1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __KVM_X86_MMU_H
3 #define __KVM_X86_MMU_H
4
5 #include <linux/kvm_host.h>
6 #include "kvm_cache_regs.h"
7 #include "cpuid.h"
8
9 #define PT64_PT_BITS 9
10 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
11 #define PT32_PT_BITS 10
12 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
13
14 #define PT_WRITABLE_SHIFT 1
15 #define PT_USER_SHIFT 2
16
17 #define PT_PRESENT_MASK (1ULL << 0)
18 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
19 #define PT_USER_MASK (1ULL << PT_USER_SHIFT)
20 #define PT_PWT_MASK (1ULL << 3)
21 #define PT_PCD_MASK (1ULL << 4)
22 #define PT_ACCESSED_SHIFT 5
23 #define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
24 #define PT_DIRTY_SHIFT 6
25 #define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
26 #define PT_PAGE_SIZE_SHIFT 7
27 #define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
28 #define PT_PAT_MASK (1ULL << 7)
29 #define PT_GLOBAL_MASK (1ULL << 8)
30 #define PT64_NX_SHIFT 63
31 #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
32
33 #define PT_PAT_SHIFT 7
34 #define PT_DIR_PAT_SHIFT 12
35 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
36
37 #define PT32_DIR_PSE36_SIZE 4
38 #define PT32_DIR_PSE36_SHIFT 13
39 #define PT32_DIR_PSE36_MASK \
40 (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
41
42 #define PT64_ROOT_5LEVEL 5
43 #define PT64_ROOT_4LEVEL 4
44 #define PT32_ROOT_LEVEL 2
45 #define PT32E_ROOT_LEVEL 3
46
47 #define KVM_MMU_CR4_ROLE_BITS (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_LA57 | \
48 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE)
49
50 #define KVM_MMU_CR0_ROLE_BITS (X86_CR0_PG | X86_CR0_WP)
51
rsvd_bits(int s,int e)52 static __always_inline u64 rsvd_bits(int s, int e)
53 {
54 BUILD_BUG_ON(__builtin_constant_p(e) && __builtin_constant_p(s) && e < s);
55
56 if (__builtin_constant_p(e))
57 BUILD_BUG_ON(e > 63);
58 else
59 e &= 63;
60
61 if (e < s)
62 return 0;
63
64 return ((2ULL << (e - s)) - 1) << s;
65 }
66
67 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask);
68 void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only);
69
70 void kvm_init_mmu(struct kvm_vcpu *vcpu);
71 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
72 unsigned long cr4, u64 efer, gpa_t nested_cr3);
73 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
74 bool accessed_dirty, gpa_t new_eptp);
75 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
76 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
77 u64 fault_address, char *insn, int insn_len);
78
79 int kvm_mmu_load(struct kvm_vcpu *vcpu);
80 void kvm_mmu_unload(struct kvm_vcpu *vcpu);
81 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);
82 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu);
83
kvm_mmu_reload(struct kvm_vcpu * vcpu)84 static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
85 {
86 if (likely(vcpu->arch.mmu->root_hpa != INVALID_PAGE))
87 return 0;
88
89 return kvm_mmu_load(vcpu);
90 }
91
kvm_get_pcid(struct kvm_vcpu * vcpu,gpa_t cr3)92 static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3)
93 {
94 BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0);
95
96 return kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)
97 ? cr3 & X86_CR3_PCID_MASK
98 : 0;
99 }
100
kvm_get_active_pcid(struct kvm_vcpu * vcpu)101 static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
102 {
103 return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu));
104 }
105
kvm_mmu_load_pgd(struct kvm_vcpu * vcpu)106 static inline void kvm_mmu_load_pgd(struct kvm_vcpu *vcpu)
107 {
108 u64 root_hpa = vcpu->arch.mmu->root_hpa;
109
110 if (!VALID_PAGE(root_hpa))
111 return;
112
113 static_call(kvm_x86_load_mmu_pgd)(vcpu, root_hpa,
114 vcpu->arch.mmu->shadow_root_level);
115 }
116
117 struct kvm_page_fault {
118 /* arguments to kvm_mmu_do_page_fault. */
119 const gpa_t addr;
120 const u32 error_code;
121 const bool prefetch;
122
123 /* Derived from error_code. */
124 const bool exec;
125 const bool write;
126 const bool present;
127 const bool rsvd;
128 const bool user;
129
130 /* Derived from mmu and global state. */
131 const bool is_tdp;
132 const bool nx_huge_page_workaround_enabled;
133
134 /*
135 * Whether a >4KB mapping can be created or is forbidden due to NX
136 * hugepages.
