1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Linux INET6 implementation
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 */
8
9 #ifndef _NET_IPV6_H
10 #define _NET_IPV6_H
11
12 #include <linux/ipv6.h>
13 #include <linux/hardirq.h>
14 #include <linux/jhash.h>
15 #include <linux/refcount.h>
16 #include <linux/jump_label_ratelimit.h>
17 #include <net/if_inet6.h>
18 #include <net/ndisc.h>
19 #include <net/flow.h>
20 #include <net/flow_dissector.h>
21 #include <net/snmp.h>
22 #include <net/netns/hash.h>
23
24 #define SIN6_LEN_RFC2133 24
25
26 #define IPV6_MAXPLEN 65535
27
28 /*
29 * NextHeader field of IPv6 header
30 */
31
32 #define NEXTHDR_HOP 0 /* Hop-by-hop option header. */
33 #define NEXTHDR_IPV4 4 /* IPv4 in IPv6 */
34 #define NEXTHDR_TCP 6 /* TCP segment. */
35 #define NEXTHDR_UDP 17 /* UDP message. */
36 #define NEXTHDR_IPV6 41 /* IPv6 in IPv6 */
37 #define NEXTHDR_ROUTING 43 /* Routing header. */
38 #define NEXTHDR_FRAGMENT 44 /* Fragmentation/reassembly header. */
39 #define NEXTHDR_GRE 47 /* GRE header. */
40 #define NEXTHDR_ESP 50 /* Encapsulating security payload. */
41 #define NEXTHDR_AUTH 51 /* Authentication header. */
42 #define NEXTHDR_ICMP 58 /* ICMP for IPv6. */
43 #define NEXTHDR_NONE 59 /* No next header */
44 #define NEXTHDR_DEST 60 /* Destination options header. */
45 #define NEXTHDR_SCTP 132 /* SCTP message. */
46 #define NEXTHDR_MOBILITY 135 /* Mobility header. */
47
48 #define NEXTHDR_MAX 255
49
50 #define IPV6_DEFAULT_HOPLIMIT 64
51 #define IPV6_DEFAULT_MCASTHOPS 1
52
53 /* Limits on Hop-by-Hop and Destination options.
54 *
55 * Per RFC8200 there is no limit on the maximum number or lengths of options in
56 * Hop-by-Hop or Destination options other then the packet must fit in an MTU.
57 * We allow configurable limits in order to mitigate potential denial of
58 * service attacks.
59 *
60 * There are three limits that may be set:
61 * - Limit the number of options in a Hop-by-Hop or Destination options
62 * extension header
63 * - Limit the byte length of a Hop-by-Hop or Destination options extension
64 * header
65 * - Disallow unknown options
66 *
67 * The limits are expressed in corresponding sysctls:
68 *
69 * ipv6.sysctl.max_dst_opts_cnt
70 * ipv6.sysctl.max_hbh_opts_cnt
71 * ipv6.sysctl.max_dst_opts_len
72 * ipv6.sysctl.max_hbh_opts_len
73 *
74 * max_*_opts_cnt is the number of TLVs that are allowed for Destination
75 * options or Hop-by-Hop options. If the number is less than zero then unknown
76 * TLVs are disallowed and the number of known options that are allowed is the
77 * absolute value. Setting the value to INT_MAX indicates no limit.
78 *
79 * max_*_opts_len is the length limit in bytes of a Destination or
80 * Hop-by-Hop options extension header. Setting the value to INT_MAX
81 * indicates no length limit.
82 *
83 * If a limit is exceeded when processing an extension header the packet is
84 * silently discarded.
85 */
86
87 /* Default limits for Hop-by-Hop and Destination options */
88 #define IP6_DEFAULT_MAX_DST_OPTS_CNT 8
89 #define IP6_DEFAULT_MAX_HBH_OPTS_CNT 8
90 #define IP6_DEFAULT_MAX_DST_OPTS_LEN INT_MAX /* No limit */
91 #define IP6_DEFAULT_MAX_HBH_OPTS_LEN INT_MAX /* No limit */
92
93 /*
94 * Addr type
95 *
96 * type - unicast | multicast
97 * scope - local | site | global
98 * v4 - compat
99 * v4mapped
100 * any
101 * loopback
102 */
103
104 #define IPV6_ADDR_ANY 0x0000U
105
106 #define IPV6_ADDR_UNICAST 0x0001U
107 #define IPV6_ADDR_MULTICAST 0x0002U
108
109 #define IPV6_ADDR_LOOPBACK 0x0010U
110 #define IPV6_ADDR_LINKLOCAL 0x0020U
111 #define IPV6_ADDR_SITELOCAL 0x0040U
112
113 #define IPV6_ADDR_COMPATv4 0x0080U
114
115 #define IPV6_ADDR_SCOPE_MASK 0x00f0U
116
117 #define IPV6_ADDR_MAPPED 0x1000U
118
119 /*
120 * Addr scopes
121 */
122 #define IPV6_ADDR_MC_SCOPE(a) \
123 ((a)->s6_addr[1] & 0x0f) /* nonstandard */
124 #define __IPV6_ADDR_SCOPE_INVALID -1
125 #define IPV6_ADDR_SCOPE_NODELOCAL 0x01
126 #define IPV6_ADDR_SCOPE_LINKLOCAL 0x02
127 #define IPV6_ADDR_SCOPE_SITELOCAL 0x05
128 #define IPV6_ADDR_SCOPE_ORGLOCAL 0x08
129 #define IPV6_ADDR_SCOPE_GLOBAL 0x0e
130
131 /*
132 * Addr flags
133 */
134 #define IPV6_ADDR_MC_FLAG_TRANSIENT(a) \
135 ((a)->s6_addr[1] & 0x10)
136 #define IPV6_ADDR_MC_FLAG_PREFIX(a) \
137 ((a)->s6_addr[1] & 0x20)
138 #define IPV6_ADDR_MC_FLAG_RENDEZVOUS(a) \
139 ((a)->s6_addr[1] & 0x40)
140
141 /*
142 * fragmentation header
143 */
144
145 struct frag_hdr {
146 __u8 nexthdr;
147 __u8 reserved;
148 __be16 frag_off;
149 __be32 identification;
150 };
151
152 #define IP6_MF 0x0001
153 #define IP6_OFFSET 0xFFF8
154
155 struct ip6_fraglist_iter {
156 struct ipv6hdr *tmp_hdr;
157 struct sk_buff *frag;
158 int offset;
159 unsigned int hlen;
160 __be32 frag_id;
161 u8 nexthdr;
162 };
163
164 int ip6_fraglist_init(struct sk_buff *skb, unsigned int hlen, u8 *prevhdr,
165 u8 nexthdr, __be32 frag_id,
166 struct ip6_fraglist_iter *iter);
167 void ip6_fraglist_prepare(struct sk_buff *skb, struct ip6_fraglist_iter *iter);
168
ip6_fraglist_next(struct ip6_fraglist_iter * iter)169 static inline struct sk_buff *ip6_fraglist_next(struct ip6_fraglist_iter *iter)
170 {
171 struct sk_buff *skb = iter->frag;
172
173 iter->frag = skb->next;
174 skb_mark_not_on_list(skb);
175
176 return skb;
177 }
178
179 struct ip6_frag_state {
180 u8 *prevhdr;
181 unsigned int hlen;
182 unsigned int mtu;
183 unsigned int left;
184 int offset;
185 int ptr;
186 int hroom;
187 int troom;
188 __be32 frag_id;
189 u8 nexthdr;
190 };
191
192 void ip6_frag_init(struct sk_buff *skb, unsigned int hlen, unsigned int mtu,
193 unsigned short needed_tailroom, int hdr_room, u8 *prevhdr,
