29      Release the chunk of memory pointed to by p, or no effect if p is null.
30   realloc(Void_t* p, size_t n);
31      Return a pointer to a chunk of size n that contains the same data
32      as does chunk p up to the minimum of (n, p's size) bytes, or null
33      if no space is available. The returned pointer may or may not be
34      the same as p. If p is null, equivalent to malloc.  Unless the
35      #define REALLOC_ZERO_BYTES_FREES below is set, realloc with a
36      size argument of zero (re)allocates a minimum-sized chunk.
37   memalign(size_t alignment, size_t n);
38      Return a pointer to a newly allocated chunk of n bytes, aligned
39      in accord with the alignment argument, which must be a power of
40      two.
41   valloc(size_t n);
42      Equivalent to memalign(pagesize, n), where pagesize is the page
43      size of the system (or as near to this as can be figured out from
44      all the includes/defines below.)
45   pvalloc(size_t n);
46      Equivalent to valloc(minimum-page-that-holds(n)), that is,
47      round up n to nearest pagesize.
48   calloc(size_t unit, size_t quantity);
49      Returns a pointer to quantity * unit bytes, with all locations
50      set to zero.
51   cfree(Void_t* p);
52      Equivalent to free(p).
53   malloc_trim(size_t pad);
54      Release all but pad bytes of freed top-most memory back
55      to the system. Return 1 if successful, else 0.
56   malloc_usable_size(Void_t* p);
57      Report the number usable allocated bytes associated with allocated
58      chunk p. This may or may not report more bytes than were requested,
59      due to alignment and minimum size constraints.
60   malloc_stats();
61      Prints brief summary statistics on stderr.
62   mallinfo()
63      Returns (by copy) a struct containing various summary statistics.
64   mallopt(int parameter_number, int parameter_value)
65      Changes one of the tunable parameters described below. Returns
66      1 if successful in changing the parameter, else 0.
67 
68 * Vital statistics:
69 
70   Alignment:                            8-byte
71        8 byte alignment is currently hardwired into the design.  This
72        seems to suffice for all current machines and C compilers.
73 
74   Assumed pointer representation:       4 or 8 bytes
75        Code for 8-byte pointers is untested by me but has worked
76        reliably by Wolfram Gloger, who contributed most of the
77        changes supporting this.
78 
79   Assumed size_t  representation:       4 or 8 bytes
80        Note that size_t is allowed to be 4 bytes even if pointers are 8.
81 
82   Minimum overhead per allocated chunk: 4 or 8 bytes
83        Each malloced chunk has a hidden overhead of 4 bytes holding size
84        and status information.
85 
86   Minimum allocated size: 4-byte ptrs:  16 bytes    (including 4 overhead)
87 			  8-byte ptrs:  24/32 bytes (including, 4/8 overhead)
88 
89        When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
90        ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
91        needed; 4 (8) for a trailing size field
92        and 8 (16) bytes for free list pointers. Thus, the minimum
93        allocatable size is 16/24/32 bytes.
94 
95        Even a request for zero bytes (i.e., malloc(0)) returns a
96        pointer to something of the minimum allocatable size.
97 
98   Maximum allocated size: 4-byte size_t: 2^31 -  8 bytes
99 			  8-byte size_t: 2^63 - 16 bytes
100 
101        It is assumed that (possibly signed) size_t bit values suffice to
102        represent chunk sizes. `Possibly signed' is due to the fact
103        that `size_t' may be defined on a system as either a signed or
104        an unsigned type. To be conservative, values that would appear
105        as negative numbers are avoided.
106        Requests for sizes with a negative sign bit when the request
107        size is treaded as a long will return null.
108 
109   Maximum overhead wastage per allocated chunk: normally 15 bytes
110 
111        Alignnment demands, plus the minimum allocatable size restriction
112        make the normal worst-case wastage 15 bytes (i.e., up to 15
113        more bytes will be allocated than were requested in malloc), with
114        two exceptions:
115 	 1. Because requests for zero bytes allocate non-zero space,
116 	    the worst case wastage for a request of zero bytes is 24 bytes.
117 	 2. For requests >= mmap_threshold that are serviced via
118 	    mmap(), the worst case wastage is 8 bytes plus the remainder
119 	    from a system page (the minimal mmap unit); typically 4096 bytes.
120 
121 * Limitations
122 
123     Here are some features that are NOT currently supported
124 
125     * No user-definable hooks for callbacks and the like.
126     * No automated mechanism for fully checking that all accesses
127       to malloced memory stay within their bounds.
128     * No support for compaction.
