1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4
5 /*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
9
10 #include <uapi/linux/sched.h>
11
12 #include <asm/current.h>
13
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/mutex.h>
18 #include <linux/plist.h>
19 #include <linux/hrtimer.h>
20 #include <linux/irqflags.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/refcount.h>
25 #include <linux/resource.h>
26 #include <linux/latencytop.h>
27 #include <linux/sched/prio.h>
28 #include <linux/sched/types.h>
29 #include <linux/signal_types.h>
30 #include <linux/syscall_user_dispatch.h>
31 #include <linux/mm_types_task.h>
32 #include <linux/task_io_accounting.h>
33 #include <linux/posix-timers.h>
34 #include <linux/rseq.h>
35 #include <linux/seqlock.h>
36 #include <linux/kcsan.h>
37 #include <asm/kmap_size.h>
38
39 /* task_struct member predeclarations (sorted alphabetically): */
40 struct audit_context;
41 struct backing_dev_info;
42 struct bio_list;
43 struct blk_plug;
44 struct bpf_local_storage;
45 struct bpf_run_ctx;
46 struct capture_control;
47 struct cfs_rq;
48 struct fs_struct;
49 struct futex_pi_state;
50 struct io_context;
51 struct io_uring_task;
52 struct mempolicy;
53 struct nameidata;
54 struct nsproxy;
55 struct perf_event_context;
56 struct pid_namespace;
57 struct pipe_inode_info;
58 struct rcu_node;
59 struct reclaim_state;
60 struct robust_list_head;
61 struct root_domain;
62 struct rq;
63 struct sched_attr;
64 struct sched_param;
65 struct seq_file;
66 struct sighand_struct;
67 struct signal_struct;
68 struct task_delay_info;
69 struct task_group;
70
71 /*
72 * Task state bitmask. NOTE! These bits are also
73 * encoded in fs/proc/array.c: get_task_state().
74 *
75 * We have two separate sets of flags: task->state
76 * is about runnability, while task->exit_state are
77 * about the task exiting. Confusing, but this way
78 * modifying one set can't modify the other one by
79 * mistake.
80 */
81
82 /* Used in tsk->state: */
83 #define TASK_RUNNING 0x0000
84 #define TASK_INTERRUPTIBLE 0x0001
85 #define TASK_UNINTERRUPTIBLE 0x0002
86 #define __TASK_STOPPED 0x0004
87 #define __TASK_TRACED 0x0008
88 /* Used in tsk->exit_state: */
89 #define EXIT_DEAD 0x0010
90 #define EXIT_ZOMBIE 0x0020
91 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
92 /* Used in tsk->state again: */
93 #define TASK_PARKED 0x0040
94 #define TASK_DEAD 0x0080
95 #define TASK_WAKEKILL 0x0100
96 #define TASK_WAKING 0x0200
97 #define TASK_NOLOAD 0x0400
98 #define TASK_NEW 0x0800
99 /* RT specific auxilliary flag to mark RT lock waiters */
100 #define TASK_RTLOCK_WAIT 0x1000
101 #define TASK_STATE_MAX 0x2000
102
103 /* Convenience macros for the sake of set_current_state: */
104 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
105 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
106 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
107
108 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
109
110 /* Convenience macros for the sake of wake_up(): */
111 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
112
113 /* get_task_state(): */
114 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
115 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
116 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
117 TASK_PARKED)
118
119 #define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING)
120
121 #define task_is_traced(task) ((READ_ONCE(task->__state) & __TASK_TRACED) != 0)
122
123 #define task_is_stopped(task) ((READ_ONCE(task->__state) & __TASK_STOPPED) != 0)
124
125 #define task_is_stopped_or_traced(task) ((READ_ONCE(task->__state) & (__TASK_STOPPED | __TASK_TRACED)) != 0)
126
127 /*
128 * Special states are those that do not use the normal wait-loop pattern. See
129 * the comment with set_special_state().
130 */
131 #define is_special_task_state(state) \
132 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
133
134 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
135 # define debug_normal_state_change(state_value) \
136 do { \
137 WARN_ON_ONCE(is_special_task_state(state_value)); \
138 current->task_state_change = _THIS_IP_; \
139 } while (0)
140
141 # define debug_special_state_change(state_value) \
142 do { \
143 WARN_ON_ONCE(!is_special_task_state(state_value)); \
144 current->task_state_change = _THIS_IP_; \
145 } while (0)
146
147 # define debug_rtlock_wait_set_state() \
148 do { \
149 current->saved_state_change = current->task_state_change;\
150 current->task_state_change = _THIS_IP_; \
151 } while (0)
152
153 # define debug_rtlock_wait_restore_state() \
154 do { \
155 current->task_state_change = current->saved_state_change;\
156 } while (0)
157
158 #else
159 # define debug_normal_state_change(cond) do { } while (0)
160 # define debug_special_state_change(cond) do { } while (0)
161 # define debug_rtlock_wait_set_state() do { } while (0)
162 # define debug_rtlock_wait_restore_state() do { } while (0)
163 #endif
164
165 /*
166 * set_current_state() includes a barrier so that the write of current->state
167 * is correctly serialised wrt the caller's subsequent test of whether to
168 * actually sleep:
169 *
170 * for (;;) {
171 * set_current_state(TASK_UNINTERRUPTIBLE);
172 * if (CONDITION)
173 * break;
174 *
175 * schedule();
176 * }
177 * __set_current_state(TASK_RUNNING);
178 *
179 * If the caller does not need such serialisation (because, for instance, the
180 * CONDITION test and condition change and wakeup are under the same lock) then
181 * use __set_current_state().
182 *
183 * The above is typically ordered against the wakeup, which does:
184 *
185 * CONDITION = 1;
186 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
187 *
188 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
189 * accessing p->state.
190 *
191 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
192 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
193 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
194 *
195 * However, with slightly different timing the wakeup TASK_RUNNING store can
196 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
197 * a problem either because that will result in one extra go around the loop
198 * and our @cond test will save the day.
199 *
200 * Also see the comments of try_to_wake_up().
201 */
202 #define __set_current_state(state_value) \
203 do { \
204 debug_normal_state_change((state_value)); \
205 WRITE_ONCE(current->__state, (state_value)); \
206 } while (0)
207
208 #define set_current_state(state_value) \
209 do { \
210 debug_normal_state_change((state_value)); \
211 smp_store_mb(current->__state, (state_value)); \
212 } while (0)
213
214 /*
215 * set_special_state() should be used for those states when the blocking task
216 * can not use the regular condition based wait-loop. In that case we must
217 * serialize against wakeups such that any possible in-flight TASK_RUNNING
218 * stores will not collide with our state change.
219 */
220 #define set_special_state(state_value) \
221 do { \
222 unsigned long flags; /* may shadow */ \
223 \
224 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
225 debug_special_state_change((state_value)); \
226 WRITE_ONCE(current->__state, (state_value)); \
227 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
228 } while (0)
229
230 /*
231 * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
232 *
233 * RT's spin/rwlock substitutions are state preserving. The state of the
234 * task when blocking on the lock is saved in task_struct::saved_state and
235 * restored after the lock has been acquired. These operations are
236 * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
237 * lock related wakeups while the task is blocked on the lock are
238 * redirected to operate on task_struct::saved_state to ensure that these
239 * are not dropped. On restore task_struct::saved_state is set to
240 * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
241 *
242 * The lock operation looks like this:
243 *
244 * current_save_and_set_rtlock_wait_state();
245 * for (;;) {
246 * if (try_lock())
247 * break;
248 * raw_spin_unlock_irq(&lock->wait_lock);
249 * schedule_rtlock();
250 * raw_spin_lock_irq(&lock->wait_lock);
251 * set_current_state(TASK_RTLOCK_WAIT);
252 * }
253 * current_restore_rtlock_saved_state();
254 */
255 #define current_save_and_set_rtlock_wait_state() \
256 do { \
257 lockdep_assert_irqs_disabled(); \
258 raw_spin_lock(¤t->pi_lock); \
259 current->saved_state = current->__state; \
260 debug_rtlock_wait_set_state(); \
261 WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \
262 raw_spin_unlock(¤t->pi_lock); \
263 } while (0);
264
265 #define current_restore_rtlock_saved_state() \
266 do { \
267 lockdep_assert_irqs_disabled(); \
268 raw_spin_lock(¤t->pi_lock); \
269 debug_rtlock_wait_restore_state(); \
270 WRITE_ONCE(current->__state, current->saved_state); \
271 current->saved_state = TASK_RUNNING; \
272 raw_spin_unlock(¤t->pi_lock); \
273 } while (0);
274
275 #define get_current_state() READ_ONCE(current->__state)
276
277 /* Task command name length: */
278 #define TASK_COMM_LEN 16
279
280 extern void scheduler_tick(void);
281
282 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
283
284 extern long schedule_timeout(long timeout);
285 extern long schedule_timeout_interruptible(long timeout);
286 extern long schedule_timeout_killable(long timeout);
287 extern long schedule_timeout_uninterruptible(long timeout);
288 extern long schedule_timeout_idle(long timeout);
289 asmlinkage void schedule(void);
290 extern void schedule_preempt_disabled(void);
291 asmlinkage void preempt_schedule_irq(void);
292 #ifdef CONFIG_PREEMPT_RT
293 extern void schedule_rtlock(void);
294 #endif
295
296 extern int __must_check io_schedule_prepare(void);
297 extern void io_schedule_finish(int token);
298 extern long io_schedule_timeout(long timeout);
299 extern void io_schedule(void);
300
301 /**
302 * struct prev_cputime - snapshot of system and user cputime
303 * @utime: time spent in user mode
304 * @stime: time spent in system mode
305 * @lock: protects the above two fields
306 *
307 * Stores previous user/system time values such that we can guarantee
308 * monotonicity.