194 u8 nexthdr, __be32 frag_id, struct ip6_frag_state *state);
195 struct sk_buff *ip6_frag_next(struct sk_buff *skb,
196 struct ip6_frag_state *state);
197
198 #define IP6_REPLY_MARK(net, mark) \
199 ((net)->ipv6.sysctl.fwmark_reflect ? (mark) : 0)
200
201 #include <net/sock.h>
202
203 /* sysctls */
204 extern int sysctl_mld_max_msf;
205 extern int sysctl_mld_qrv;
206
207 #define _DEVINC(net, statname, mod, idev, field) \
208 ({ \
209 struct inet6_dev *_idev = (idev); \
210 if (likely(_idev != NULL)) \
211 mod##SNMP_INC_STATS64((_idev)->stats.statname, (field));\
212 mod##SNMP_INC_STATS64((net)->mib.statname##_statistics, (field));\
213 })
214
215 /* per device counters are atomic_long_t */
216 #define _DEVINCATOMIC(net, statname, mod, idev, field) \
217 ({ \
218 struct inet6_dev *_idev = (idev); \
219 if (likely(_idev != NULL)) \
220 SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
221 mod##SNMP_INC_STATS((net)->mib.statname##_statistics, (field));\
222 })
223
224 /* per device and per net counters are atomic_long_t */
225 #define _DEVINC_ATOMIC_ATOMIC(net, statname, idev, field) \
226 ({ \
227 struct inet6_dev *_idev = (idev); \
228 if (likely(_idev != NULL)) \
229 SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
230 SNMP_INC_STATS_ATOMIC_LONG((net)->mib.statname##_statistics, (field));\
231 })
232
233 #define _DEVADD(net, statname, mod, idev, field, val) \
234 ({ \
235 struct inet6_dev *_idev = (idev); \
236 if (likely(_idev != NULL)) \
237 mod##SNMP_ADD_STATS((_idev)->stats.statname, (field), (val)); \
238 mod##SNMP_ADD_STATS((net)->mib.statname##_statistics, (field), (val));\
239 })
240
241 #define _DEVUPD(net, statname, mod, idev, field, val) \
242 ({ \
243 struct inet6_dev *_idev = (idev); \
244 if (likely(_idev != NULL)) \
245 mod##SNMP_UPD_PO_STATS((_idev)->stats.statname, field, (val)); \
246 mod##SNMP_UPD_PO_STATS((net)->mib.statname##_statistics, field, (val));\
247 })
248
249 /* MIBs */
250
251 #define IP6_INC_STATS(net, idev,field) \
252 _DEVINC(net, ipv6, , idev, field)
253 #define __IP6_INC_STATS(net, idev,field) \
254 _DEVINC(net, ipv6, __, idev, field)
255 #define IP6_ADD_STATS(net, idev,field,val) \
256 _DEVADD(net, ipv6, , idev, field, val)
257 #define __IP6_ADD_STATS(net, idev,field,val) \
258 _DEVADD(net, ipv6, __, idev, field, val)
259 #define IP6_UPD_PO_STATS(net, idev,field,val) \
260 _DEVUPD(net, ipv6, , idev, field, val)
261 #define __IP6_UPD_PO_STATS(net, idev,field,val) \
262 _DEVUPD(net, ipv6, __, idev, field, val)
263 #define ICMP6_INC_STATS(net, idev, field) \
264 _DEVINCATOMIC(net, icmpv6, , idev, field)
265 #define __ICMP6_INC_STATS(net, idev, field) \
266 _DEVINCATOMIC(net, icmpv6, __, idev, field)
267
268 #define ICMP6MSGOUT_INC_STATS(net, idev, field) \
269 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256)
270 #define ICMP6MSGIN_INC_STATS(net, idev, field) \
271 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field)
272
273 struct ip6_ra_chain {
274 struct ip6_ra_chain *next;
275 struct sock *sk;
276 int sel;
277 void (*destructor)(struct sock *);
278 };
279
280 extern struct ip6_ra_chain *ip6_ra_chain;
281 extern rwlock_t ip6_ra_lock;
282
283 /*
284 This structure is prepared by protocol, when parsing
285 ancillary data and passed to IPv6.
286 */
287
288 struct ipv6_txoptions {
289 refcount_t refcnt;
290 /* Length of this structure */
291 int tot_len;
292
293 /* length of extension headers */
294
295 __u16 opt_flen; /* after fragment hdr */
296 __u16 opt_nflen; /* before fragment hdr */
297
298 struct ipv6_opt_hdr *hopopt;
299 struct ipv6_opt_hdr *dst0opt;
300 struct ipv6_rt_hdr *srcrt; /* Routing Header */
301 struct ipv6_opt_hdr *dst1opt;
302 struct rcu_head rcu;
303 /* Option buffer, as read by IPV6_PKTOPTIONS, starts here. */
304 };
305
306 /* flowlabel_reflect sysctl values */
307 enum flowlabel_reflect {
308 FLOWLABEL_REFLECT_ESTABLISHED = 1,
309 FLOWLABEL_REFLECT_TCP_RESET = 2,
310 FLOWLABEL_REFLECT_ICMPV6_ECHO_REPLIES = 4,
311 };
312
313 struct ip6_flowlabel {
314 struct ip6_flowlabel __rcu *next;
315 __be32 label;
316 atomic_t users;
317 struct in6_addr dst;
318 struct ipv6_txoptions *opt;
319 unsigned long linger;
320 struct rcu_head rcu;
321 u8 share;
322 union {
323 struct pid *pid;
324 kuid_t uid;
325 } owner;
326 unsigned long lastuse;
327 unsigned long expires;
328 struct net *fl_net;
329 };
330
331 #define IPV6_FLOWINFO_MASK cpu_to_be32(0x0FFFFFFF)
332 #define IPV6_FLOWLABEL_MASK cpu_to_be32(0x000FFFFF)
333 #define IPV6_FLOWLABEL_STATELESS_FLAG cpu_to_be32(0x00080000)
334
335 #define IPV6_TCLASS_MASK (IPV6_FLOWINFO_MASK & ~IPV6_FLOWLABEL_MASK)
336 #define IPV6_TCLASS_SHIFT 20
337
338 struct ipv6_fl_socklist {
339 struct ipv6_fl_socklist __rcu *next;
340 struct ip6_flowlabel *fl;
341 struct rcu_head rcu;
342 };
343
344 struct ipcm6_cookie {
345 struct sockcm_cookie sockc;
346 __s16 hlimit;
347 __s16 tclass;
348 __s8 dontfrag;
349 struct ipv6_txoptions *opt;
350 __u16 gso_size;
351 };
352
ipcm6_init(struct ipcm6_cookie * ipc6)353 static inline void ipcm6_init(struct ipcm6_cookie *ipc6)
354 {
355 *ipc6 = (struct ipcm6_cookie) {
356 .hlimit = -1,
357 .tclass = -1,
358 .dontfrag = -1,
359 };
360 }
361
ipcm6_init_sk(struct ipcm6_cookie * ipc6,const struct ipv6_pinfo * np)362 static inline void ipcm6_init_sk(struct ipcm6_cookie *ipc6,
363 const struct ipv6_pinfo *np)
364 {
365 *ipc6 = (struct ipcm6_cookie) {
366 .hlimit = -1,
367 .tclass = np->tclass,
368 .dontfrag = np->dontfrag,
369 };
370 }
371
txopt_get(const struct ipv6_pinfo * np)372 static inline struct ipv6_txoptions *txopt_get(const struct ipv6_pinfo *np)
373 {