129 
130 * Synopsis of compile-time options:
131 
132     People have reported using previous versions of this malloc on all
133     versions of Unix, sometimes by tweaking some of the defines
134     below. It has been tested most extensively on Solaris and
135     Linux. It is also reported to work on WIN32 platforms.
136     People have also reported adapting this malloc for use in
137     stand-alone embedded systems.
138 
139     The implementation is in straight, hand-tuned ANSI C.  Among other
140     consequences, it uses a lot of macros.  Because of this, to be at
141     all usable, this code should be compiled using an optimizing compiler
142     (for example gcc -O2) that can simplify expressions and control
143     paths.
144 
145   __STD_C                  (default: derived from C compiler defines)
146      Nonzero if using ANSI-standard C compiler, a C++ compiler, or
147      a C compiler sufficiently close to ANSI to get away with it.
148   DEBUG                    (default: NOT defined)
149      Define to enable debugging. Adds fairly extensive assertion-based
150      checking to help track down memory errors, but noticeably slows down
151      execution.
152   REALLOC_ZERO_BYTES_FREES (default: NOT defined)
153      Define this if you think that realloc(p, 0) should be equivalent
154      to free(p). Otherwise, since malloc returns a unique pointer for
155      malloc(0), so does realloc(p, 0).
156   HAVE_MEMCPY               (default: defined)
157      Define if you are not otherwise using ANSI STD C, but still
158      have memcpy and memset in your C library and want to use them.
159      Otherwise, simple internal versions are supplied.
160   USE_MEMCPY               (default: 1 if HAVE_MEMCPY is defined, 0 otherwise)
161      Define as 1 if you want the C library versions of memset and
162      memcpy called in realloc and calloc (otherwise macro versions are used).
163      At least on some platforms, the simple macro versions usually
164      outperform libc versions.
165   HAVE_MMAP                 (default: defined as 1)
166      Define to non-zero to optionally make malloc() use mmap() to
167      allocate very large blocks.
168   HAVE_MREMAP                 (default: defined as 0 unless Linux libc set)
169      Define to non-zero to optionally make realloc() use mremap() to
170      reallocate very large blocks.
171   malloc_getpagesize        (default: derived from system #includes)
172      Either a constant or routine call returning the system page size.
173   HAVE_USR_INCLUDE_MALLOC_H (default: NOT defined)
174      Optionally define if you are on a system with a /usr/include/malloc.h
175      that declares struct mallinfo. It is not at all necessary to
176      define this even if you do, but will ensure consistency.
177   INTERNAL_SIZE_T           (default: size_t)
178      Define to a 32-bit type (probably `unsigned int') if you are on a
179      64-bit machine, yet do not want or need to allow malloc requests of
180      greater than 2^31 to be handled. This saves space, especially for
181      very small chunks.
182   INTERNAL_LINUX_C_LIB      (default: NOT defined)
183      Defined only when compiled as part of Linux libc.
184      Also note that there is some odd internal name-mangling via defines
185      (for example, internally, `malloc' is named `mALLOc') needed
186      when compiling in this case. These look funny but don't otherwise
187      affect anything.
188   WIN32                     (default: undefined)
189      Define this on MS win (95, nt) platforms to compile in sbrk emulation.
190   LACKS_UNISTD_H            (default: undefined if not WIN32)
191      Define this if your system does not have a <unistd.h>.
192   LACKS_SYS_PARAM_H         (default: undefined if not WIN32)
193      Define this if your system does not have a <sys/param.h>.
194   MORECORE                  (default: sbrk)
195      The name of the routine to call to obtain more memory from the system.
196   MORECORE_FAILURE          (default: -1)
197      The value returned upon failure of MORECORE.
198   MORECORE_CLEARS           (default 1)
199      true (1) if the routine mapped to MORECORE zeroes out memory (which
200      holds for sbrk).
201   DEFAULT_TRIM_THRESHOLD
202   DEFAULT_TOP_PAD
203   DEFAULT_MMAP_THRESHOLD
204   DEFAULT_MMAP_MAX
205      Default values of tunable parameters (described in detail below)
206      controlling interaction with host system routines (sbrk, mmap, etc).
207      These values may also be changed dynamically via mallopt(). The
208      preset defaults are those that give best performance for typical
209      programs/systems.
210   USE_DL_PREFIX             (default: undefined)
211      Prefix all public routines with the string 'dl'.  Useful to
212      quickly avoid procedure declaration conflicts and linker symbol
213      conflicts with existing memory allocation routines.