309 */
310 struct prev_cputime {
311 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
312 u64 utime;
313 u64 stime;
314 raw_spinlock_t lock;
315 #endif
316 };
317
318 enum vtime_state {
319 /* Task is sleeping or running in a CPU with VTIME inactive: */
320 VTIME_INACTIVE = 0,
321 /* Task is idle */
322 VTIME_IDLE,
323 /* Task runs in kernelspace in a CPU with VTIME active: */
324 VTIME_SYS,
325 /* Task runs in userspace in a CPU with VTIME active: */
326 VTIME_USER,
327 /* Task runs as guests in a CPU with VTIME active: */
328 VTIME_GUEST,
329 };
330
331 struct vtime {
332 seqcount_t seqcount;
333 unsigned long long starttime;
334 enum vtime_state state;
335 unsigned int cpu;
336 u64 utime;
337 u64 stime;
338 u64 gtime;
339 };
340
341 /*
342 * Utilization clamp constraints.
343 * @UCLAMP_MIN: Minimum utilization
344 * @UCLAMP_MAX: Maximum utilization
345 * @UCLAMP_CNT: Utilization clamp constraints count
346 */
347 enum uclamp_id {
348 UCLAMP_MIN = 0,
349 UCLAMP_MAX,
350 UCLAMP_CNT
351 };
352
353 #ifdef CONFIG_SMP
354 extern struct root_domain def_root_domain;
355 extern struct mutex sched_domains_mutex;
356 #endif
357
358 struct sched_info {
359 #ifdef CONFIG_SCHED_INFO
360 /* Cumulative counters: */
361
362 /* # of times we have run on this CPU: */
363 unsigned long pcount;
364
365 /* Time spent waiting on a runqueue: */
366 unsigned long long run_delay;
367
368 /* Timestamps: */
369
370 /* When did we last run on a CPU? */
371 unsigned long long last_arrival;
372
373 /* When were we last queued to run? */
374 unsigned long long last_queued;
375
376 #endif /* CONFIG_SCHED_INFO */
377 };
378
379 /*
380 * Integer metrics need fixed point arithmetic, e.g., sched/fair
381 * has a few: load, load_avg, util_avg, freq, and capacity.
382 *
383 * We define a basic fixed point arithmetic range, and then formalize
384 * all these metrics based on that basic range.
385 */
386 # define SCHED_FIXEDPOINT_SHIFT 10
387 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
388
389 /* Increase resolution of cpu_capacity calculations */
390 # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
391 # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
392
393 struct load_weight {
394 unsigned long weight;
395 u32 inv_weight;
396 };
397
398 /**
399 * struct util_est - Estimation utilization of FAIR tasks
400 * @enqueued: instantaneous estimated utilization of a task/cpu
401 * @ewma: the Exponential Weighted Moving Average (EWMA)
402 * utilization of a task
403 *
404 * Support data structure to track an Exponential Weighted Moving Average
405 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
406 * average each time a task completes an activation. Sample's weight is chosen
407 * so that the EWMA will be relatively insensitive to transient changes to the
408 * task's workload.
409 *
410 * The enqueued attribute has a slightly different meaning for tasks and cpus:
411 * - task: the task's util_avg at last task dequeue time
412 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
413 * Thus, the util_est.enqueued of a task represents the contribution on the
414 * estimated utilization of the CPU where that task is currently enqueued.
415 *
416 * Only for tasks we track a moving average of the past instantaneous
417 * estimated utilization. This allows to absorb sporadic drops in utilization
418 * of an otherwise almost periodic task.
419 *
420 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
421 * updates. When a task is dequeued, its util_est should not be updated if its
422 * util_avg has not been updated in the meantime.
423 * This information is mapped into the MSB bit of util_est.enqueued at dequeue
424 * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
425 * for a task) it is safe to use MSB.
426 */
427 struct util_est {
428 unsigned int enqueued;
429 unsigned int ewma;
430 #define UTIL_EST_WEIGHT_SHIFT 2
431 #define UTIL_AVG_UNCHANGED 0x80000000
432 } __attribute__((__aligned__(sizeof(u64))));
433
434 /*
435 * The load/runnable/util_avg accumulates an infinite geometric series
436 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
437 *
438 * [load_avg definition]
439 *
440 * load_avg = runnable% * scale_load_down(load)
441 *
442 * [runnable_avg definition]
443 *
444 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
445 *
446 * [util_avg definition]
447 *
448 * util_avg = running% * SCHED_CAPACITY_SCALE
449 *
450 * where runnable% is the time ratio that a sched_entity is runnable and
451 * running% the time ratio that a sched_entity is running.
452 *
453 * For cfs_rq, they are the aggregated values of all runnable and blocked
454 * sched_entities.
455 *
456 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
457 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
458 * for computing those signals (see update_rq_clock_pelt())
459 *
460 * N.B., the above ratios (runnable% and running%) themselves are in the
461 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
462 * to as large a range as necessary. This is for example reflected by
463 * util_avg's SCHED_CAPACITY_SCALE.
464 *
465 * [Overflow issue]
466 *
467 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
468 * with the highest load (=88761), always runnable on a single cfs_rq,
469 * and should not overflow as the number already hits PID_MAX_LIMIT.
470 *
471 * For all other cases (including 32-bit kernels), struct load_weight's
472 * weight will overflow first before we do, because:
473 *
474 * Max(load_avg) <= Max(load.weight)
475 *
476 * Then it is the load_weight's responsibility to consider overflow
477 * issues.
478 */
479 struct sched_avg {
480 u64 last_update_time;
481 u64 load_sum;
482 u64 runnable_sum;
483 u32 util_sum;
484 u32 period_contrib;
485 unsigned long load_avg;
486 unsigned long runnable_avg;
487 unsigned long util_avg;
488 struct util_est util_est;
489 } ____cacheline_aligned;
490
491 struct sched_statistics {
492 #ifdef CONFIG_SCHEDSTATS
493 u64 wait_start;
494 u64 wait_max;
495 u64 wait_count;
496 u64 wait_sum;
497 u64 iowait_count;
498 u64 iowait_sum;
499
500 u64 sleep_start;
501 u64 sleep_max;
502 s64 sum_sleep_runtime;
503
504 u64 block_start;
505 u64 block_max;
506 s64 sum_block_runtime;
507
508 u64 exec_max;
509 u64 slice_max;
510
511 u64 nr_migrations_cold;
512 u64 nr_failed_migrations_affine;
513 u64 nr_failed_migrations_running;
514 u64 nr_failed_migrations_hot;
515 u64 nr_forced_migrations;
516
517 u64 nr_wakeups;
518 u64 nr_wakeups_sync;
519 u64 nr_wakeups_migrate;
520 u64 nr_wakeups_local;
521 u64 nr_wakeups_remote;
522 u64 nr_wakeups_affine;
523 u64 nr_wakeups_affine_attempts;
524 u64 nr_wakeups_passive;
525 u64 nr_wakeups_idle;
526 #endif
527 } ____cacheline_aligned;
528
529 struct sched_entity {
530 /* For load-balancing: */
531 struct load_weight load;
532 struct rb_node run_node;
533 struct list_head group_node;
534 unsigned int on_rq;
535
536 u64 exec_start;
537 u64 sum_exec_runtime;
538 u64 vruntime;
539 u64 prev_sum_exec_runtime;
540
541 u64 nr_migrations;
542
543 #ifdef CONFIG_FAIR_GROUP_SCHED
544 int depth;
545 struct sched_entity *parent;
546 /* rq on which this entity is (to be) queued: */
547 struct cfs_rq *cfs_rq;
548 /* rq "owned" by this entity/group: */
549 struct cfs_rq *my_q;
550 /* cached value of my_q->h_nr_running */
551 unsigned long runnable_weight;
552 #endif
553
554 #ifdef CONFIG_SMP
555 /*
556 * Per entity load average tracking.
557 *
558 * Put into separate cache line so it does not
559 * collide with read-mostly values above.
560 */
561 struct sched_avg avg;
562 #endif
563 };
564
565 struct sched_rt_entity {
566 struct list_head run_list;
567 unsigned long timeout;
568 unsigned long watchdog_stamp;
569 unsigned int time_slice;
570 unsigned short on_rq;
571 unsigned short on_list;
572
573 struct sched_rt_entity *back;
574 #ifdef CONFIG_RT_GROUP_SCHED
575 struct sched_rt_entity *parent;
576 /* rq on which this entity is (to be) queued: */
577 struct rt_rq *rt_rq;
578 /* rq "owned" by this entity/group: */
579 struct rt_rq *my_q;
580 #endif
581 } __randomize_layout;
582
583 struct sched_dl_entity {
584 struct rb_node rb_node;
585
586 /*
587 * Original scheduling parameters. Copied here from sched_attr
588 * during sched_setattr(), they will remain the same until
589 * the next sched_setattr().