374 struct ipv6_txoptions *opt;
375
376 rcu_read_lock();
377 opt = rcu_dereference(np->opt);
378 if (opt) {
379 if (!refcount_inc_not_zero(&opt->refcnt))
380 opt = NULL;
381 else
382 opt = rcu_pointer_handoff(opt);
383 }
384 rcu_read_unlock();
385 return opt;
386 }
387
txopt_put(struct ipv6_txoptions * opt)388 static inline void txopt_put(struct ipv6_txoptions *opt)
389 {
390 if (opt && refcount_dec_and_test(&opt->refcnt))
391 kfree_rcu(opt, rcu);
392 }
393
394 struct ip6_flowlabel *__fl6_sock_lookup(struct sock *sk, __be32 label);
395
396 extern struct static_key_false_deferred ipv6_flowlabel_exclusive;
fl6_sock_lookup(struct sock * sk,__be32 label)397 static inline struct ip6_flowlabel *fl6_sock_lookup(struct sock *sk,
398 __be32 label)
399 {
400 if (static_branch_unlikely(&ipv6_flowlabel_exclusive.key))
401 return __fl6_sock_lookup(sk, label) ? : ERR_PTR(-ENOENT);
402
403 return NULL;
404 }
405
406 struct ipv6_txoptions *fl6_merge_options(struct ipv6_txoptions *opt_space,
407 struct ip6_flowlabel *fl,
408 struct ipv6_txoptions *fopt);
409 void fl6_free_socklist(struct sock *sk);
410 int ipv6_flowlabel_opt(struct sock *sk, sockptr_t optval, int optlen);
411 int ipv6_flowlabel_opt_get(struct sock *sk, struct in6_flowlabel_req *freq,
412 int flags);
413 int ip6_flowlabel_init(void);
414 void ip6_flowlabel_cleanup(void);
415 bool ip6_autoflowlabel(struct net *net, const struct ipv6_pinfo *np);
416
fl6_sock_release(struct ip6_flowlabel * fl)417 static inline void fl6_sock_release(struct ip6_flowlabel *fl)
418 {
419 if (fl)
420 atomic_dec(&fl->users);
421 }
422
423 void icmpv6_notify(struct sk_buff *skb, u8 type, u8 code, __be32 info);
424
425 void icmpv6_push_pending_frames(struct sock *sk, struct flowi6 *fl6,
426 struct icmp6hdr *thdr, int len);
427
428 int ip6_ra_control(struct sock *sk, int sel);
429
430 int ipv6_parse_hopopts(struct sk_buff *skb);
431
432 struct ipv6_txoptions *ipv6_dup_options(struct sock *sk,
433 struct ipv6_txoptions *opt);
434 struct ipv6_txoptions *ipv6_renew_options(struct sock *sk,
435 struct ipv6_txoptions *opt,
436 int newtype,
437 struct ipv6_opt_hdr *newopt);
438 struct ipv6_txoptions *ipv6_fixup_options(struct ipv6_txoptions *opt_space,
439 struct ipv6_txoptions *opt);
440
441 bool ipv6_opt_accepted(const struct sock *sk, const struct sk_buff *skb,
442 const struct inet6_skb_parm *opt);
443 struct ipv6_txoptions *ipv6_update_options(struct sock *sk,
444 struct ipv6_txoptions *opt);
445
ipv6_accept_ra(struct inet6_dev * idev)446 static inline bool ipv6_accept_ra(struct inet6_dev *idev)
447 {
448 /* If forwarding is enabled, RA are not accepted unless the special
449 * hybrid mode (accept_ra=2) is enabled.
450 */
451 return idev->cnf.forwarding ? idev->cnf.accept_ra == 2 :
452 idev->cnf.accept_ra;
453 }
454
455 #define IPV6_FRAG_HIGH_THRESH (4 * 1024*1024) /* 4194304 */
456 #define IPV6_FRAG_LOW_THRESH (3 * 1024*1024) /* 3145728 */
457 #define IPV6_FRAG_TIMEOUT (60 * HZ) /* 60 seconds */
458
459 int __ipv6_addr_type(const struct in6_addr *addr);
ipv6_addr_type(const struct in6_addr * addr)460 static inline int ipv6_addr_type(const struct in6_addr *addr)
461 {
462 return __ipv6_addr_type(addr) & 0xffff;
463 }
464
ipv6_addr_scope(const struct in6_addr * addr)465 static inline int ipv6_addr_scope(const struct in6_addr *addr)
466 {
467 return __ipv6_addr_type(addr) & IPV6_ADDR_SCOPE_MASK;
468 }
469
__ipv6_addr_src_scope(int type)470 static inline int __ipv6_addr_src_scope(int type)
471 {
472 return (type == IPV6_ADDR_ANY) ? __IPV6_ADDR_SCOPE_INVALID : (type >> 16);
473 }
474
ipv6_addr_src_scope(const struct in6_addr * addr)475 static inline int ipv6_addr_src_scope(const struct in6_addr *addr)
476 {
477 return __ipv6_addr_src_scope(__ipv6_addr_type(addr));
478 }
479
__ipv6_addr_needs_scope_id(int type)480 static inline bool __ipv6_addr_needs_scope_id(int type)
481 {
482 return type & IPV6_ADDR_LINKLOCAL ||
483 (type & IPV6_ADDR_MULTICAST &&
484 (type & (IPV6_ADDR_LOOPBACK|IPV6_ADDR_LINKLOCAL)));
485 }
486
ipv6_iface_scope_id(const struct in6_addr * addr,int iface)487 static inline __u32 ipv6_iface_scope_id(const struct in6_addr *addr, int iface)
488 {
489 return __ipv6_addr_needs_scope_id(__ipv6_addr_type(addr)) ? iface : 0;
490 }
491
ipv6_addr_cmp(const struct in6_addr * a1,const struct in6_addr * a2)492 static inline int ipv6_addr_cmp(const struct in6_addr *a1, const struct in6_addr *a2)
493 {
494 return memcmp(a1, a2, sizeof(struct in6_addr));
495 }
496
497 static inline bool
ipv6_masked_addr_cmp(const struct in6_addr * a1,const struct in6_addr * m,const struct in6_addr * a2)498 ipv6_masked_addr_cmp(const struct in6_addr *a1, const struct in6_addr *m,
499 const struct in6_addr *a2)
500 {
501 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
502 const unsigned long *ul1 = (const unsigned long *)a1;
503 const unsigned long *ulm = (const unsigned long *)m;
504 const unsigned long *ul2 = (const unsigned long *)a2;
505
506 return !!(((ul1[0] ^ ul2[0]) & ulm[0]) |
507 ((ul1[1] ^ ul2[1]) & ulm[1]));
508 #else
509 return !!(((a1->s6_addr32[0] ^ a2->s6_addr32[0]) & m->s6_addr32[0]) |
510 ((a1->s6_addr32[1] ^ a2->s6_addr32[1]) & m->s6_addr32[1]) |
511 ((a1->s6_addr32[2] ^ a2->s6_addr32[2]) & m->s6_addr32[2]) |
512 ((a1->s6_addr32[3] ^ a2->s6_addr32[3]) & m->s6_addr32[3]));
513 #endif
514 }
515
ipv6_addr_prefix(struct in6_addr * pfx,const struct in6_addr * addr,int plen)516 static inline void ipv6_addr_prefix(struct in6_addr *pfx,
517 const struct in6_addr *addr,
518 int plen)
519 {
520 /* caller must guarantee 0 <= plen <= 128 */
521 int o = plen >> 3,
522 b = plen & 0x7;
523