214 
215 
216 */
217 
218 
219 #ifndef __MALLOC_H__
220 #define __MALLOC_H__
221 
222 /* Preliminaries */
223 
224 #ifndef __STD_C
225 #ifdef __STDC__
226 #define __STD_C     1
227 #else
228 #if __cplusplus
229 #define __STD_C     1
230 #else
231 #define __STD_C     0
232 #endif /*__cplusplus*/
233 #endif /*__STDC__*/
234 #endif /*__STD_C*/
235 
236 #ifndef Void_t
237 #if (__STD_C || defined(WIN32))
238 #define Void_t      void
239 #else
240 #define Void_t      char
241 #endif
242 #endif /*Void_t*/
243 
244 #if __STD_C
245 #include <linux/stddef.h>	/* for size_t */
246 #else
247 #include <sys/types.h>
248 #endif	/* __STD_C */
249 
250 #ifdef __cplusplus
251 extern "C" {
252 #endif
253 
254 #if 0	/* not for U-Boot */
255 #include <stdio.h>	/* needed for malloc_stats */
256 #endif
257 
258 
259 /*
260   Compile-time options
261 */
262 
263 
264 /*
265     Debugging:
266 
267     Because freed chunks may be overwritten with link fields, this
268     malloc will often die when freed memory is overwritten by user
269     programs.  This can be very effective (albeit in an annoying way)
270     in helping track down dangling pointers.
271 
272     If you compile with -DDEBUG, a number of assertion checks are
273     enabled that will catch more memory errors. You probably won't be
274     able to make much sense of the actual assertion errors, but they
275     should help you locate incorrectly overwritten memory.  The
276     checking is fairly extensive, and will slow down execution
277     noticeably. Calling malloc_stats or mallinfo with DEBUG set will
278     attempt to check every non-mmapped allocated and free chunk in the
279     course of computing the summmaries. (By nature, mmapped regions
280     cannot be checked very much automatically.)
281 
282     Setting DEBUG may also be helpful if you are trying to modify
283     this code. The assertions in the check routines spell out in more
284     detail the assumptions and invariants underlying the algorithms.
285 
286 */
287 
288 /*
289   INTERNAL_SIZE_T is the word-size used for internal bookkeeping
290   of chunk sizes. On a 64-bit machine, you can reduce malloc
291   overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int'
292   at the expense of not being able to handle requests greater than
293   2^31. This limitation is hardly ever a concern; you are encouraged
294   to set this. However, the default version is the same as size_t.
295 */
296 
297 #ifndef INTERNAL_SIZE_T
298 #define INTERNAL_SIZE_T size_t
299 #endif
300 
301 /*
302   REALLOC_ZERO_BYTES_FREES should be set if a call to
303   realloc with zero bytes should be the same as a call to free.
304   Some people think it should. Otherwise, since this malloc
305   returns a unique pointer for malloc(0), so does realloc(p, 0).
306 */
307 
308 
309 /*   #define REALLOC_ZERO_BYTES_FREES */
310 
311 
312 /*
313   WIN32 causes an emulation of sbrk to be compiled in
314   mmap-based options are not currently supported in WIN32.
315 */
316 
317 /* #define WIN32 */
318 #ifdef WIN32
319 #define MORECORE wsbrk
320 #define HAVE_MMAP 0
321 
322 #define LACKS_UNISTD_H
323 #define LACKS_SYS_PARAM_H
324 
325 /*
326   Include 'windows.h' to get the necessary declarations for the
327   Microsoft Visual C++ data structures and routines used in the 'sbrk'
328   emulation.
329 
330   Define WIN32_LEAN_AND_MEAN so that only the essential Microsoft
331   Visual C++ header files are included.
332 */
333 #define WIN32_LEAN_AND_MEAN
334 #include <windows.h>
335 #endif
336 
337 
338 /*
339   HAVE_MEMCPY should be defined if you are not otherwise using
340   ANSI STD C, but still have memcpy and memset in your C library
341   and want to use them in calloc and realloc. Otherwise simple
342   macro versions are defined here.
343 
344   USE_MEMCPY should be defined as 1 if you actually want to
345   have memset and memcpy called. People report that the macro
346   versions are often enough faster than libc versions on many
347   systems that it is better to use them.