590 */
591 u64 dl_runtime; /* Maximum runtime for each instance */
592 u64 dl_deadline; /* Relative deadline of each instance */
593 u64 dl_period; /* Separation of two instances (period) */
594 u64 dl_bw; /* dl_runtime / dl_period */
595 u64 dl_density; /* dl_runtime / dl_deadline */
596
597 /*
598 * Actual scheduling parameters. Initialized with the values above,
599 * they are continuously updated during task execution. Note that
600 * the remaining runtime could be < 0 in case we are in overrun.
601 */
602 s64 runtime; /* Remaining runtime for this instance */
603 u64 deadline; /* Absolute deadline for this instance */
604 unsigned int flags; /* Specifying the scheduler behaviour */
605
606 /*
607 * Some bool flags:
608 *
609 * @dl_throttled tells if we exhausted the runtime. If so, the
610 * task has to wait for a replenishment to be performed at the
611 * next firing of dl_timer.
612 *
613 * @dl_boosted tells if we are boosted due to DI. If so we are
614 * outside bandwidth enforcement mechanism (but only until we
615 * exit the critical section);
616 *
617 * @dl_yielded tells if task gave up the CPU before consuming
618 * all its available runtime during the last job.
619 *
620 * @dl_non_contending tells if the task is inactive while still
621 * contributing to the active utilization. In other words, it
622 * indicates if the inactive timer has been armed and its handler
623 * has not been executed yet. This flag is useful to avoid race
624 * conditions between the inactive timer handler and the wakeup
625 * code.
626 *
627 * @dl_overrun tells if the task asked to be informed about runtime
628 * overruns.
629 */
630 unsigned int dl_throttled : 1;
631 unsigned int dl_yielded : 1;
632 unsigned int dl_non_contending : 1;
633 unsigned int dl_overrun : 1;
634
635 /*
636 * Bandwidth enforcement timer. Each -deadline task has its
637 * own bandwidth to be enforced, thus we need one timer per task.
638 */
639 struct hrtimer dl_timer;
640
641 /*
642 * Inactive timer, responsible for decreasing the active utilization
643 * at the "0-lag time". When a -deadline task blocks, it contributes
644 * to GRUB's active utilization until the "0-lag time", hence a
645 * timer is needed to decrease the active utilization at the correct
646 * time.
647 */
648 struct hrtimer inactive_timer;
649
650 #ifdef CONFIG_RT_MUTEXES
651 /*
652 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
653 * pi_se points to the donor, otherwise points to the dl_se it belongs
654 * to (the original one/itself).
655 */
656 struct sched_dl_entity *pi_se;
657 #endif
658 };
659
660 #ifdef CONFIG_UCLAMP_TASK
661 /* Number of utilization clamp buckets (shorter alias) */
662 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
663
664 /*
665 * Utilization clamp for a scheduling entity
666 * @value: clamp value "assigned" to a se
667 * @bucket_id: bucket index corresponding to the "assigned" value
668 * @active: the se is currently refcounted in a rq's bucket
669 * @user_defined: the requested clamp value comes from user-space
670 *
671 * The bucket_id is the index of the clamp bucket matching the clamp value
672 * which is pre-computed and stored to avoid expensive integer divisions from
673 * the fast path.
674 *
675 * The active bit is set whenever a task has got an "effective" value assigned,
676 * which can be different from the clamp value "requested" from user-space.
677 * This allows to know a task is refcounted in the rq's bucket corresponding
678 * to the "effective" bucket_id.
679 *
680 * The user_defined bit is set whenever a task has got a task-specific clamp
681 * value requested from userspace, i.e. the system defaults apply to this task
682 * just as a restriction. This allows to relax default clamps when a less
683 * restrictive task-specific value has been requested, thus allowing to
684 * implement a "nice" semantic. For example, a task running with a 20%
685 * default boost can still drop its own boosting to 0%.
686 */
687 struct uclamp_se {
688 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
689 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
690 unsigned int active : 1;
691 unsigned int user_defined : 1;
692 };
693 #endif /* CONFIG_UCLAMP_TASK */
694
695 union rcu_special {
696 struct {
697 u8 blocked;
698 u8 need_qs;
699 u8 exp_hint; /* Hint for performance. */
700 u8 need_mb; /* Readers need smp_mb(). */
701 } b; /* Bits. */
702 u32 s; /* Set of bits. */
703 };
704
705 enum perf_event_task_context {
706 perf_invalid_context = -1,
707 perf_hw_context = 0,
708 perf_sw_context,
709 perf_nr_task_contexts,
710 };
711
712 struct wake_q_node {
713 struct wake_q_node *next;
714 };
715
716 struct kmap_ctrl {
717 #ifdef CONFIG_KMAP_LOCAL
718 int idx;
719 pte_t pteval[KM_MAX_IDX];
720 #endif
721 };
722
723 struct task_struct {
724 #ifdef CONFIG_THREAD_INFO_IN_TASK
725 /*
726 * For reasons of header soup (see current_thread_info()), this
727 * must be the first element of task_struct.
728 */
729 struct thread_info thread_info;
730 #endif
731 unsigned int __state;
732
733 #ifdef CONFIG_PREEMPT_RT
734 /* saved state for "spinlock sleepers" */
735 unsigned int saved_state;
736 #endif
737
738 /*
739 * This begins the randomizable portion of task_struct. Only
740 * scheduling-critical items should be added above here.
741 */
742 randomized_struct_fields_start
743
744 void *stack;
745 refcount_t usage;
746 /* Per task flags (PF_*), defined further below: */
747 unsigned int flags;
748 unsigned int ptrace;
749
750 #ifdef CONFIG_SMP
751 int on_cpu;
752 struct __call_single_node wake_entry;
753 unsigned int wakee_flips;
754 unsigned long wakee_flip_decay_ts;
755 struct task_struct *last_wakee;
756
757 /*
758 * recent_used_cpu is initially set as the last CPU used by a task
759 * that wakes affine another task. Waker/wakee relationships can
760 * push tasks around a CPU where each wakeup moves to the next one.
761 * Tracking a recently used CPU allows a quick search for a recently
762 * used CPU that may be idle.
763 */
764 int recent_used_cpu;
765 int wake_cpu;
766 #endif
767 int on_rq;
768
769 int prio;
770 int static_prio;
771 int normal_prio;
772 unsigned int rt_priority;
773
774 struct sched_entity se;
775 struct sched_rt_entity rt;
776 struct sched_dl_entity dl;
777 const struct sched_class *sched_class;
778
779 #ifdef CONFIG_SCHED_CORE
780 struct rb_node core_node;
781 unsigned long core_cookie;
782 unsigned int core_occupation;
783 #endif
784
785 #ifdef CONFIG_CGROUP_SCHED
786 struct task_group *sched_task_group;
787 #endif
788
789 #ifdef CONFIG_UCLAMP_TASK
790 /*
791 * Clamp values requested for a scheduling entity.
792 * Must be updated with task_rq_lock() held.
793 */
794 struct uclamp_se uclamp_req[UCLAMP_CNT];
795 /*
796 * Effective clamp values used for a scheduling entity.
797 * Must be updated with task_rq_lock() held.
798 */
799 struct uclamp_se uclamp[UCLAMP_CNT];
800 #endif
801
802 struct sched_statistics stats;
803
804 #ifdef CONFIG_PREEMPT_NOTIFIERS
805 /* List of struct preempt_notifier: */
806 struct hlist_head preempt_notifiers;
807 #endif
808
809 #ifdef CONFIG_BLK_DEV_IO_TRACE
810 unsigned int btrace_seq;
811 #endif
812
813 unsigned int policy;
814 int nr_cpus_allowed;
815 const cpumask_t *cpus_ptr;
816 cpumask_t *user_cpus_ptr;
817 cpumask_t cpus_mask;
818 void *migration_pending;
819 #ifdef CONFIG_SMP
820 unsigned short migration_disabled;
821 #endif
822 unsigned short migration_flags;
823
824 #ifdef CONFIG_PREEMPT_RCU
825 int rcu_read_lock_nesting;
826 union rcu_special rcu_read_unlock_special;
827 struct list_head rcu_node_entry;
828 struct rcu_node *rcu_blocked_node;
829 #endif /* #ifdef CONFIG_PREEMPT_RCU */
830
831 #ifdef CONFIG_TASKS_RCU
832 unsigned long rcu_tasks_nvcsw;
833 u8 rcu_tasks_holdout;
834 u8 rcu_tasks_idx;
835 int rcu_tasks_idle_cpu;
836 struct list_head rcu_tasks_holdout_list;
837 #endif /* #ifdef CONFIG_TASKS_RCU */
838
839 #ifdef CONFIG_TASKS_TRACE_RCU
840 int trc_reader_nesting;
841 int trc_ipi_to_cpu;
842 union rcu_special trc_reader_special;
843 bool trc_reader_checked;
844 struct list_head trc_holdout_list;
845 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
846
847 struct sched_info sched_info;
848
849 struct list_head tasks;
850 #ifdef CONFIG_SMP
851 struct plist_node pushable_tasks;
852 struct rb_node pushable_dl_tasks;
853 #endif
854
855 struct mm_struct *mm;
856 struct mm_struct *active_mm;
857
858 /* Per-thread vma caching: */
859 struct vmacache vmacache;
860
861 #ifdef SPLIT_RSS_COUNTING
862 struct task_rss_stat rss_stat;
863 #endif
864 int exit_state;
865 int exit_code;
866 int exit_signal;
867 /* The signal sent when the parent dies: */
868 int pdeath_signal;
869 /* JOBCTL_*, siglock protected: */
870 unsigned long jobctl;
871
872 /* Used for emulating ABI behavior of previous Linux versions: */
873 unsigned int personality;
874
875 /* Scheduler bits, serialized by scheduler locks: */
876 unsigned sched_reset_on_fork:1;
877 unsigned sched_contributes_to_load:1;
878 unsigned sched_migrated:1;
879 #ifdef CONFIG_PSI
880 unsigned sched_psi_wake_requeue:1;
881 #endif
882
883 /* Force alignment to the next boundary: */
884 unsigned :0;
885
886 /* Unserialized, strictly 'current' */
887
888 /*
889 * This field must not be in the scheduler word above due to wakelist
890 * queueing no longer being serialized by p->on_cpu. However:
891 *
892 * p->XXX = X; ttwu()
893 * schedule() if (p->on_rq && ..) // false
894 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
895 * deactivate_task() ttwu_queue_wakelist())
896 * p->on_rq = 0; p->sched_remote_wakeup = Y;
897 *
898 * guarantees all stores of 'current' are visible before
899 * ->sched_remote_wakeup gets used, so it can be in this word.