524 memset(pfx->s6_addr, 0, sizeof(pfx->s6_addr));
525 memcpy(pfx->s6_addr, addr, o);
526 if (b != 0)
527 pfx->s6_addr[o] = addr->s6_addr[o] & (0xff00 >> b);
528 }
529
ipv6_addr_prefix_copy(struct in6_addr * addr,const struct in6_addr * pfx,int plen)530 static inline void ipv6_addr_prefix_copy(struct in6_addr *addr,
531 const struct in6_addr *pfx,
532 int plen)
533 {
534 /* caller must guarantee 0 <= plen <= 128 */
535 int o = plen >> 3,
536 b = plen & 0x7;
537
538 memcpy(addr->s6_addr, pfx, o);
539 if (b != 0) {
540 addr->s6_addr[o] &= ~(0xff00 >> b);
541 addr->s6_addr[o] |= (pfx->s6_addr[o] & (0xff00 >> b));
542 }
543 }
544
__ipv6_addr_set_half(__be32 * addr,__be32 wh,__be32 wl)545 static inline void __ipv6_addr_set_half(__be32 *addr,
546 __be32 wh, __be32 wl)
547 {
548 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
549 #if defined(__BIG_ENDIAN)
550 if (__builtin_constant_p(wh) && __builtin_constant_p(wl)) {
551 *(__force u64 *)addr = ((__force u64)(wh) << 32 | (__force u64)(wl));
552 return;
553 }
554 #elif defined(__LITTLE_ENDIAN)
555 if (__builtin_constant_p(wl) && __builtin_constant_p(wh)) {
556 *(__force u64 *)addr = ((__force u64)(wl) << 32 | (__force u64)(wh));
557 return;
558 }
559 #endif
560 #endif
561 addr[0] = wh;
562 addr[1] = wl;
563 }
564
ipv6_addr_set(struct in6_addr * addr,__be32 w1,__be32 w2,__be32 w3,__be32 w4)565 static inline void ipv6_addr_set(struct in6_addr *addr,
566 __be32 w1, __be32 w2,
567 __be32 w3, __be32 w4)
568 {
569 __ipv6_addr_set_half(&addr->s6_addr32[0], w1, w2);
570 __ipv6_addr_set_half(&addr->s6_addr32[2], w3, w4);
571 }
572
ipv6_addr_equal(const struct in6_addr * a1,const struct in6_addr * a2)573 static inline bool ipv6_addr_equal(const struct in6_addr *a1,
574 const struct in6_addr *a2)
575 {
576 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
577 const unsigned long *ul1 = (const unsigned long *)a1;
578 const unsigned long *ul2 = (const unsigned long *)a2;
579
580 return ((ul1[0] ^ ul2[0]) | (ul1[1] ^ ul2[1])) == 0UL;
581 #else
582 return ((a1->s6_addr32[0] ^ a2->s6_addr32[0]) |
583 (a1->s6_addr32[1] ^ a2->s6_addr32[1]) |
584 (a1->s6_addr32[2] ^ a2->s6_addr32[2]) |
585 (a1->s6_addr32[3] ^ a2->s6_addr32[3])) == 0;
586 #endif
587 }
588
589 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
__ipv6_prefix_equal64_half(const __be64 * a1,const __be64 * a2,unsigned int len)590 static inline bool __ipv6_prefix_equal64_half(const __be64 *a1,
591 const __be64 *a2,
592 unsigned int len)
593 {
594 if (len && ((*a1 ^ *a2) & cpu_to_be64((~0UL) << (64 - len))))
595 return false;
596 return true;
597 }
598
ipv6_prefix_equal(const struct in6_addr * addr1,const struct in6_addr * addr2,unsigned int prefixlen)599 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
600 const struct in6_addr *addr2,
601 unsigned int prefixlen)
602 {
603 const __be64 *a1 = (const __be64 *)addr1;
604 const __be64 *a2 = (const __be64 *)addr2;
605
606 if (prefixlen >= 64) {
607 if (a1[0] ^ a2[0])
608 return false;
609 return __ipv6_prefix_equal64_half(a1 + 1, a2 + 1, prefixlen - 64);
610 }
611 return __ipv6_prefix_equal64_half(a1, a2, prefixlen);
612 }
613 #else
ipv6_prefix_equal(const struct in6_addr * addr1,const struct in6_addr * addr2,unsigned int prefixlen)614 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
615 const struct in6_addr *addr2,
616 unsigned int prefixlen)
617 {
618 const __be32 *a1 = addr1->s6_addr32;
619 const __be32 *a2 = addr2->s6_addr32;
620 unsigned int pdw, pbi;
621
622 /* check complete u32 in prefix */
623 pdw = prefixlen >> 5;
624 if (pdw && memcmp(a1, a2, pdw << 2))
625 return false;
626
627 /* check incomplete u32 in prefix */
628 pbi = prefixlen & 0x1f;
629 if (pbi && ((a1[pdw] ^ a2[pdw]) & htonl((0xffffffff) << (32 - pbi))))
630 return false;
631
632 return true;
633 }
634 #endif
635
ipv6_addr_any(const struct in6_addr * a)636 static inline bool ipv6_addr_any(const struct in6_addr *a)
637 {
638 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
639 const unsigned long *ul = (const unsigned long *)a;
640
641 return (ul[0] | ul[1]) == 0UL;
642 #else
643 return (a->s6_addr32[0] | a->s6_addr32[1] |
644 a->s6_addr32[2] | a->s6_addr32[3]) == 0;
645 #endif
646 }
647
ipv6_addr_hash(const struct in6_addr * a)648 static inline u32 ipv6_addr_hash(const struct in6_addr *a)
649 {
650 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
651 const unsigned long *ul = (const unsigned long *)a;
652 unsigned long x = ul[0] ^ ul[1];
653
654 return (u32)(x ^ (x >> 32));
655 #else
656 return (__force u32)(a->s6_addr32[0] ^ a->s6_addr32[1] ^
657 a->s6_addr32[2] ^ a->s6_addr32[3]);
658 #endif
659 }
660
661 /* more secured version of ipv6_addr_hash() */
__ipv6_addr_jhash(const struct in6_addr * a,const u32 initval)662 static inline u32 __ipv6_addr_jhash(const struct in6_addr *a, const u32 initval)
663 {
664 u32 v = (__force u32)a->s6_addr32[0] ^ (__force u32)a->s6_addr32[1];
665
666 return jhash_3words(v,
667 (__force u32)a->s6_addr32[2],
668 (__force u32)a->s6_addr32[3],
669 initval);
670 }
671
ipv6_addr_loopback(const struct in6_addr * a)672 static inline bool ipv6_addr_loopback(const struct in6_addr *a)
673 {
674 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
675 const __be64 *be = (const __be64 *)a;
676
677 return (be[0] | (be[1] ^ cpu_to_be64(1))) == 0UL;
678 #else
679 return (a->s6_addr32[0] | a->s6_addr32[1] |
680 a->s6_addr32[2] | (a->s6_addr32[3] ^ cpu_to_be32(1))) == 0;
681 #endif
682 }
683
684 /*
685 * Note that we must __force cast these to unsigned long to make sparse happy,
686 * since all of the endian-annotated types are fixed size regardless of arch.