348 
349 */
350 
351 #define HAVE_MEMCPY
352 
353 #ifndef USE_MEMCPY
354 #ifdef HAVE_MEMCPY
355 #define USE_MEMCPY 1
356 #else
357 #define USE_MEMCPY 0
358 #endif
359 #endif
360 
361 #if (__STD_C || defined(HAVE_MEMCPY))
362 
363 #if __STD_C
364 /* U-Boot defines memset() and memcpy in /include/linux/string.h
365 void* memset(void*, int, size_t);
366 void* memcpy(void*, const void*, size_t);
367 */
368 #include <linux/string.h>
369 #else
370 #ifdef WIN32
371 /* On Win32 platforms, 'memset()' and 'memcpy()' are already declared in */
372 /* 'windows.h' */
373 #else
374 Void_t* memset();
375 Void_t* memcpy();
376 #endif
377 #endif
378 #endif
379 
380 #if USE_MEMCPY
381 
382 /* The following macros are only invoked with (2n+1)-multiples of
383    INTERNAL_SIZE_T units, with a positive integer n. This is exploited
384    for fast inline execution when n is small. */
385 
386 #define MALLOC_ZERO(charp, nbytes)                                            \
387 do {                                                                          \
388   INTERNAL_SIZE_T mzsz = (nbytes);                                            \
389   if(mzsz <= 9*sizeof(mzsz)) {                                                \
390     INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp);                         \
391     if(mzsz >= 5*sizeof(mzsz)) {     *mz++ = 0;                               \
392 				     *mz++ = 0;                               \
393       if(mzsz >= 7*sizeof(mzsz)) {   *mz++ = 0;                               \
394 				     *mz++ = 0;                               \
395 	if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0;                               \
396 				     *mz++ = 0; }}}                           \
397 				     *mz++ = 0;                               \
398 				     *mz++ = 0;                               \
399 				     *mz   = 0;                               \
400   } else memset((charp), 0, mzsz);                                            \
401 } while(0)
402 
403 #define MALLOC_COPY(dest,src,nbytes)                                          \
404 do {                                                                          \
405   INTERNAL_SIZE_T mcsz = (nbytes);                                            \
406   if(mcsz <= 9*sizeof(mcsz)) {                                                \
407     INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src);                        \
408     INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest);                       \
409     if(mcsz >= 5*sizeof(mcsz)) {     *mcdst++ = *mcsrc++;                     \
410 				     *mcdst++ = *mcsrc++;                     \
411       if(mcsz >= 7*sizeof(mcsz)) {   *mcdst++ = *mcsrc++;                     \
412 				     *mcdst++ = *mcsrc++;                     \
413 	if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++;                     \
414 				     *mcdst++ = *mcsrc++; }}}                 \
415 				     *mcdst++ = *mcsrc++;                     \
416 				     *mcdst++ = *mcsrc++;                     \
417 				     *mcdst   = *mcsrc  ;                     \
418   } else memcpy(dest, src, mcsz);                                             \
419 } while(0)
420 
421 #else /* !USE_MEMCPY */
422 
423 /* Use Duff's device for good zeroing/copying performance. */
424 
425 #define MALLOC_ZERO(charp, nbytes)                                            \
426 do {                                                                          \
427   INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp);                           \
428   long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
429   if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
430   switch (mctmp) {                                                            \
431     case 0: for(;;) { *mzp++ = 0;                                             \
432     case 7:           *mzp++ = 0;                                             \
433     case 6:           *mzp++ = 0;                                             \
434     case 5:           *mzp++ = 0;                                             \
435     case 4:           *mzp++ = 0;                                             \
436     case 3:           *mzp++ = 0;                                             \
437     case 2:           *mzp++ = 0;                                             \
438     case 1:           *mzp++ = 0; if(mcn <= 0) break; mcn--; }                \
439   }                                                                           \
440 } while(0)
441 
442 #define MALLOC_COPY(dest,src,nbytes)                                          \
443 do {                                                                          \
444   INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src;                            \
445   INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest;                           \
446   long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
447   if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
448   switch (mctmp) {                                                            \
449     case 0: for(;;) { *mcdst++ = *mcsrc++;                                    \
450     case 7:           *mcdst++ = *mcsrc++;                                    \
451     case 6:           *mcdst++ = *mcsrc++;                                    \
452     case 5:           *mcdst++ = *mcsrc++;                                    \
453     case 4:           *mcdst++ = *mcsrc++;                                    \
454     case 3:           *mcdst++ = *mcsrc++;                                    \
455     case 2:           *mcdst++ = *mcsrc++;                                    \
456     case 1:           *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; }       \
457   }                                                                           \
458 } while(0)
459 
460 #endif
461 
462 
463 /*
464   Define HAVE_MMAP to optionally make malloc() use mmap() to
465   allocate very large blocks.  These will be returned to the
466   operating system immediately after a free().
467 */
468 
469 /***
470 #ifndef HAVE_MMAP
471 #define HAVE_MMAP 1
472 #endif
473 ***/
474 #undef	HAVE_MMAP	/* Not available for U-Boot */
475 
476 /*
477   Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
478   large blocks.  This is currently only possible on Linux with
479   kernel versions newer than 1.3.77.