137 */
138 bool huge_page_disallowed;
139
140 /*
141 * Maximum page size that can be created for this fault; input to
142 * FNAME(fetch), __direct_map and kvm_tdp_mmu_map.
143 */
144 u8 max_level;
145
146 /*
147 * Page size that can be created based on the max_level and the
148 * page size used by the host mapping.
149 */
150 u8 req_level;
151
152 /*
153 * Page size that will be created based on the req_level and
154 * huge_page_disallowed.
155 */
156 u8 goal_level;
157
158 /* Shifted addr, or result of guest page table walk if addr is a gva. */
159 gfn_t gfn;
160
161 /* The memslot containing gfn. May be NULL. */
162 struct kvm_memory_slot *slot;
163
164 /* Outputs of kvm_faultin_pfn. */
165 kvm_pfn_t pfn;
166 hva_t hva;
167 bool map_writable;
168 };
169
170 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
171
172 extern int nx_huge_pages;
is_nx_huge_page_enabled(void)173 static inline bool is_nx_huge_page_enabled(void)
174 {
175 return READ_ONCE(nx_huge_pages);
176 }
177
kvm_mmu_do_page_fault(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,u32 err,bool prefetch)178 static inline int kvm_mmu_do_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
179 u32 err, bool prefetch)
180 {
181 struct kvm_page_fault fault = {
182 .addr = cr2_or_gpa,
183 .error_code = err,
184 .exec = err & PFERR_FETCH_MASK,
185 .write = err & PFERR_WRITE_MASK,
186 .present = err & PFERR_PRESENT_MASK,
187 .rsvd = err & PFERR_RSVD_MASK,
188 .user = err & PFERR_USER_MASK,
189 .prefetch = prefetch,
190 .is_tdp = likely(vcpu->arch.mmu->page_fault == kvm_tdp_page_fault),
191 .nx_huge_page_workaround_enabled = is_nx_huge_page_enabled(),
192
193 .max_level = KVM_MAX_HUGEPAGE_LEVEL,
194 .req_level = PG_LEVEL_4K,
195 .goal_level = PG_LEVEL_4K,
196 };
197 #ifdef CONFIG_RETPOLINE
198 if (fault.is_tdp)
199 return kvm_tdp_page_fault(vcpu, &fault);
200 #endif
201 return vcpu->arch.mmu->page_fault(vcpu, &fault);
202 }
203
204 /*
205 * Currently, we have two sorts of write-protection, a) the first one
206 * write-protects guest page to sync the guest modification, b) another one is
207 * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
208 * between these two sorts are:
209 * 1) the first case clears MMU-writable bit.
210 * 2) the first case requires flushing tlb immediately avoiding corrupting
211 * shadow page table between all vcpus so it should be in the protection of
212 * mmu-lock. And the another case does not need to flush tlb until returning
213 * the dirty bitmap to userspace since it only write-protects the page
214 * logged in the bitmap, that means the page in the dirty bitmap is not
215 * missed, so it can flush tlb out of mmu-lock.
216 *
217 * So, there is the problem: the first case can meet the corrupted tlb caused
218 * by another case which write-protects pages but without flush tlb
219 * immediately. In order to making the first case be aware this problem we let
220 * it flush tlb if we try to write-protect a spte whose MMU-writable bit
221 * is set, it works since another case never touches MMU-writable bit.
222 *
223 * Anyway, whenever a spte is updated (only permission and status bits are
224 * changed) we need to check whether the spte with MMU-writable becomes
225 * readonly, if that happens, we need to flush tlb. Fortunately,
226 * mmu_spte_update() has already handled it perfectly.
227 *
228 * The rules to use MMU-writable and PT_WRITABLE_MASK:
229 * - if we want to see if it has writable tlb entry or if the spte can be
230 * writable on the mmu mapping, check MMU-writable, this is the most
231 * case, otherwise
232 * - if we fix page fault on the spte or do write-protection by dirty logging,
233 * check PT_WRITABLE_MASK.
234 *
235 * TODO: introduce APIs to split these two cases.