687 */
ipv6_addr_v4mapped(const struct in6_addr * a)688 static inline bool ipv6_addr_v4mapped(const struct in6_addr *a)
689 {
690 return (
691 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
692 *(unsigned long *)a |
693 #else
694 (__force unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) |
695 #endif
696 (__force unsigned long)(a->s6_addr32[2] ^
697 cpu_to_be32(0x0000ffff))) == 0UL;
698 }
699
ipv6_addr_v4mapped_loopback(const struct in6_addr * a)700 static inline bool ipv6_addr_v4mapped_loopback(const struct in6_addr *a)
701 {
702 return ipv6_addr_v4mapped(a) && ipv4_is_loopback(a->s6_addr32[3]);
703 }
704
ipv6_portaddr_hash(const struct net * net,const struct in6_addr * addr6,unsigned int port)705 static inline u32 ipv6_portaddr_hash(const struct net *net,
706 const struct in6_addr *addr6,
707 unsigned int port)
708 {
709 unsigned int hash, mix = net_hash_mix(net);
710
711 if (ipv6_addr_any(addr6))
712 hash = jhash_1word(0, mix);
713 else if (ipv6_addr_v4mapped(addr6))
714 hash = jhash_1word((__force u32)addr6->s6_addr32[3], mix);
715 else
716 hash = jhash2((__force u32 *)addr6->s6_addr32, 4, mix);
717
718 return hash ^ port;
719 }
720
721 /*
722 * Check for a RFC 4843 ORCHID address
723 * (Overlay Routable Cryptographic Hash Identifiers)
724 */
ipv6_addr_orchid(const struct in6_addr * a)725 static inline bool ipv6_addr_orchid(const struct in6_addr *a)
726 {
727 return (a->s6_addr32[0] & htonl(0xfffffff0)) == htonl(0x20010010);
728 }
729
ipv6_addr_is_multicast(const struct in6_addr * addr)730 static inline bool ipv6_addr_is_multicast(const struct in6_addr *addr)
731 {
732 return (addr->s6_addr32[0] & htonl(0xFF000000)) == htonl(0xFF000000);
733 }
734
ipv6_addr_set_v4mapped(const __be32 addr,struct in6_addr * v4mapped)735 static inline void ipv6_addr_set_v4mapped(const __be32 addr,
736 struct in6_addr *v4mapped)
737 {
738 ipv6_addr_set(v4mapped,
739 0, 0,
740 htonl(0x0000FFFF),
741 addr);
742 }
743
744 /*
745 * find the first different bit between two addresses
746 * length of address must be a multiple of 32bits
747 */
__ipv6_addr_diff32(const void * token1,const void * token2,int addrlen)748 static inline int __ipv6_addr_diff32(const void *token1, const void *token2, int addrlen)
749 {
750 const __be32 *a1 = token1, *a2 = token2;
751 int i;
752
753 addrlen >>= 2;
754
755 for (i = 0; i < addrlen; i++) {
756 __be32 xb = a1[i] ^ a2[i];
757 if (xb)
758 return i * 32 + 31 - __fls(ntohl(xb));
759 }
760
761 /*
762 * we should *never* get to this point since that
763 * would mean the addrs are equal
764 *
765 * However, we do get to it 8) And exacly, when
766 * addresses are equal 8)
767 *
768 * ip route add 1111::/128 via ...
769 * ip route add 1111::/64 via ...
770 * and we are here.
771 *
772 * Ideally, this function should stop comparison
773 * at prefix length. It does not, but it is still OK,
774 * if returned value is greater than prefix length.