480 */
481 
482 /***
483 #ifndef HAVE_MREMAP
484 #ifdef INTERNAL_LINUX_C_LIB
485 #define HAVE_MREMAP 1
486 #else
487 #define HAVE_MREMAP 0
488 #endif
489 #endif
490 ***/
491 #undef	HAVE_MREMAP	/* Not available for U-Boot */
492 
493 #ifdef HAVE_MMAP
494 
495 #include <unistd.h>
496 #include <fcntl.h>
497 #include <sys/mman.h>
498 
499 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
500 #define MAP_ANONYMOUS MAP_ANON
501 #endif
502 
503 #endif /* HAVE_MMAP */
504 
505 /*
506   Access to system page size. To the extent possible, this malloc
507   manages memory from the system in page-size units.
508 
509   The following mechanics for getpagesize were adapted from
510   bsd/gnu getpagesize.h
511 */
512 
513 #define	LACKS_UNISTD_H	/* Shortcut for U-Boot */
514 #define	malloc_getpagesize	4096
515 
516 #ifndef LACKS_UNISTD_H
517 #  include <unistd.h>
518 #endif
519 
520 #ifndef malloc_getpagesize
521 #  ifdef _SC_PAGESIZE         /* some SVR4 systems omit an underscore */
522 #    ifndef _SC_PAGE_SIZE
523 #      define _SC_PAGE_SIZE _SC_PAGESIZE
524 #    endif
525 #  endif
526 #  ifdef _SC_PAGE_SIZE
527 #    define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
528 #  else
529 #    if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
530        extern size_t getpagesize();
531 #      define malloc_getpagesize getpagesize()
532 #    else
533 #      ifdef WIN32
534 #        define malloc_getpagesize (4096) /* TBD: Use 'GetSystemInfo' instead */
535 #      else
536 #        ifndef LACKS_SYS_PARAM_H
537 #          include <sys/param.h>
538 #        endif
539 #        ifdef EXEC_PAGESIZE
540 #          define malloc_getpagesize EXEC_PAGESIZE
541 #        else
542 #          ifdef NBPG
543 #            ifndef CLSIZE
544 #              define malloc_getpagesize NBPG
545 #            else
546 #              define malloc_getpagesize (NBPG * CLSIZE)
547 #            endif
548 #          else
549 #            ifdef NBPC
550 #              define malloc_getpagesize NBPC
551 #            else
552 #              ifdef PAGESIZE
553 #                define malloc_getpagesize PAGESIZE
554 #              else
555 #                define malloc_getpagesize (4096) /* just guess */
556 #              endif
557 #            endif
558 #          endif
559 #        endif
560 #      endif
561 #    endif
562 #  endif
563 #endif
564 
565 
566 /*
567 
568   This version of malloc supports the standard SVID/XPG mallinfo
569   routine that returns a struct containing the same kind of
570   information you can get from malloc_stats. It should work on
571   any SVID/XPG compliant system that has a /usr/include/malloc.h
572   defining struct mallinfo. (If you'd like to install such a thing
573   yourself, cut out the preliminary declarations as described above
574   and below and save them in a malloc.h file. But there's no
575   compelling reason to bother to do this.)
576 
577   The main declaration needed is the mallinfo struct that is returned
578   (by-copy) by mallinfo().  The SVID/XPG malloinfo struct contains a
579   bunch of fields, most of which are not even meaningful in this
580   version of malloc. Some of these fields are are instead filled by
581   mallinfo() with other numbers that might possibly be of interest.
582 
583   HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
584   /usr/include/malloc.h file that includes a declaration of struct
585   mallinfo.  If so, it is included; else an SVID2/XPG2 compliant
586   version is declared below.  These must be precisely the same for
587   mallinfo() to work.