900 */
901 unsigned sched_remote_wakeup:1;
902
903 /* Bit to tell LSMs we're in execve(): */
904 unsigned in_execve:1;
905 unsigned in_iowait:1;
906 #ifndef TIF_RESTORE_SIGMASK
907 unsigned restore_sigmask:1;
908 #endif
909 #ifdef CONFIG_MEMCG
910 unsigned in_user_fault:1;
911 #endif
912 #ifdef CONFIG_COMPAT_BRK
913 unsigned brk_randomized:1;
914 #endif
915 #ifdef CONFIG_CGROUPS
916 /* disallow userland-initiated cgroup migration */
917 unsigned no_cgroup_migration:1;
918 /* task is frozen/stopped (used by the cgroup freezer) */
919 unsigned frozen:1;
920 #endif
921 #ifdef CONFIG_BLK_CGROUP
922 unsigned use_memdelay:1;
923 #endif
924 #ifdef CONFIG_PSI
925 /* Stalled due to lack of memory */
926 unsigned in_memstall:1;
927 #endif
928 #ifdef CONFIG_PAGE_OWNER
929 /* Used by page_owner=on to detect recursion in page tracking. */
930 unsigned in_page_owner:1;
931 #endif
932 #ifdef CONFIG_EVENTFD
933 /* Recursion prevention for eventfd_signal() */
934 unsigned in_eventfd_signal:1;
935 #endif
936
937 unsigned long atomic_flags; /* Flags requiring atomic access. */
938
939 struct restart_block restart_block;
940
941 pid_t pid;
942 pid_t tgid;
943
944 #ifdef CONFIG_STACKPROTECTOR
945 /* Canary value for the -fstack-protector GCC feature: */
946 unsigned long stack_canary;
947 #endif
948 /*
949 * Pointers to the (original) parent process, youngest child, younger sibling,
950 * older sibling, respectively. (p->father can be replaced with
951 * p->real_parent->pid)
952 */
953
954 /* Real parent process: */
955 struct task_struct __rcu *real_parent;
956
957 /* Recipient of SIGCHLD, wait4() reports: */
958 struct task_struct __rcu *parent;
959
960 /*
961 * Children/sibling form the list of natural children:
962 */
963 struct list_head children;
964 struct list_head sibling;
965 struct task_struct *group_leader;
966
967 /*
968 * 'ptraced' is the list of tasks this task is using ptrace() on.
969 *
970 * This includes both natural children and PTRACE_ATTACH targets.
971 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
972 */
973 struct list_head ptraced;
974 struct list_head ptrace_entry;
975
976 /* PID/PID hash table linkage. */
977 struct pid *thread_pid;
978 struct hlist_node pid_links[PIDTYPE_MAX];
979 struct list_head thread_group;
980 struct list_head thread_node;
981
982 struct completion *vfork_done;
983
984 /* CLONE_CHILD_SETTID: */
985 int __user *set_child_tid;
986
987 /* CLONE_CHILD_CLEARTID: */
988 int __user *clear_child_tid;
989
990 /* PF_IO_WORKER */
991 void *pf_io_worker;
992
993 u64 utime;
994 u64 stime;
995 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
996 u64 utimescaled;
997 u64 stimescaled;
998 #endif
999 u64 gtime;
1000 struct prev_cputime prev_cputime;
1001 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1002 struct vtime vtime;
1003 #endif
1004
1005 #ifdef CONFIG_NO_HZ_FULL
1006 atomic_t tick_dep_mask;
1007 #endif
1008 /* Context switch counts: */
1009 unsigned long nvcsw;
1010 unsigned long nivcsw;
1011
1012 /* Monotonic time in nsecs: */
1013 u64 start_time;
1014
1015 /* Boot based time in nsecs: */
1016 u64 start_boottime;
1017
1018 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1019 unsigned long min_flt;
1020 unsigned long maj_flt;
1021
1022 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
1023 struct posix_cputimers posix_cputimers;
1024
1025 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1026 struct posix_cputimers_work posix_cputimers_work;
1027 #endif
1028
1029 /* Process credentials: */
1030
1031 /* Tracer's credentials at attach: */
1032 const struct cred __rcu *ptracer_cred;
1033
1034 /* Objective and real subjective task credentials (COW): */
1035 const struct cred __rcu *real_cred;
1036
1037 /* Effective (overridable) subjective task credentials (COW): */
1038 const struct cred __rcu *cred;
1039
1040 #ifdef CONFIG_KEYS
1041 /* Cached requested key. */
1042 struct key *cached_requested_key;
1043 #endif
1044
1045 /*
1046 * executable name, excluding path.
1047 *
1048 * - normally initialized setup_new_exec()
1049 * - access it with [gs]et_task_comm()
1050 * - lock it with task_lock()
1051 */
1052 char comm[TASK_COMM_LEN];
1053
1054 struct nameidata *nameidata;
1055
1056 #ifdef CONFIG_SYSVIPC
1057 struct sysv_sem sysvsem;
1058 struct sysv_shm sysvshm;
1059 #endif
1060 #ifdef CONFIG_DETECT_HUNG_TASK
1061 unsigned long last_switch_count;
1062 unsigned long last_switch_time;
1063 #endif
1064 /* Filesystem information: */
1065 struct fs_struct *fs;
1066
1067 /* Open file information: */
1068 struct files_struct *files;
1069
1070 #ifdef CONFIG_IO_URING
1071 struct io_uring_task *io_uring;
1072 #endif
1073
1074 /* Namespaces: */
1075 struct nsproxy *nsproxy;
1076
1077 /* Signal handlers: */
1078 struct signal_struct *signal;
1079 struct sighand_struct __rcu *sighand;
1080 sigset_t blocked;
1081 sigset_t real_blocked;
1082 /* Restored if set_restore_sigmask() was used: */
1083 sigset_t saved_sigmask;
1084 struct sigpending pending;
1085 unsigned long sas_ss_sp;
1086 size_t sas_ss_size;
1087 unsigned int sas_ss_flags;
1088
1089 struct callback_head *task_works;
1090
1091 #ifdef CONFIG_AUDIT
1092 #ifdef CONFIG_AUDITSYSCALL
1093 struct audit_context *audit_context;
1094 #endif
1095 kuid_t loginuid;
1096 unsigned int sessionid;
1097 #endif
1098 struct seccomp seccomp;
1099 struct syscall_user_dispatch syscall_dispatch;
1100
1101 /* Thread group tracking: */
1102 u64 parent_exec_id;
1103 u64 self_exec_id;
1104
1105 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1106 spinlock_t alloc_lock;
1107
1108 /* Protection of the PI data structures: */
1109 raw_spinlock_t pi_lock;
1110
1111 struct wake_q_node wake_q;
1112
1113 #ifdef CONFIG_RT_MUTEXES
1114 /* PI waiters blocked on a rt_mutex held by this task: */
1115 struct rb_root_cached pi_waiters;
1116 /* Updated under owner's pi_lock and rq lock */
1117 struct task_struct *pi_top_task;
1118 /* Deadlock detection and priority inheritance handling: */
1119 struct rt_mutex_waiter *pi_blocked_on;
1120 #endif
1121
1122 #ifdef CONFIG_DEBUG_MUTEXES
1123 /* Mutex deadlock detection: */
1124 struct mutex_waiter *blocked_on;
1125 #endif