775 * --ANK (980803)
776 */
777 return addrlen << 5;
778 }
779
780 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
__ipv6_addr_diff64(const void * token1,const void * token2,int addrlen)781 static inline int __ipv6_addr_diff64(const void *token1, const void *token2, int addrlen)
782 {
783 const __be64 *a1 = token1, *a2 = token2;
784 int i;
785
786 addrlen >>= 3;
787
788 for (i = 0; i < addrlen; i++) {
789 __be64 xb = a1[i] ^ a2[i];
790 if (xb)
791 return i * 64 + 63 - __fls(be64_to_cpu(xb));
792 }
793
794 return addrlen << 6;
795 }
796 #endif
797
__ipv6_addr_diff(const void * token1,const void * token2,int addrlen)798 static inline int __ipv6_addr_diff(const void *token1, const void *token2, int addrlen)
799 {
800 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
801 if (__builtin_constant_p(addrlen) && !(addrlen & 7))
802 return __ipv6_addr_diff64(token1, token2, addrlen);
803 #endif
804 return __ipv6_addr_diff32(token1, token2, addrlen);
805 }
806
ipv6_addr_diff(const struct in6_addr * a1,const struct in6_addr * a2)807 static inline int ipv6_addr_diff(const struct in6_addr *a1, const struct in6_addr *a2)
808 {
809 return __ipv6_addr_diff(a1, a2, sizeof(struct in6_addr));
810 }
811
812 __be32 ipv6_select_ident(struct net *net,
813 const struct in6_addr *daddr,
814 const struct in6_addr *saddr);
815 __be32 ipv6_proxy_select_ident(struct net *net, struct sk_buff *skb);
816
817 int ip6_dst_hoplimit(struct dst_entry *dst);
818
ip6_sk_dst_hoplimit(struct ipv6_pinfo * np,struct flowi6 * fl6,struct dst_entry * dst)819 static inline int ip6_sk_dst_hoplimit(struct ipv6_pinfo *np, struct flowi6 *fl6,
820 struct dst_entry *dst)
821 {
822 int hlimit;
823
824 if (ipv6_addr_is_multicast(&fl6->daddr))
825 hlimit = np->mcast_hops;
826 else
827 hlimit = np->hop_limit;
828 if (hlimit < 0)
829 hlimit = ip6_dst_hoplimit(dst);
830 return hlimit;
831 }
832
833 /* copy IPv6 saddr & daddr to flow_keys, possibly using 64bit load/store
834 * Equivalent to : flow->v6addrs.src = iph->saddr;
835 * flow->v6addrs.dst = iph->daddr;
836 */
iph_to_flow_copy_v6addrs(struct flow_keys * flow,const struct ipv6hdr * iph)837 static inline void iph_to_flow_copy_v6addrs(struct flow_keys *flow,
838 const struct ipv6hdr *iph)
839 {
840 BUILD_BUG_ON(offsetof(typeof(flow->addrs), v6addrs.dst) !=
841 offsetof(typeof(flow->addrs), v6addrs.src) +
842 sizeof(flow->addrs.v6addrs.src));
843 memcpy(&flow->addrs.v6addrs, &iph->saddr, sizeof(flow->addrs.v6addrs));
844 flow->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
845 }
846
847 #if IS_ENABLED(CONFIG_IPV6)
848
ipv6_can_nonlocal_bind(struct net * net,struct inet_sock * inet)849 static inline bool ipv6_can_nonlocal_bind(struct net *net,
850 struct inet_sock *inet)
851 {
852 return net->ipv6.sysctl.ip_nonlocal_bind ||
853 inet->freebind || inet->transparent;
854 }
855
856 /* Sysctl settings for net ipv6.auto_flowlabels */
857 #define IP6_AUTO_FLOW_LABEL_OFF 0
858 #define IP6_AUTO_FLOW_LABEL_OPTOUT 1
859 #define IP6_AUTO_FLOW_LABEL_OPTIN 2
860 #define IP6_AUTO_FLOW_LABEL_FORCED 3
861
862 #define IP6_AUTO_FLOW_LABEL_MAX IP6_AUTO_FLOW_LABEL_FORCED
863
864 #define IP6_DEFAULT_AUTO_FLOW_LABELS IP6_AUTO_FLOW_LABEL_OPTOUT
865
ip6_make_flowlabel(struct net * net,struct sk_buff * skb,__be32 flowlabel,bool autolabel,struct flowi6 * fl6)866 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
867 __be32 flowlabel, bool autolabel,
868 struct flowi6 *fl6)
869 {
870 u32 hash;
871
872 /* @flowlabel may include more than a flow label, eg, the traffic class.
873 * Here we want only the flow label value.
874 */
875 flowlabel &= IPV6_FLOWLABEL_MASK;
876
877 if (flowlabel ||
878 net->ipv6.sysctl.auto_flowlabels == IP6_AUTO_FLOW_LABEL_OFF ||
879 (!autolabel &&
880 net->ipv6.sysctl.auto_flowlabels != IP6_AUTO_FLOW_LABEL_FORCED))
881 return flowlabel;
882
883 hash = skb_get_hash_flowi6(skb, fl6);
884
885 /* Since this is being sent on the wire obfuscate hash a bit
886 * to minimize possbility that any useful information to an
887 * attacker is leaked. Only lower 20 bits are relevant.
888 */
889 hash = rol32(hash, 16);
890
891 flowlabel = (__force __be32)hash & IPV6_FLOWLABEL_MASK;
892
893 if (net->ipv6.sysctl.flowlabel_state_ranges)
894 flowlabel |= IPV6_FLOWLABEL_STATELESS_FLAG;
895
896 return flowlabel;
897 }
898
ip6_default_np_autolabel(struct net * net)899 static inline int ip6_default_np_autolabel(struct net *net)
900 {
901 switch (net->ipv6.sysctl.auto_flowlabels) {
902 case IP6_AUTO_FLOW_LABEL_OFF:
903 case IP6_AUTO_FLOW_LABEL_OPTIN:
904 default:
905 return 0;
906 case IP6_AUTO_FLOW_LABEL_OPTOUT:
907 case IP6_AUTO_FLOW_LABEL_FORCED:
908 return 1;
909 }
910 }
911 #else
ip6_make_flowlabel(struct net * net,struct sk_buff * skb,__be32 flowlabel,bool autolabel,struct flowi6 * fl6)912 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
913 __be32 flowlabel, bool autolabel,
914 struct flowi6 *fl6)
915 {
916 return flowlabel;
917 }
ip6_default_np_autolabel(struct net * net)918 static inline int ip6_default_np_autolabel(struct net *net)
919 {
920 return 0;
921 }
922 #endif
923
924 #if IS_ENABLED(CONFIG_IPV6)
ip6_multipath_hash_policy(const struct net * net)925 static inline int ip6_multipath_hash_policy(const struct net *net)
926 {
927 return net->ipv6.sysctl.multipath_hash_policy;
928 }
ip6_multipath_hash_fields(const struct net * net)929 static inline u32 ip6_multipath_hash_fields(const struct net *net)
930 {
931 return net->ipv6.sysctl.multipath_hash_fields;
932 }
933 #else
ip6_multipath_hash_policy(const struct net * net)934 static inline int ip6_multipath_hash_policy(const struct net *net)
935 {
936 return 0;
937 }
ip6_multipath_hash_fields(const struct net * net)938 static inline u32 ip6_multipath_hash_fields(const struct net *net)
939 {
940 return 0;
941 }
942 #endif
943
944 /*
945 * Header manipulation
946 */