588 
589 */
590 
591 /* #define HAVE_USR_INCLUDE_MALLOC_H */
592 
593 #ifdef HAVE_USR_INCLUDE_MALLOC_H
594 #include "/usr/include/malloc.h"
595 #else
596 
597 /* SVID2/XPG mallinfo structure */
598 
599 struct mallinfo {
600   int arena;    /* total space allocated from system */
601   int ordblks;  /* number of non-inuse chunks */
602   int smblks;   /* unused -- always zero */
603   int hblks;    /* number of mmapped regions */
604   int hblkhd;   /* total space in mmapped regions */
605   int usmblks;  /* unused -- always zero */
606   int fsmblks;  /* unused -- always zero */
607   int uordblks; /* total allocated space */
608   int fordblks; /* total non-inuse space */
609   int keepcost; /* top-most, releasable (via malloc_trim) space */
610 };
611 
612 /* SVID2/XPG mallopt options */
613 
614 #define M_MXFAST  1    /* UNUSED in this malloc */
615 #define M_NLBLKS  2    /* UNUSED in this malloc */
616 #define M_GRAIN   3    /* UNUSED in this malloc */
617 #define M_KEEP    4    /* UNUSED in this malloc */
618 
619 #endif
620 
621 /* mallopt options that actually do something */
622 
623 #define M_TRIM_THRESHOLD    -1
624 #define M_TOP_PAD           -2
625 #define M_MMAP_THRESHOLD    -3
626 #define M_MMAP_MAX          -4
627 
628 
629 #ifndef DEFAULT_TRIM_THRESHOLD
630 #define DEFAULT_TRIM_THRESHOLD (128 * 1024)
631 #endif
632 
633 /*
634     M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
635       to keep before releasing via malloc_trim in free().
636 
637       Automatic trimming is mainly useful in long-lived programs.
638       Because trimming via sbrk can be slow on some systems, and can
639       sometimes be wasteful (in cases where programs immediately
640       afterward allocate more large chunks) the value should be high
641       enough so that your overall system performance would improve by
642       releasing.
643 
644       The trim threshold and the mmap control parameters (see below)
645       can be traded off with one another. Trimming and mmapping are
646       two different ways of releasing unused memory back to the
647       system. Between these two, it is often possible to keep
648       system-level demands of a long-lived program down to a bare
649       minimum. For example, in one test suite of sessions measuring
650       the XF86 X server on Linux, using a trim threshold of 128K and a
651       mmap threshold of 192K led to near-minimal long term resource
652       consumption.
653 
654       If you are using this malloc in a long-lived program, it should
655       pay to experiment with these values.  As a rough guide, you
656       might set to a value close to the average size of a process
657       (program) running on your system.  Releasing this much memory
658       would allow such a process to run in memory.  Generally, it's
659       worth it to tune for trimming rather tham memory mapping when a
660       program undergoes phases where several large chunks are
661       allocated and released in ways that can reuse each other's
662       storage, perhaps mixed with phases where there are no such
663       chunks at all.  And in well-behaved long-lived programs,
664       controlling release of large blocks via trimming versus mapping
665       is usually faster.
666 
667       However, in most programs, these parameters serve mainly as
668       protection against the system-level effects of carrying around
669       massive amounts of unneeded memory. Since frequent calls to
670       sbrk, mmap, and munmap otherwise degrade performance, the default
671       parameters are set to relatively high values that serve only as
672       safeguards.
673 
674       The default trim value is high enough to cause trimming only in
675       fairly extreme (by current memory consumption standards) cases.
676       It must be greater than page size to have any useful effect.  To
677       disable trimming completely, you can set to (unsigned long)(-1);
678 
679 
680 */
681 
682 
683 #ifndef DEFAULT_TOP_PAD
684 #define DEFAULT_TOP_PAD        (0)
685 #endif
686 
687 /*
688     M_TOP_PAD is the amount of extra `padding' space to allocate or
689       retain whenever sbrk is called. It is used in two ways internally:
690 
691       * When sbrk is called to extend the top of the arena to satisfy
692 	a new malloc request, this much padding is added to the sbrk
693 	request.
694 
695       * When malloc_trim is called automatically from free(),
696 	it is used as the `pad' argument.
697 
698       In both cases, the actual amount of padding is rounded
699       so that the end of the arena is always a system page boundary.
700 
701       The main reason for using padding is to avoid calling sbrk so
702       often. Having even a small pad greatly reduces the likelihood
703       that nearly every malloc request during program start-up (or
704       after trimming) will invoke sbrk, which needlessly wastes
705       time.
706 
707       Automatic rounding-up to page-size units is normally sufficient
708       to avoid measurable overhead, so the default is 0.  However, in
709       systems where sbrk is relatively slow, it can pay to increase
710       this value, at the expense of carrying around more memory than
711       the program needs.
712 
713 */
714 
715 
716 #ifndef DEFAULT_MMAP_THRESHOLD
717 #define DEFAULT_MMAP_THRESHOLD (128 * 1024)
718 #endif
719 
720 /*
721 
722     M_MMAP_THRESHOLD is the request size threshold for using mmap()
723       to service a request. Requests of at least this size that cannot
724       be allocated using already-existing space will be serviced via mmap.
725       (If enough normal freed space already exists it is used instead.)
726 
727       Using mmap segregates relatively large chunks of memory so that
728       they can be individually obtained and released from the host
729       system. A request serviced through mmap is never reused by any
730       other request (at least not directly; the system may just so
731       happen to remap successive requests to the same locations).