236 */
is_writable_pte(unsigned long pte)237 static inline bool is_writable_pte(unsigned long pte)
238 {
239 return pte & PT_WRITABLE_MASK;
240 }
241
242 /*
243 * Check if a given access (described through the I/D, W/R and U/S bits of a
244 * page fault error code pfec) causes a permission fault with the given PTE
245 * access rights (in ACC_* format).
246 *
247 * Return zero if the access does not fault; return the page fault error code
248 * if the access faults.
249 */
permission_fault(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,unsigned pte_access,unsigned pte_pkey,unsigned pfec)250 static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
251 unsigned pte_access, unsigned pte_pkey,
252 unsigned pfec)
253 {
254 int cpl = static_call(kvm_x86_get_cpl)(vcpu);
255 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
256
257 /*
258 * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
259 *
260 * If CPL = 3, SMAP applies to all supervisor-mode data accesses
261 * (these are implicit supervisor accesses) regardless of the value
262 * of EFLAGS.AC.
263 *
264 * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
265 * the result in X86_EFLAGS_AC. We then insert it in place of
266 * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
267 * but it will be one in index if SMAP checks are being overridden.
268 * It is important to keep this branchless.
269 */
270 unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
271 int index = (pfec >> 1) +
272 (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
273 bool fault = (mmu->permissions[index] >> pte_access) & 1;
274 u32 errcode = PFERR_PRESENT_MASK;
275
276 WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
277 if (unlikely(mmu->pkru_mask)) {
278 u32 pkru_bits, offset;
279
280 /*
281 * PKRU defines 32 bits, there are 16 domains and 2
282 * attribute bits per domain in pkru. pte_pkey is the
283 * index of the protection domain, so pte_pkey * 2 is
284 * is the index of the first bit for the domain.
285 */
286 pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3;
287
288 /* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
289 offset = (pfec & ~1) +
290 ((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
291
292 pkru_bits &= mmu->pkru_mask >> offset;
293 errcode |= -pkru_bits & PFERR_PK_MASK;
294 fault |= (pkru_bits != 0);
295 }
296
297 return -(u32)fault & errcode;
298 }
299
300 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
301
302 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu);
303
304 int kvm_mmu_post_init_vm(struct kvm *kvm);
305 void kvm_mmu_pre_destroy_vm(struct kvm *kvm);
306
kvm_shadow_root_allocated(struct kvm * kvm)307 static inline bool kvm_shadow_root_allocated(struct kvm *kvm)
308 {
309 /*
310 * Read shadow_root_allocated before related pointers. Hence, threads
311 * reading shadow_root_allocated in any lock context are guaranteed to
312 * see the pointers. Pairs with smp_store_release in
313 * mmu_first_shadow_root_alloc.
314 */
315 return smp_load_acquire(&kvm->arch.shadow_root_allocated);
316 }
317
318 #ifdef CONFIG_X86_64
is_tdp_mmu_enabled(struct kvm * kvm)319 static inline bool is_tdp_mmu_enabled(struct kvm *kvm) { return kvm->arch.tdp_mmu_enabled; }
320 #else
is_tdp_mmu_enabled(struct kvm * kvm)321 static inline bool is_tdp_mmu_enabled(struct kvm *kvm) { return false; }
322 #endif
323
kvm_memslots_have_rmaps(struct kvm * kvm)324 static inline bool kvm_memslots_have_rmaps(struct kvm *kvm)
325 {
326 return !is_tdp_mmu_enabled(kvm) || kvm_shadow_root_allocated(kvm);
327 }
328
gfn_to_index(gfn_t gfn,gfn_t base_gfn,int level)329 static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level)
330 {
331 /* KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K) must be 0. */
332 return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
333 (base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
334 }
335
336 static inline unsigned long
__kvm_mmu_slot_lpages(struct kvm_memory_slot * slot,unsigned long npages,int level)337 __kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, unsigned long npages,
338 int level)
339 {
340 return gfn_to_index(slot->base_gfn + npages - 1,
341 slot->base_gfn, level) + 1;
342 }
343
344 static inline unsigned long
kvm_mmu_slot_lpages(struct kvm_memory_slot * slot,int level)345 kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, int level)
346 {
347 return __kvm_mmu_slot_lpages(slot, slot->npages, level);
348 }
349
kvm_update_page_stats(struct kvm * kvm,int level,int count)350 static inline void kvm_update_page_stats(struct kvm *kvm, int level, int count)
351 {
352 atomic64_add(count, &kvm->stat.pages[level - 1]);
353 }
354 #endif
355