ip6_flow_hdr(struct ipv6hdr * hdr,unsigned int tclass,__be32 flowlabel)947 static inline void ip6_flow_hdr(struct ipv6hdr *hdr, unsigned int tclass,
948 __be32 flowlabel)
949 {
950 *(__be32 *)hdr = htonl(0x60000000 | (tclass << 20)) | flowlabel;
951 }
952
ip6_flowinfo(const struct ipv6hdr * hdr)953 static inline __be32 ip6_flowinfo(const struct ipv6hdr *hdr)
954 {
955 return *(__be32 *)hdr & IPV6_FLOWINFO_MASK;
956 }
957
ip6_flowlabel(const struct ipv6hdr * hdr)958 static inline __be32 ip6_flowlabel(const struct ipv6hdr *hdr)
959 {
960 return *(__be32 *)hdr & IPV6_FLOWLABEL_MASK;
961 }
962
ip6_tclass(__be32 flowinfo)963 static inline u8 ip6_tclass(__be32 flowinfo)
964 {
965 return ntohl(flowinfo & IPV6_TCLASS_MASK) >> IPV6_TCLASS_SHIFT;
966 }
967
ip6_make_flowinfo(unsigned int tclass,__be32 flowlabel)968 static inline __be32 ip6_make_flowinfo(unsigned int tclass, __be32 flowlabel)
969 {
970 return htonl(tclass << IPV6_TCLASS_SHIFT) | flowlabel;
971 }
972
flowi6_get_flowlabel(const struct flowi6 * fl6)973 static inline __be32 flowi6_get_flowlabel(const struct flowi6 *fl6)
974 {
975 return fl6->flowlabel & IPV6_FLOWLABEL_MASK;
976 }
977
978 /*
979 * Prototypes exported by ipv6
980 */
981
982 /*
983 * rcv function (called from netdevice level)
984 */
985
986 int ipv6_rcv(struct sk_buff *skb, struct net_device *dev,
987 struct packet_type *pt, struct net_device *orig_dev);
988 void ipv6_list_rcv(struct list_head *head, struct packet_type *pt,
989 struct net_device *orig_dev);
990
991 int ip6_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb);
992
993 /*
994 * upper-layer output functions
995 */
996 int ip6_xmit(const struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6,
997 __u32 mark, struct ipv6_txoptions *opt, int tclass, u32 priority);
998
999 int ip6_find_1stfragopt(struct sk_buff *skb, u8 **nexthdr);
1000
1001 int ip6_append_data(struct sock *sk,
1002 int getfrag(void *from, char *to, int offset, int len,
1003 int odd, struct sk_buff *skb),
1004 void *from, int length, int transhdrlen,
1005 struct ipcm6_cookie *ipc6, struct flowi6 *fl6,
1006 struct rt6_info *rt, unsigned int flags);
1007
1008 int ip6_push_pending_frames(struct sock *sk);
1009
1010 void ip6_flush_pending_frames(struct sock *sk);
1011
1012 int ip6_send_skb(struct sk_buff *skb);
1013
1014 struct sk_buff *__ip6_make_skb(struct sock *sk, struct sk_buff_head *queue,
1015 struct inet_cork_full *cork,
1016 struct inet6_cork *v6_cork);
1017 struct sk_buff *ip6_make_skb(struct sock *sk,
1018 int getfrag(void *from, char *to, int offset,
1019 int len, int odd, struct sk_buff *skb),
1020 void *from, int length, int transhdrlen,
1021 struct ipcm6_cookie *ipc6, struct flowi6 *fl6,
1022 struct rt6_info *rt, unsigned int flags,
1023 struct inet_cork_full *cork);
1024
ip6_finish_skb(struct sock * sk)1025 static inline struct sk_buff *ip6_finish_skb(struct sock *sk)
1026 {
1027 return __ip6_make_skb(sk, &sk->sk_write_queue, &inet_sk(sk)->cork,
1028 &inet6_sk(sk)->cork);
1029 }
1030
1031 int ip6_dst_lookup(struct net *net, struct sock *sk, struct dst_entry **dst,
1032 struct flowi6 *fl6);
1033 struct dst_entry *ip6_dst_lookup_flow(struct net *net, const struct sock *sk, struct flowi6 *fl6,
1034 const struct in6_addr *final_dst);
1035 struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6,
1036 const struct in6_addr *final_dst,
1037 bool connected);
1038 struct dst_entry *ip6_dst_lookup_tunnel(struct sk_buff *skb,
1039 struct net_device *dev,
1040 struct net *net, struct socket *sock,
1041 struct in6_addr *saddr,
1042 const struct ip_tunnel_info *info,
1043 u8 protocol, bool use_cache);
1044 struct dst_entry *ip6_blackhole_route(struct net *net,
1045 struct dst_entry *orig_dst);
1046
1047 /*
1048 * skb processing functions
1049 */
1050
1051 int ip6_output(struct net *net, struct sock *sk, struct sk_buff *skb);
1052 int ip6_forward(struct sk_buff *skb);
1053 int ip6_input(struct sk_buff *skb);
1054 int ip6_mc_input(struct sk_buff *skb);
1055 void ip6_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int nexthdr,
1056 bool have_final);
1057
1058 int __ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
1059 int ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
1060
1061 /*
1062 * Extension header (options) processing
1063 */
1064
1065 void ipv6_push_nfrag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
1066 u8 *proto, struct in6_addr **daddr_p,
1067 struct in6_addr *saddr);
1068 void ipv6_push_frag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
1069 u8 *proto);
1070
1071 int ipv6_skip_exthdr(const struct sk_buff *, int start, u8 *nexthdrp,
1072 __be16 *frag_offp);
1073
1074 bool ipv6_ext_hdr(u8 nexthdr);
1075
1076 enum {
1077 IP6_FH_F_FRAG = (1 << 0),
1078 IP6_FH_F_AUTH = (1 << 1),
1079 IP6_FH_F_SKIP_RH = (1 << 2),
1080 };
1081
1082 /* find specified header and get offset to it */
1083 int ipv6_find_hdr(const struct sk_buff *skb, unsigned int *offset, int target,
1084 unsigned short *fragoff, int *fragflg);
1085
1086 int ipv6_find_tlv(const struct sk_buff *skb, int offset, int type);
1087
1088 struct in6_addr *fl6_update_dst(struct flowi6 *fl6,
1089 const struct ipv6_txoptions *opt,
1090 struct in6_addr *orig);
1091
1092 /*
1093 * socket options (ipv6_sockglue.c)
1094 */
1095 DECLARE_STATIC_KEY_FALSE(ip6_min_hopcount);
1096
1097 int ipv6_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
1098 unsigned int optlen);
1099 int ipv6_getsockopt(struct sock *sk, int level, int optname,
1100 char __user *optval, int __user *optlen);
1101
1102 int __ip6_datagram_connect(struct sock *sk, struct sockaddr *addr,
1103 int addr_len);
1104 int ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, int addr_len);
1105 int ip6_datagram_connect_v6_only(struct sock *sk, struct sockaddr *addr,
1106 int addr_len);
1107 int ip6_datagram_dst_update(struct sock *sk, bool fix_sk_saddr);