732 
733       Segregating space in this way has the benefit that mmapped space
734       can ALWAYS be individually released back to the system, which
735       helps keep the system level memory demands of a long-lived
736       program low. Mapped memory can never become `locked' between
737       other chunks, as can happen with normally allocated chunks, which
738       menas that even trimming via malloc_trim would not release them.
739 
740       However, it has the disadvantages that:
741 
742 	 1. The space cannot be reclaimed, consolidated, and then
743 	    used to service later requests, as happens with normal chunks.
744 	 2. It can lead to more wastage because of mmap page alignment
745 	    requirements
746 	 3. It causes malloc performance to be more dependent on host
747 	    system memory management support routines which may vary in
748 	    implementation quality and may impose arbitrary
749 	    limitations. Generally, servicing a request via normal
750 	    malloc steps is faster than going through a system's mmap.
751 
752       All together, these considerations should lead you to use mmap
753       only for relatively large requests.
754 
755 
756 */
757 
758 
759 #ifndef DEFAULT_MMAP_MAX
760 #ifdef HAVE_MMAP
761 #define DEFAULT_MMAP_MAX       (64)
762 #else
763 #define DEFAULT_MMAP_MAX       (0)
764 #endif
765 #endif
766 
767 /*
768     M_MMAP_MAX is the maximum number of requests to simultaneously
769       service using mmap. This parameter exists because:
770 
771 	 1. Some systems have a limited number of internal tables for
772 	    use by mmap.
773 	 2. In most systems, overreliance on mmap can degrade overall
774 	    performance.
775 	 3. If a program allocates many large regions, it is probably
776 	    better off using normal sbrk-based allocation routines that
777 	    can reclaim and reallocate normal heap memory. Using a
778 	    small value allows transition into this mode after the
779 	    first few allocations.
780 
781       Setting to 0 disables all use of mmap.  If HAVE_MMAP is not set,
782       the default value is 0, and attempts to set it to non-zero values
783       in mallopt will fail.
784 */
785 
786 
787 /*
788     USE_DL_PREFIX will prefix all public routines with the string 'dl'.
789       Useful to quickly avoid procedure declaration conflicts and linker
790       symbol conflicts with existing memory allocation routines.
791 
792 */
793 
794 /*
795  * Rename the U-Boot alloc functions so that sandbox can still use the system
796  * ones
797  */
798 #ifdef CONFIG_SANDBOX
799 #define USE_DL_PREFIX
800 #endif
801 
802 /*
803 
804   Special defines for linux libc
805 
806   Except when compiled using these special defines for Linux libc
807   using weak aliases, this malloc is NOT designed to work in
808   multithreaded applications.  No semaphores or other concurrency
809   control are provided to ensure that multiple malloc or free calls
810   don't run at the same time, which could be disasterous. A single
811   semaphore could be used across malloc, realloc, and free (which is
812   essentially the effect of the linux weak alias approach). It would
813   be hard to obtain finer granularity.
814 
815 */
816 
817 
818 #ifdef INTERNAL_LINUX_C_LIB
819 
820 #if __STD_C
821 
822 Void_t * __default_morecore_init (ptrdiff_t);
823 Void_t *(*__morecore)(ptrdiff_t) = __default_morecore_init;
824 
825 #else
826 
827 Void_t * __default_morecore_init ();
828 Void_t *(*__morecore)() = __default_morecore_init;
829 
830 #endif
831 
832 #define MORECORE (*__morecore)
833 #define MORECORE_FAILURE 0
834 #define MORECORE_CLEARS 1
835 
836 #else /* INTERNAL_LINUX_C_LIB */
837 
838 #if __STD_C
839 extern Void_t*     sbrk(ptrdiff_t);
840 #else
841 extern Void_t*     sbrk();
842 #endif
843 
844 #ifndef MORECORE
845 #define MORECORE sbrk
846 #endif
847 
848 #ifndef MORECORE_FAILURE
849 #define MORECORE_FAILURE -1
850 #endif