1126
1127 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1128 int non_block_count;
1129 #endif
1130
1131 #ifdef CONFIG_TRACE_IRQFLAGS
1132 struct irqtrace_events irqtrace;
1133 unsigned int hardirq_threaded;
1134 u64 hardirq_chain_key;
1135 int softirqs_enabled;
1136 int softirq_context;
1137 int irq_config;
1138 #endif
1139 #ifdef CONFIG_PREEMPT_RT
1140 int softirq_disable_cnt;
1141 #endif
1142
1143 #ifdef CONFIG_LOCKDEP
1144 # define MAX_LOCK_DEPTH 48UL
1145 u64 curr_chain_key;
1146 int lockdep_depth;
1147 unsigned int lockdep_recursion;
1148 struct held_lock held_locks[MAX_LOCK_DEPTH];
1149 #endif
1150
1151 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1152 unsigned int in_ubsan;
1153 #endif
1154
1155 /* Journalling filesystem info: */
1156 void *journal_info;
1157
1158 /* Stacked block device info: */
1159 struct bio_list *bio_list;
1160
1161 /* Stack plugging: */
1162 struct blk_plug *plug;
1163
1164 /* VM state: */
1165 struct reclaim_state *reclaim_state;
1166
1167 struct backing_dev_info *backing_dev_info;
1168
1169 struct io_context *io_context;
1170
1171 #ifdef CONFIG_COMPACTION
1172 struct capture_control *capture_control;
1173 #endif
1174 /* Ptrace state: */
1175 unsigned long ptrace_message;
1176 kernel_siginfo_t *last_siginfo;
1177
1178 struct task_io_accounting ioac;
1179 #ifdef CONFIG_PSI
1180 /* Pressure stall state */
1181 unsigned int psi_flags;
1182 #endif
1183 #ifdef CONFIG_TASK_XACCT
1184 /* Accumulated RSS usage: */
1185 u64 acct_rss_mem1;
1186 /* Accumulated virtual memory usage: */
1187 u64 acct_vm_mem1;
1188 /* stime + utime since last update: */
1189 u64 acct_timexpd;
1190 #endif
1191 #ifdef CONFIG_CPUSETS
1192 /* Protected by ->alloc_lock: */
1193 nodemask_t mems_allowed;
1194 /* Sequence number to catch updates: */
1195 seqcount_spinlock_t mems_allowed_seq;
1196 int cpuset_mem_spread_rotor;
1197 int cpuset_slab_spread_rotor;
1198 #endif
1199 #ifdef CONFIG_CGROUPS
1200 /* Control Group info protected by css_set_lock: */
1201 struct css_set __rcu *cgroups;
1202 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1203 struct list_head cg_list;
1204 #endif
1205 #ifdef CONFIG_X86_CPU_RESCTRL
1206 u32 closid;
1207 u32 rmid;
1208 #endif
1209 #ifdef CONFIG_FUTEX
1210 struct robust_list_head __user *robust_list;
1211 #ifdef CONFIG_COMPAT
1212 struct compat_robust_list_head __user *compat_robust_list;
1213 #endif
1214 struct list_head pi_state_list;
1215 struct futex_pi_state *pi_state_cache;
1216 struct mutex futex_exit_mutex;
1217 unsigned int futex_state;
1218 #endif
1219 #ifdef CONFIG_PERF_EVENTS
1220 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1221 struct mutex perf_event_mutex;
1222 struct list_head perf_event_list;
1223 #endif
1224 #ifdef CONFIG_DEBUG_PREEMPT
1225 unsigned long preempt_disable_ip;
1226 #endif
1227 #ifdef CONFIG_NUMA
1228 /* Protected by alloc_lock: */
1229 struct mempolicy *mempolicy;
1230 short il_prev;
1231 short pref_node_fork;
1232 #endif
1233 #ifdef CONFIG_NUMA_BALANCING
1234 int numa_scan_seq;
1235 unsigned int numa_scan_period;
1236 unsigned int numa_scan_period_max;
1237 int numa_preferred_nid;
1238 unsigned long numa_migrate_retry;
1239 /* Migration stamp: */
1240 u64 node_stamp;
1241 u64 last_task_numa_placement;
1242 u64 last_sum_exec_runtime;
1243 struct callback_head numa_work;
1244
1245 /*
1246 * This pointer is only modified for current in syscall and
1247 * pagefault context (and for tasks being destroyed), so it can be read
1248 * from any of the following contexts:
1249 * - RCU read-side critical section
1250 * - current->numa_group from everywhere
1251 * - task's runqueue locked, task not running
1252 */
1253 struct numa_group __rcu *numa_group;
1254
1255 /*
1256 * numa_faults is an array split into four regions:
1257 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1258 * in this precise order.
1259 *
1260 * faults_memory: Exponential decaying average of faults on a per-node
1261 * basis. Scheduling placement decisions are made based on these
1262 * counts. The values remain static for the duration of a PTE scan.
1263 * faults_cpu: Track the nodes the process was running on when a NUMA
1264 * hinting fault was incurred.
1265 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1266 * during the current scan window. When the scan completes, the counts
1267 * in faults_memory and faults_cpu decay and these values are copied.
1268 */
1269 unsigned long *numa_faults;
1270 unsigned long total_numa_faults;
1271
1272 /*
1273 * numa_faults_locality tracks if faults recorded during the last
1274 * scan window were remote/local or failed to migrate. The task scan
1275 * period is adapted based on the locality of the faults with different
1276 * weights depending on whether they were shared or private faults
1277 */
1278 unsigned long numa_faults_locality[3];
1279
1280 unsigned long numa_pages_migrated;
1281 #endif /* CONFIG_NUMA_BALANCING */
1282
1283 #ifdef CONFIG_RSEQ
1284 struct rseq __user *rseq;
1285 u32 rseq_sig;
1286 /*
1287 * RmW on rseq_event_mask must be performed atomically
1288 * with respect to preemption.
1289 */
1290 unsigned long rseq_event_mask;
1291 #endif
1292
1293 struct tlbflush_unmap_batch tlb_ubc;
1294
1295 union {
1296 refcount_t rcu_users;
1297 struct rcu_head rcu;
1298 };
1299
1300 /* Cache last used pipe for splice(): */
1301 struct pipe_inode_info *splice_pipe;
1302
1303 struct page_frag task_frag;
1304
1305 #ifdef CONFIG_TASK_DELAY_ACCT
1306 struct task_delay_info *delays;
1307 #endif
1308
1309 #ifdef CONFIG_FAULT_INJECTION
1310 int make_it_fail;
1311 unsigned int fail_nth;
1312 #endif
1313 /*
1314 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1315 * balance_dirty_pages() for a dirty throttling pause:
1316 */
1317 int nr_dirtied;
1318 int nr_dirtied_pause;
1319 /* Start of a write-and-pause period: */
1320 unsigned long dirty_paused_when;
1321
1322 #ifdef CONFIG_LATENCYTOP
1323 int latency_record_count;
1324 struct latency_record latency_record[LT_SAVECOUNT];
1325 #endif
1326 /*
1327 * Time slack values; these are used to round up poll() and
1328 * select() etc timeout values. These are in nanoseconds.