1108 void ip6_datagram_release_cb(struct sock *sk);
1109
1110 int ipv6_recv_error(struct sock *sk, struct msghdr *msg, int len,
1111 int *addr_len);
1112 int ipv6_recv_rxpmtu(struct sock *sk, struct msghdr *msg, int len,
1113 int *addr_len);
1114 void ipv6_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port,
1115 u32 info, u8 *payload);
1116 void ipv6_local_error(struct sock *sk, int err, struct flowi6 *fl6, u32 info);
1117 void ipv6_local_rxpmtu(struct sock *sk, struct flowi6 *fl6, u32 mtu);
1118
1119 int inet6_release(struct socket *sock);
1120 int inet6_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len);
1121 int inet6_getname(struct socket *sock, struct sockaddr *uaddr,
1122 int peer);
1123 int inet6_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg);
1124 int inet6_compat_ioctl(struct socket *sock, unsigned int cmd,
1125 unsigned long arg);
1126
1127 int inet6_hash_connect(struct inet_timewait_death_row *death_row,
1128 struct sock *sk);
1129 int inet6_sendmsg(struct socket *sock, struct msghdr *msg, size_t size);
1130 int inet6_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1131 int flags);
1132
1133 /*
1134 * reassembly.c
1135 */
1136 extern const struct proto_ops inet6_stream_ops;
1137 extern const struct proto_ops inet6_dgram_ops;
1138 extern const struct proto_ops inet6_sockraw_ops;
1139
1140 struct group_source_req;
1141 struct group_filter;
1142
1143 int ip6_mc_source(int add, int omode, struct sock *sk,
1144 struct group_source_req *pgsr);
1145 int ip6_mc_msfilter(struct sock *sk, struct group_filter *gsf,
1146 struct sockaddr_storage *list);
1147 int ip6_mc_msfget(struct sock *sk, struct group_filter *gsf,
1148 struct sockaddr_storage __user *p);
1149
1150 #ifdef CONFIG_PROC_FS
1151 int ac6_proc_init(struct net *net);
1152 void ac6_proc_exit(struct net *net);
1153 int raw6_proc_init(void);
1154 void raw6_proc_exit(void);
1155 int tcp6_proc_init(struct net *net);
1156 void tcp6_proc_exit(struct net *net);
1157 int udp6_proc_init(struct net *net);
1158 void udp6_proc_exit(struct net *net);
1159 int udplite6_proc_init(void);
1160 void udplite6_proc_exit(void);
1161 int ipv6_misc_proc_init(void);
1162 void ipv6_misc_proc_exit(void);
1163 int snmp6_register_dev(struct inet6_dev *idev);
1164 int snmp6_unregister_dev(struct inet6_dev *idev);
1165
1166 #else
ac6_proc_init(struct net * net)1167 static inline int ac6_proc_init(struct net *net) { return 0; }
ac6_proc_exit(struct net * net)1168 static inline void ac6_proc_exit(struct net *net) { }
snmp6_register_dev(struct inet6_dev * idev)1169 static inline int snmp6_register_dev(struct inet6_dev *idev) { return 0; }
snmp6_unregister_dev(struct inet6_dev * idev)1170 static inline int snmp6_unregister_dev(struct inet6_dev *idev) { return 0; }
1171 #endif
1172
1173 #ifdef CONFIG_SYSCTL
1174 struct ctl_table *ipv6_icmp_sysctl_init(struct net *net);
1175 struct ctl_table *ipv6_route_sysctl_init(struct net *net);
1176 int ipv6_sysctl_register(void);
1177 void ipv6_sysctl_unregister(void);
1178 #endif
1179
1180 int ipv6_sock_mc_join(struct sock *sk, int ifindex,
1181 const struct in6_addr *addr);
1182 int ipv6_sock_mc_join_ssm(struct sock *sk, int ifindex,
1183 const struct in6_addr *addr, unsigned int mode);
1184 int ipv6_sock_mc_drop(struct sock *sk, int ifindex,
1185 const struct in6_addr *addr);
1186
ip6_sock_set_v6only(struct sock * sk)1187 static inline int ip6_sock_set_v6only(struct sock *sk)
1188 {
1189 if (inet_sk(sk)->inet_num)
1190 return -EINVAL;
1191 lock_sock(sk);
1192 sk->sk_ipv6only = true;
1193 release_sock(sk);
1194 return 0;
1195 }
1196
ip6_sock_set_recverr(struct sock * sk)1197 static inline void ip6_sock_set_recverr(struct sock *sk)
1198 {
1199 lock_sock(sk);
1200 inet6_sk(sk)->recverr = true;
1201 release_sock(sk);
1202 }
1203
__ip6_sock_set_addr_preferences(struct sock * sk,int val)1204 static inline int __ip6_sock_set_addr_preferences(struct sock *sk, int val)
1205 {
1206 unsigned int pref = 0;
1207 unsigned int prefmask = ~0;
1208
1209 /* check PUBLIC/TMP/PUBTMP_DEFAULT conflicts */
1210 switch (val & (IPV6_PREFER_SRC_PUBLIC |
1211 IPV6_PREFER_SRC_TMP |
1212 IPV6_PREFER_SRC_PUBTMP_DEFAULT)) {
1213 case IPV6_PREFER_SRC_PUBLIC:
1214 pref |= IPV6_PREFER_SRC_PUBLIC;
1215 prefmask &= ~(IPV6_PREFER_SRC_PUBLIC |
1216 IPV6_PREFER_SRC_TMP);
1217 break;
1218 case IPV6_PREFER_SRC_TMP:
1219 pref |= IPV6_PREFER_SRC_TMP;
1220 prefmask &= ~(IPV6_PREFER_SRC_PUBLIC |
1221 IPV6_PREFER_SRC_TMP);
1222 break;
1223 case IPV6_PREFER_SRC_PUBTMP_DEFAULT:
1224 prefmask &= ~(IPV6_PREFER_SRC_PUBLIC |
1225 IPV6_PREFER_SRC_TMP);
1226 break;
1227 case 0:
1228 break;
1229 default:
1230 return -EINVAL;
1231 }
1232
1233 /* check HOME/COA conflicts */
1234 switch (val & (IPV6_PREFER_SRC_HOME | IPV6_PREFER_SRC_COA)) {
1235 case IPV6_PREFER_SRC_HOME:
1236 prefmask &= ~IPV6_PREFER_SRC_COA;
1237 break;
1238 case IPV6_PREFER_SRC_COA:
1239 pref |= IPV6_PREFER_SRC_COA;
1240 break;
1241 case 0:
1242 break;
1243 default:
1244 return -EINVAL;
1245 }
1246
1247 /* check CGA/NONCGA conflicts */
1248 switch (val & (IPV6_PREFER_SRC_CGA|IPV6_PREFER_SRC_NONCGA)) {
1249 case IPV6_PREFER_SRC_CGA:
1250 case IPV6_PREFER_SRC_NONCGA:
1251 case 0:
1252 break;
1253 default:
1254 return -EINVAL;
1255 }
1256
1257 inet6_sk(sk)->srcprefs = (inet6_sk(sk)->srcprefs & prefmask) | pref;
1258 return 0;
1259 }
1260
ip6_sock_set_addr_preferences(struct sock * sk,bool val)1261 static inline int ip6_sock_set_addr_preferences(struct sock *sk, bool val)
1262 {
1263 int ret;
1264
1265 lock_sock(sk);
1266 ret = __ip6_sock_set_addr_preferences(sk, val);
1267 release_sock(sk);
1268 return ret;
1269 }
1270
ip6_sock_set_recvpktinfo(struct sock * sk)1271 static inline void ip6_sock_set_recvpktinfo(struct sock *sk)
1272 {
1273 lock_sock(sk);
1274 inet6_sk(sk)->rxopt.bits.rxinfo = true;
1275 release_sock(sk);
1276 }
1277
1278 #endif /* _NET_IPV6_H */
1279