851 
852 #ifndef MORECORE_CLEARS
853 #define MORECORE_CLEARS 1
854 #endif
855 
856 #endif /* INTERNAL_LINUX_C_LIB */
857 
858 #if defined(INTERNAL_LINUX_C_LIB) && defined(__ELF__)
859 
860 #define cALLOc		__libc_calloc
861 #define fREe		__libc_free
862 #define mALLOc		__libc_malloc
863 #define mEMALIGn	__libc_memalign
864 #define rEALLOc		__libc_realloc
865 #define vALLOc		__libc_valloc
866 #define pvALLOc		__libc_pvalloc
867 #define mALLINFo	__libc_mallinfo
868 #define mALLOPt		__libc_mallopt
869 
870 #pragma weak calloc = __libc_calloc
871 #pragma weak free = __libc_free
872 #pragma weak cfree = __libc_free
873 #pragma weak malloc = __libc_malloc
874 #pragma weak memalign = __libc_memalign
875 #pragma weak realloc = __libc_realloc
876 #pragma weak valloc = __libc_valloc
877 #pragma weak pvalloc = __libc_pvalloc
878 #pragma weak mallinfo = __libc_mallinfo
879 #pragma weak mallopt = __libc_mallopt
880 
881 #else
882 
883 #if CONFIG_IS_ENABLED(SYS_MALLOC_SIMPLE)
884 #define malloc malloc_simple
885 #define realloc realloc_simple
886 #define memalign memalign_simple
free(void * ptr)887 static inline void free(void *ptr) {}
888 void *calloc(size_t nmemb, size_t size);
889 void *realloc_simple(void *ptr, size_t size);
890 void malloc_simple_info(void);
891 #else
892 
893 # ifdef USE_DL_PREFIX
894 # define cALLOc		dlcalloc
895 # define fREe		dlfree
896 # define mALLOc		dlmalloc
897 # define mEMALIGn	dlmemalign
898 # define rEALLOc		dlrealloc
899 # define vALLOc		dlvalloc
900 # define pvALLOc		dlpvalloc
901 # define mALLINFo	dlmallinfo
902 # define mALLOPt		dlmallopt
903 
904 /* Ensure that U-Boot actually uses these too */
905 #define calloc dlcalloc
906 #define free(ptr) dlfree(ptr)
907 #define malloc(x) dlmalloc(x)
908 #define memalign dlmemalign
909 #define realloc dlrealloc
910 #define valloc dlvalloc
911 #define pvalloc dlpvalloc
912 #define mallinfo() dlmallinfo()
913 #define mallopt dlmallopt
914 #define malloc_trim dlmalloc_trim
915 #define malloc_usable_size dlmalloc_usable_size
916 #define malloc_stats dlmalloc_stats
917 
918 # else /* USE_DL_PREFIX */
919 # define cALLOc		calloc
920 # define fREe		free
921 # define mALLOc		malloc
922 # define mEMALIGn	memalign
923 # define rEALLOc		realloc
924 # define vALLOc		valloc
925 # define pvALLOc		pvalloc
926 # define mALLINFo	mallinfo
927 # define mALLOPt		mallopt
928 # endif /* USE_DL_PREFIX */
929 
930 #endif
931 
932 /* Set up pre-relocation malloc() ready for use */
933 int initf_malloc(void);
934 
935 /* Public routines */
936 
937 /* Simple versions which can be used when space is tight */
938 void *malloc_simple(size_t size);
939 void *memalign_simple(size_t alignment, size_t bytes);
940 
941 #pragma GCC visibility push(hidden)
942 # if __STD_C
943 
944 Void_t* mALLOc(size_t);
945 void    fREe(Void_t*);
946 Void_t* rEALLOc(Void_t*, size_t);
947 Void_t* mEMALIGn(size_t, size_t);
948 Void_t* vALLOc(size_t);
949 Void_t* pvALLOc(size_t);
950 Void_t* cALLOc(size_t, size_t);
951 void    cfree(Void_t*);
952 int     malloc_trim(size_t);
953 size_t  malloc_usable_size(Void_t*);
954 void    malloc_stats(void);
955 int     mALLOPt(int, int);
956 struct mallinfo mALLINFo(void);
957 # else
958 Void_t* mALLOc();
959 void    fREe();
960 Void_t* rEALLOc();
961 Void_t* mEMALIGn();
962 Void_t* vALLOc();
963 Void_t* pvALLOc();
964 Void_t* cALLOc();
965 void    cfree();
966 int     malloc_trim();
967 size_t  malloc_usable_size();
968 void    malloc_stats();
969 int     mALLOPt();
970 struct mallinfo mALLINFo();
971 # endif
972 #endif
973 #pragma GCC visibility pop
974 
975 /*
976  * Begin and End of memory area for malloc(), and current "brk"
977  */
978 extern ulong mem_malloc_start;
979 extern ulong mem_malloc_end;
980 extern ulong mem_malloc_brk;
981 
982 void mem_malloc_init(ulong start, ulong size);
983 
984 #ifdef __cplusplus
985 };  /* end of extern "C" */
986 #endif
987 
988 #endif /* __MALLOC_H__ */
989