1329 */
1330 u64 timer_slack_ns;
1331 u64 default_timer_slack_ns;
1332
1333 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1334 unsigned int kasan_depth;
1335 #endif
1336
1337 #ifdef CONFIG_KCSAN
1338 struct kcsan_ctx kcsan_ctx;
1339 #ifdef CONFIG_TRACE_IRQFLAGS
1340 struct irqtrace_events kcsan_save_irqtrace;
1341 #endif
1342 #endif
1343
1344 #if IS_ENABLED(CONFIG_KUNIT)
1345 struct kunit *kunit_test;
1346 #endif
1347
1348 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1349 /* Index of current stored address in ret_stack: */
1350 int curr_ret_stack;
1351 int curr_ret_depth;
1352
1353 /* Stack of return addresses for return function tracing: */
1354 struct ftrace_ret_stack *ret_stack;
1355
1356 /* Timestamp for last schedule: */
1357 unsigned long long ftrace_timestamp;
1358
1359 /*
1360 * Number of functions that haven't been traced
1361 * because of depth overrun:
1362 */
1363 atomic_t trace_overrun;
1364
1365 /* Pause tracing: */
1366 atomic_t tracing_graph_pause;
1367 #endif
1368
1369 #ifdef CONFIG_TRACING
1370 /* State flags for use by tracers: */
1371 unsigned long trace;
1372
1373 /* Bitmask and counter of trace recursion: */
1374 unsigned long trace_recursion;
1375 #endif /* CONFIG_TRACING */
1376
1377 #ifdef CONFIG_KCOV
1378 /* See kernel/kcov.c for more details. */
1379
1380 /* Coverage collection mode enabled for this task (0 if disabled): */
1381 unsigned int kcov_mode;
1382
1383 /* Size of the kcov_area: */
1384 unsigned int kcov_size;
1385
1386 /* Buffer for coverage collection: */
1387 void *kcov_area;
1388
1389 /* KCOV descriptor wired with this task or NULL: */
1390 struct kcov *kcov;
1391
1392 /* KCOV common handle for remote coverage collection: */
1393 u64 kcov_handle;
1394
1395 /* KCOV sequence number: */
1396 int kcov_sequence;
1397
1398 /* Collect coverage from softirq context: */
1399 unsigned int kcov_softirq;
1400 #endif
1401
1402 #ifdef CONFIG_MEMCG
1403 struct mem_cgroup *memcg_in_oom;
1404 gfp_t memcg_oom_gfp_mask;
1405 int memcg_oom_order;
1406
1407 /* Number of pages to reclaim on returning to userland: */
1408 unsigned int memcg_nr_pages_over_high;
1409
1410 /* Used by memcontrol for targeted memcg charge: */
1411 struct mem_cgroup *active_memcg;
1412 #endif
1413
1414 #ifdef CONFIG_BLK_CGROUP
1415 struct request_queue *throttle_queue;
1416 #endif
1417
1418 #ifdef CONFIG_UPROBES
1419 struct uprobe_task *utask;
1420 #endif
1421 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1422 unsigned int sequential_io;
1423 unsigned int sequential_io_avg;
1424 #endif
1425 struct kmap_ctrl kmap_ctrl;
1426 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1427 unsigned long task_state_change;
1428 # ifdef CONFIG_PREEMPT_RT
1429 unsigned long saved_state_change;
1430 # endif
1431 #endif
1432 int pagefault_disabled;
1433 #ifdef CONFIG_MMU
1434 struct task_struct *oom_reaper_list;
1435 #endif
1436 #ifdef CONFIG_VMAP_STACK
1437 struct vm_struct *stack_vm_area;
1438 #endif
1439 #ifdef CONFIG_THREAD_INFO_IN_TASK
1440 /* A live task holds one reference: */
1441 refcount_t stack_refcount;
1442 #endif
1443 #ifdef CONFIG_LIVEPATCH
1444 int patch_state;
1445 #endif
1446 #ifdef CONFIG_SECURITY
1447 /* Used by LSM modules for access restriction: */
1448 void *security;
1449 #endif
1450 #ifdef CONFIG_BPF_SYSCALL
1451 /* Used by BPF task local storage */
1452 struct bpf_local_storage __rcu *bpf_storage;
1453 /* Used for BPF run context */
1454 struct bpf_run_ctx *bpf_ctx;
1455 #endif
1456
1457 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1458 unsigned long lowest_stack;
1459 unsigned long prev_lowest_stack;
1460 #endif
1461
1462 #ifdef CONFIG_X86_MCE
1463 void __user *mce_vaddr;
1464 __u64 mce_kflags;
1465 u64 mce_addr;
1466 __u64 mce_ripv : 1,
1467 mce_whole_page : 1,
1468 __mce_reserved : 62;
1469 struct callback_head mce_kill_me;
1470 int mce_count;
1471 #endif
1472
1473 #ifdef CONFIG_KRETPROBES
1474 struct llist_head kretprobe_instances;
1475 #endif
1476
1477 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1478 /*
1479 * If L1D flush is supported on mm context switch
1480 * then we use this callback head to queue kill work
1481 * to kill tasks that are not running on SMT disabled
1482 * cores
1483 */
1484 struct callback_head l1d_flush_kill;
1485 #endif
1486
1487 /*
1488 * New fields for task_struct should be added above here, so that
1489 * they are included in the randomized portion of task_struct.
1490 */
1491 randomized_struct_fields_end
1492
1493 /* CPU-specific state of this task: */
1494 struct thread_struct thread;
1495
1496 /*
1497 * WARNING: on x86, 'thread_struct' contains a variable-sized
1498 * structure. It *MUST* be at the end of 'task_struct'.
1499 *
1500 * Do not put anything below here!
1501 */
1502 };
1503
task_pid(struct task_struct * task)1504 static inline struct pid *task_pid(struct task_struct *task)
1505 {
1506 return task->thread_pid;
1507 }
1508
1509 /*
1510 * the helpers to get the task's different pids as they are seen
1511 * from various namespaces
1512 *
1513 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1514 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1515 * current.
1516 * task_xid_nr_ns() : id seen from the ns specified;
1517 *
1518 * see also pid_nr() etc in include/linux/pid.h
1519 */
1520 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1521
task_pid_nr(struct task_struct * tsk)1522 static inline pid_t task_pid_nr(struct task_struct *tsk)
1523 {
1524 return tsk->pid;
1525 }
1526
task_pid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1527 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1528 {
1529 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1530 }
1531
task_pid_vnr(struct task_struct * tsk)1532 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1533 {
1534 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1535 }
1536
1537
task_tgid_nr(struct task_struct * tsk)1538 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1539 {
1540 return tsk->tgid;
1541 }
1542
1543 /**
1544 * pid_alive - check that a task structure is not stale
1545 * @p: Task structure to be checked.
1546 *
1547 * Test if a process is not yet dead (at most zombie state)
1548 * If pid_alive fails, then pointers within the task structure
1549 * can be stale and must not be dereferenced.
1550 *
1551 * Return: 1 if the process is alive. 0 otherwise.
1552 */
pid_alive(const struct task_struct * p)1553 static inline int pid_alive(const struct task_struct *p)
1554 {
1555 return p->thread_pid != NULL;
1556 }
1557
task_pgrp_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1558 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1559 {
1560 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1561 }
1562
task_pgrp_vnr(struct task_struct * tsk)1563 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1564 {
1565 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1566 }
1567
1568
task_session_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1569 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1570 {
1571 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1572 }
1573
task_session_vnr(struct task_struct * tsk)1574 static inline pid_t task_session_vnr(struct task_struct *tsk)
1575 {
1576 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1577 }
1578
task_tgid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1579 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1580 {
1581 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1582 }
1583
task_tgid_vnr(struct task_struct * tsk)1584 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1585 {
1586 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1587 }
1588
task_ppid_nr_ns(const struct task_struct * tsk,struct pid_namespace * ns)1589 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1590 {
1591 pid_t pid = 0;
1592
1593 rcu_read_lock();
1594 if (pid_alive(tsk))
1595 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1596 rcu_read_unlock();
1597
1598 return pid;
1599 }
1600
task_ppid_nr(const struct task_struct * tsk)1601 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1602 {
1603 return task_ppid_nr_ns(tsk, &init_pid_ns);
1604 }
1605
1606 /* Obsolete, do not use: */
task_pgrp_nr(struct task_struct * tsk)1607 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1608 {
1609 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1610 }
1611
1612 #define TASK_REPORT_IDLE (TASK_REPORT + 1)
1613 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1614
task_state_index(struct task_struct * tsk)1615 static inline unsigned int task_state_index(struct task_struct *tsk)
1616 {
1617 unsigned int tsk_state = READ_ONCE(tsk->__state);
1618 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1619
1620 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1621
1622 if (tsk_state == TASK_IDLE)
1623 state = TASK_REPORT_IDLE;
1624
1625 return fls(state);
1626 }
1627
task_index_to_char(unsigned int state)1628 static inline char task_index_to_char(unsigned int state)
1629 {
1630 static const char state_char[] = "RSDTtXZPI";
1631
1632 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1633
1634 return state_char[state];
1635 }
1636
task_state_to_char(struct task_struct * tsk)1637 static inline char task_state_to_char(struct task_struct *tsk)
1638 {
1639 return task_index_to_char(task_state_index(tsk));
1640 }
1641
1642 /**
1643 * is_global_init - check if a task structure is init. Since init
1644 * is free to have sub-threads we need to check tgid.
1645 * @tsk: Task structure to be checked.
1646 *
1647 * Check if a task structure is the first user space task the kernel created.
1648 *
1649 * Return: 1 if the task structure is init. 0 otherwise.
1650 */
is_global_init(struct task_struct * tsk)1651 static inline int is_global_init(struct task_struct *tsk)
1652 {
1653 return task_tgid_nr(tsk) == 1;
1654 }
1655
1656 extern struct pid *cad_pid;
1657
1658 /*
1659 * Per process flags
1660 */
1661 #define PF_VCPU 0x00000001 /* I'm a virtual CPU */
1662 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1663 #define PF_EXITING 0x00000004 /* Getting shut down */
1664 #define PF_POSTCOREDUMP 0x00000008 /* Coredumps should ignore this task */
1665 #define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
1666 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1667 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1668 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1669 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1670 #define PF_DUMPCORE 0x00000200 /* Dumped core */
1671 #define PF_SIGNALED 0x00000400 /* Killed by a signal */
1672 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1673 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1674 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1675 #define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1676 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1677 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */
1678 #define PF_KSWAPD 0x00020000 /* I am kswapd */
1679 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1680 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1681 #define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1682 * I am cleaning dirty pages from some other bdi. */
1683 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1684 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1685 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1686 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
1687 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1688 #define PF_MEMALLOC_PIN 0x10000000 /* Allocation context constrained to zones which allow long term pinning. */
1689 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1690 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1691
1692 /*
1693 * Only the _current_ task can read/write to tsk->flags, but other
1694 * tasks can access tsk->flags in readonly mode for example
1695 * with tsk_used_math (like during threaded core dumping).
1696 * There is however an exception to this rule during ptrace
1697 * or during fork: the ptracer task is allowed to write to the
1698 * child->flags of its traced child (same goes for fork, the parent
1699 * can write to the child->flags), because we're guaranteed the
1700 * child is not running and in turn not changing child->flags
1701 * at the same time the parent does it.
1702 */
1703 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1704 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1705 #define clear_used_math() clear_stopped_child_used_math(current)
1706 #define set_used_math() set_stopped_child_used_math(current)
1707
1708 #define conditional_stopped_child_used_math(condition, child) \
1709 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1710
1711 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1712
1713 #define copy_to_stopped_child_used_math(child) \
1714 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1715
1716 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1717 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1718 #define used_math() tsk_used_math(current)
1719
is_percpu_thread(void)1720 static __always_inline bool is_percpu_thread(void)
1721 {
1722 #ifdef CONFIG_SMP
1723 return (current->flags & PF_NO_SETAFFINITY) &&
1724 (current->nr_cpus_allowed == 1);
1725 #else
1726 return true;
1727 #endif
1728 }
1729
1730 /* Per-process atomic flags. */
1731 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1732 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1733 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1734 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1735 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1736 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1737 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1738 #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1739
1740 #define TASK_PFA_TEST(name, func) \
1741 static inline bool task_##func(struct task_struct *p) \
1742 { return test_bit(PFA_##name, &p->atomic_flags); }
1743
1744 #define TASK_PFA_SET(name, func) \
1745 static inline void task_set_##func(struct task_struct *p) \
1746 { set_bit(PFA_##name, &p->atomic_flags); }
1747
1748 #define TASK_PFA_CLEAR(name, func) \
1749 static inline void task_clear_##func(struct task_struct *p) \
1750 { clear_bit(PFA_##name, &p->atomic_flags); }
1751
TASK_PFA_TEST(NO_NEW_PRIVS,no_new_privs)1752 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1753 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1754
1755 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1756 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1757 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1758
1759 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1760 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1761 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1762
1763 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1764 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1765 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1766
1767 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1768 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1769 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1770
1771 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1772 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1773
1774 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1775 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1776 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1777
1778 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1779 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1780
1781 static inline void
1782 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1783 {
1784 current->flags &= ~flags;
1785 current->flags |= orig_flags & flags;
1786 }
1787
1788 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1789 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1790 #ifdef CONFIG_SMP
1791 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1792 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1793 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1794 extern void release_user_cpus_ptr(struct task_struct *p);
1795 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1796 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1797 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1798 #else
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)1799 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1800 {
1801 }
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)1802 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1803 {
1804 if (!cpumask_test_cpu(0, new_mask))
1805 return -EINVAL;
1806 return 0;
1807 }
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)1808 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1809 {
1810 if (src->user_cpus_ptr)
1811 return -EINVAL;
1812 return 0;
1813 }
release_user_cpus_ptr(struct task_struct * p)1814 static inline void release_user_cpus_ptr(struct task_struct *p)
1815 {
1816 WARN_ON(p->user_cpus_ptr);
1817 }
1818
dl_task_check_affinity(struct task_struct * p,const struct cpumask * mask)1819 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1820 {
1821 return 0;
1822 }
1823 #endif
1824
1825 extern int yield_to(struct task_struct *p, bool preempt);
1826 extern void set_user_nice(struct task_struct *p, long nice);
1827 extern int task_prio(const struct task_struct *p);
1828
1829 /**
1830 * task_nice - return the nice value of a given task.
1831 * @p: the task in question.
1832 *
1833 * Return: The nice value [ -20 ... 0 ... 19 ].
1834 */
task_nice(const struct task_struct * p)1835 static inline int task_nice(const struct task_struct *p)
1836 {
1837 return PRIO_TO_NICE((p)->static_prio);
1838 }
1839
1840 extern int can_nice(const struct task_struct *p, const int nice);
1841 extern int task_curr(const struct task_struct *p);
1842 extern int idle_cpu(int cpu);
1843 extern int available_idle_cpu(int cpu);
1844 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1845 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1846 extern void sched_set_fifo(struct task_struct *p);
1847 extern void sched_set_fifo_low(struct task_struct *p);
1848 extern void sched_set_normal(struct task_struct *p, int nice);
1849 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1850 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1851 extern struct task_struct *idle_task(int cpu);
1852
1853 /**
1854 * is_idle_task - is the specified task an idle task?
1855 * @p: the task in question.
1856 *
1857 * Return: 1 if @p is an idle task. 0 otherwise.
1858 */
is_idle_task(const struct task_struct * p)1859 static __always_inline bool is_idle_task(const struct task_struct *p)
1860 {
1861 return !!(p->flags & PF_IDLE);
1862 }
1863
1864 extern struct task_struct *curr_task(int cpu);
1865 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1866
1867 void yield(void);
1868
1869 union thread_union {
1870 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1871 struct task_struct task;
1872 #endif
1873 #ifndef CONFIG_THREAD_INFO_IN_TASK
1874 struct thread_info thread_info;
1875 #endif
1876 unsigned long stack[THREAD_SIZE/sizeof(long)];
1877 };
1878
1879 #ifndef CONFIG_THREAD_INFO_IN_TASK
1880 extern struct thread_info init_thread_info;
1881 #endif
1882
1883 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1884
1885 #ifdef CONFIG_THREAD_INFO_IN_TASK
1886 # define task_thread_info(task) (&(task)->thread_info)
1887 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1888 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1889 #endif
1890
1891 /*
1892 * find a task by one of its numerical ids
1893 *
1894 * find_task_by_pid_ns():
1895 * finds a task by its pid in the specified namespace
1896 * find_task_by_vpid():
1897 * finds a task by its virtual pid
1898 *
1899 * see also find_vpid() etc in include/linux/pid.h
1900 */
1901
1902 extern struct task_struct *find_task_by_vpid(pid_t nr);
1903 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1904
1905 /*
1906 * find a task by its virtual pid and get the task struct
1907 */
1908 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1909
1910 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1911 extern int wake_up_process(struct task_struct *tsk);
1912 extern void wake_up_new_task(struct task_struct *tsk);
1913
1914 #ifdef CONFIG_SMP
1915 extern void kick_process(struct task_struct *tsk);
1916 #else
kick_process(struct task_struct * tsk)1917 static inline void kick_process(struct task_struct *tsk) { }
1918 #endif
1919
1920 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1921
set_task_comm(struct task_struct * tsk,const char * from)1922 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1923 {
1924 __set_task_comm(tsk, from, false);
1925 }
1926
1927 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1928 #define get_task_comm(buf, tsk) ({ \
1929 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1930 __get_task_comm(buf, sizeof(buf), tsk); \
1931 })
1932
1933 #ifdef CONFIG_SMP
scheduler_ipi(void)1934 static __always_inline void scheduler_ipi(void)
1935 {
1936 /*
1937 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1938 * TIF_NEED_RESCHED remotely (for the first time) will also send
1939 * this IPI.
1940 */
1941 preempt_fold_need_resched();
1942 }
1943 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1944 #else
scheduler_ipi(void)1945 static inline void scheduler_ipi(void) { }
wait_task_inactive(struct task_struct * p,unsigned int match_state)1946 static inline unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
1947 {
1948 return 1;
1949 }
1950 #endif
1951
1952 /*
1953 * Set thread flags in other task's structures.
1954 * See asm/thread_info.h for TIF_xxxx flags available:
1955 */
set_tsk_thread_flag(struct task_struct * tsk,int flag)1956 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1957 {
1958 set_ti_thread_flag(task_thread_info(tsk), flag);
1959 }
1960
clear_tsk_thread_flag(struct task_struct * tsk,int flag)1961 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1962 {
1963 clear_ti_thread_flag(task_thread_info(tsk), flag);
1964 }
1965
update_tsk_thread_flag(struct task_struct * tsk,int flag,bool value)1966 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1967 bool value)
1968 {
1969 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1970 }
1971
test_and_set_tsk_thread_flag(struct task_struct * tsk,int flag)1972 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1973 {
1974 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1975 }
1976
test_and_clear_tsk_thread_flag(struct task_struct * tsk,int flag)1977 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1978 {
1979 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1980 }
1981
test_tsk_thread_flag(struct task_struct * tsk,int flag)1982 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1983 {
1984 return test_ti_thread_flag(task_thread_info(tsk), flag);
1985 }
1986
set_tsk_need_resched(struct task_struct * tsk)1987 static inline void set_tsk_need_resched(struct task_struct *tsk)
1988 {
1989 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1990 }
1991
clear_tsk_need_resched(struct task_struct * tsk)1992 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1993 {
1994 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1995 }
1996
test_tsk_need_resched(struct task_struct * tsk)1997 static inline int test_tsk_need_resched(struct task_struct *tsk)
1998 {
1999 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2000 }
2001
2002 /*
2003 * cond_resched() and cond_resched_lock(): latency reduction via
2004 * explicit rescheduling in places that are safe. The return
2005 * value indicates whether a reschedule was done in fact.
2006 * cond_resched_lock() will drop the spinlock before scheduling,
2007 */
2008 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2009 extern int __cond_resched(void);
2010
2011 #ifdef CONFIG_PREEMPT_DYNAMIC
2012
2013 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2014
_cond_resched(void)2015 static __always_inline int _cond_resched(void)
2016 {
2017 return static_call_mod(cond_resched)();
2018 }
2019
2020 #else
2021
_cond_resched(void)2022 static inline int _cond_resched(void)
2023 {
2024 return __cond_resched();
2025 }
2026
2027 #endif /* CONFIG_PREEMPT_DYNAMIC */
2028
2029 #else
2030
_cond_resched(void)2031 static inline int _cond_resched(void) { return 0; }
2032
2033 #endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
2034
2035 #define cond_resched() ({ \
2036 __might_resched(__FILE__, __LINE__, 0); \
2037 _cond_resched(); \
2038 })
2039
2040 extern int __cond_resched_lock(spinlock_t *lock);
2041 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2042 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2043
2044 #define MIGHT_RESCHED_RCU_SHIFT 8
2045 #define MIGHT_RESCHED_PREEMPT_MASK ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2046
2047 #ifndef CONFIG_PREEMPT_RT
2048 /*
2049 * Non RT kernels have an elevated preempt count due to the held lock,
2050 * but are not allowed to be inside a RCU read side critical section
2051 */
2052 # define PREEMPT_LOCK_RESCHED_OFFSETS PREEMPT_LOCK_OFFSET
2053 #else
2054 /*
2055 * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2056 * cond_resched*lock() has to take that into account because it checks for
2057 * preempt_count() and rcu_preempt_depth().
2058 */
2059 # define PREEMPT_LOCK_RESCHED_OFFSETS \
2060 (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2061 #endif
2062
2063 #define cond_resched_lock(lock) ({ \
2064 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2065 __cond_resched_lock(lock); \
2066 })
2067
2068 #define cond_resched_rwlock_read(lock) ({ \
2069 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2070 __cond_resched_rwlock_read(lock); \
2071 })
2072
2073 #define cond_resched_rwlock_write(lock) ({ \
2074 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2075 __cond_resched_rwlock_write(lock); \
2076 })
2077
cond_resched_rcu(void)2078 static inline void cond_resched_rcu(void)
2079 {
2080 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2081 rcu_read_unlock();
2082 cond_resched();
2083 rcu_read_lock();
2084 #endif
2085 }
2086
2087 /*
2088 * Does a critical section need to be broken due to another
2089 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
2090 * but a general need for low latency)
2091 */
spin_needbreak(spinlock_t * lock)2092 static inline int spin_needbreak(spinlock_t *lock)
2093 {
2094 #ifdef CONFIG_PREEMPTION
2095 return spin_is_contended(lock);
2096 #else
2097 return 0;
2098 #endif
2099 }
2100
2101 /*
2102 * Check if a rwlock is contended.
2103 * Returns non-zero if there is another task waiting on the rwlock.
2104 * Returns zero if the lock is not contended or the system / underlying
2105 * rwlock implementation does not support contention detection.
2106 * Technically does not depend on CONFIG_PREEMPTION, but a general need
2107 * for low latency.
2108 */
rwlock_needbreak(rwlock_t * lock)2109 static inline int rwlock_needbreak(rwlock_t *lock)
2110 {
2111 #ifdef CONFIG_PREEMPTION
2112 return rwlock_is_contended(lock);
2113 #else
2114 return 0;
2115 #endif
2116 }
2117
need_resched(void)2118 static __always_inline bool need_resched(void)
2119 {
2120 return unlikely(tif_need_resched());
2121 }
2122
2123 /*
2124 * Wrappers for p->thread_info->cpu access. No-op on UP.
2125 */
2126 #ifdef CONFIG_SMP
2127
task_cpu(const struct task_struct * p)2128 static inline unsigned int task_cpu(const struct task_struct *p)
2129 {
2130 return READ_ONCE(task_thread_info(p)->cpu);
2131 }
2132
2133 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2134
2135 #else
2136
task_cpu(const struct task_struct * p)2137 static inline unsigned int task_cpu(const struct task_struct *p)
2138 {
2139 return 0;
2140 }
2141
set_task_cpu(struct task_struct * p,unsigned int cpu)2142 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2143 {
2144 }
2145
2146 #endif /* CONFIG_SMP */
2147
2148 extern bool sched_task_on_rq(struct task_struct *p);
2149 extern unsigned long get_wchan(struct task_struct *p);
2150
2151 /*
2152 * In order to reduce various lock holder preemption latencies provide an
2153 * interface to see if a vCPU is currently running or not.
2154 *
2155 * This allows us to terminate optimistic spin loops and block, analogous to
2156 * the native optimistic spin heuristic of testing if the lock owner task is
2157 * running or not.
2158 */
2159 #ifndef vcpu_is_preempted
vcpu_is_preempted(int cpu)2160 static inline bool vcpu_is_preempted(int cpu)
2161 {
2162 return false;
2163 }
2164 #endif
2165
2166 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2167 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2168
2169 #ifndef TASK_SIZE_OF
2170 #define TASK_SIZE_OF(tsk) TASK_SIZE
2171 #endif
2172
2173 #ifdef CONFIG_SMP
2174 /* Returns effective CPU energy utilization, as seen by the scheduler */
2175 unsigned long sched_cpu_util(int cpu, unsigned long max);
2176 #endif /* CONFIG_SMP */
2177
2178 #ifdef CONFIG_RSEQ
2179
2180 /*
2181 * Map the event mask on the user-space ABI enum rseq_cs_flags
2182 * for direct mask checks.
2183 */
2184 enum rseq_event_mask_bits {
2185 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2186 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2187 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2188 };
2189
2190 enum rseq_event_mask {
2191 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
2192 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
2193 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
2194 };
2195
rseq_set_notify_resume(struct task_struct * t)2196 static inline void rseq_set_notify_resume(struct task_struct *t)
2197 {
2198 if (t->rseq)
2199 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2200 }
2201
2202 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2203
rseq_handle_notify_resume(struct ksignal * ksig,struct pt_regs * regs)2204 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2205 struct pt_regs *regs)
2206 {
2207 if (current->rseq)
2208 __rseq_handle_notify_resume(ksig, regs);
2209 }
2210
rseq_signal_deliver(struct ksignal * ksig,struct pt_regs * regs)2211 static inline void rseq_signal_deliver(struct ksignal *ksig,
2212 struct pt_regs *regs)
2213 {
2214 preempt_disable();
2215 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask);
2216 preempt_enable();
2217 rseq_handle_notify_resume(ksig, regs);
2218 }
2219
2220 /* rseq_preempt() requires preemption to be disabled. */
rseq_preempt(struct task_struct * t)2221 static inline void rseq_preempt(struct task_struct *t)
2222 {
2223 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2224 rseq_set_notify_resume(t);
2225 }
2226
2227 /* rseq_migrate() requires preemption to be disabled. */
rseq_migrate(struct task_struct * t)2228 static inline void rseq_migrate(struct task_struct *t)
2229 {
2230 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2231 rseq_set_notify_resume(t);
2232 }
2233
2234 /*
2235 * If parent process has a registered restartable sequences area, the
2236 * child inherits. Unregister rseq for a clone with CLONE_VM set.
2237 */
rseq_fork(struct task_struct * t,unsigned long clone_flags)2238 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2239 {
2240 if (clone_flags & CLONE_VM) {
2241 t->rseq = NULL;
2242 t->rseq_sig = 0;
2243 t->rseq_event_mask = 0;
2244 } else {
2245 t->rseq = current->rseq;
2246 t->rseq_sig = current->rseq_sig;
2247 t->rseq_event_mask = current->rseq_event_mask;
2248 }
2249 }
2250
rseq_execve(struct task_struct * t)2251 static inline void rseq_execve(struct task_struct *t)
2252 {
2253 t->rseq = NULL;
2254 t->rseq_sig = 0;
2255 t->rseq_event_mask = 0;
2256 }
2257
2258 #else
2259
rseq_set_notify_resume(struct task_struct * t)2260 static inline void rseq_set_notify_resume(struct task_struct *t)
2261 {
2262 }
rseq_handle_notify_resume(struct ksignal * ksig,struct pt_regs * regs)2263 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2264 struct pt_regs *regs)
2265 {
2266 }
rseq_signal_deliver(struct ksignal * ksig,struct pt_regs * regs)2267 static inline void rseq_signal_deliver(struct ksignal *ksig,
2268 struct pt_regs *regs)
2269 {
2270 }
rseq_preempt(struct task_struct * t)2271 static inline void rseq_preempt(struct task_struct *t)
2272 {
2273 }
rseq_migrate(struct task_struct * t)2274 static inline void rseq_migrate(struct task_struct *t)
2275 {
2276 }
rseq_fork(struct task_struct * t,unsigned long clone_flags)2277 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2278 {
2279 }
rseq_execve(struct task_struct * t)2280 static inline void rseq_execve(struct task_struct *t)
2281 {
2282 }
2283
2284 #endif
2285
2286 #ifdef CONFIG_DEBUG_RSEQ
2287
2288 void rseq_syscall(struct pt_regs *regs);
2289
2290 #else
2291
rseq_syscall(struct pt_regs * regs)2292 static inline void rseq_syscall(struct pt_regs *regs)
2293 {
2294 }
2295
2296 #endif
2297
2298 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2299 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2300 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2301
2302 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2303 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2304 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2305
2306 int sched_trace_rq_cpu(struct rq *rq);
2307 int sched_trace_rq_cpu_capacity(struct rq *rq);
2308 int sched_trace_rq_nr_running(struct rq *rq);
2309
2310 const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2311
2312 #ifdef CONFIG_SCHED_CORE
2313 extern void sched_core_free(struct task_struct *tsk);
2314 extern void sched_core_fork(struct task_struct *p);
2315 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2316 unsigned long uaddr);
2317 #else
sched_core_free(struct task_struct * tsk)2318 static inline void sched_core_free(struct task_struct *tsk) { }
sched_core_fork(struct task_struct * p)2319 static inline void sched_core_fork(struct task_struct *p) { }
2320 #endif
2321
2322 #endif
2323