1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Block data types and constants.  Directly include this file only to
4  * break include dependency loop.
5  */
6 #ifndef __LINUX_BLK_TYPES_H
7 #define __LINUX_BLK_TYPES_H
8 
9 #include <linux/types.h>
10 #include <linux/bvec.h>
11 #include <linux/device.h>
12 #include <linux/ktime.h>
13 
14 struct bio_set;
15 struct bio;
16 struct bio_integrity_payload;
17 struct page;
18 struct io_context;
19 struct cgroup_subsys_state;
20 typedef void (bio_end_io_t) (struct bio *);
21 struct bio_crypt_ctx;
22 
23 /*
24  * The basic unit of block I/O is a sector. It is used in a number of contexts
25  * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9
26  * bytes. Variables of type sector_t represent an offset or size that is a
27  * multiple of 512 bytes. Hence these two constants.
28  */
29 #ifndef SECTOR_SHIFT
30 #define SECTOR_SHIFT 9
31 #endif
32 #ifndef SECTOR_SIZE
33 #define SECTOR_SIZE (1 << SECTOR_SHIFT)
34 #endif
35 
36 #define PAGE_SECTORS_SHIFT	(PAGE_SHIFT - SECTOR_SHIFT)
37 #define PAGE_SECTORS		(1 << PAGE_SECTORS_SHIFT)
38 #define SECTOR_MASK		(PAGE_SECTORS - 1)
39 
40 struct block_device {
41 	sector_t		bd_start_sect;
42 	sector_t		bd_nr_sectors;
43 	struct disk_stats __percpu *bd_stats;
44 	unsigned long		bd_stamp;
45 	bool			bd_read_only;	/* read-only policy */
46 	dev_t			bd_dev;
47 	int			bd_openers;
48 	struct inode *		bd_inode;	/* will die */
49 	struct super_block *	bd_super;
50 	void *			bd_claiming;
51 	struct device		bd_device;
52 	void *			bd_holder;
53 	int			bd_holders;
54 	bool			bd_write_holder;
55 	struct kobject		*bd_holder_dir;
56 	u8			bd_partno;
57 	spinlock_t		bd_size_lock; /* for bd_inode->i_size updates */
58 	struct gendisk *	bd_disk;
59 	struct request_queue *	bd_queue;
60 
61 	/* The counter of freeze processes */
62 	int			bd_fsfreeze_count;
63 	/* Mutex for freeze */
64 	struct mutex		bd_fsfreeze_mutex;
65 	struct super_block	*bd_fsfreeze_sb;
66 
67 	struct partition_meta_info *bd_meta_info;
68 #ifdef CONFIG_FAIL_MAKE_REQUEST
69 	bool			bd_make_it_fail;
70 #endif
71 } __randomize_layout;
72 
73 #define bdev_whole(_bdev) \
74 	((_bdev)->bd_disk->part0)
75 
76 #define dev_to_bdev(device) \
77 	container_of((device), struct block_device, bd_device)
78 
79 #define bdev_kobj(_bdev) \
80 	(&((_bdev)->bd_device.kobj))
81 
82 /*
83  * Block error status values.  See block/blk-core:blk_errors for the details.
84  * Alpha cannot write a byte atomically, so we need to use 32-bit value.
85  */
86 #if defined(CONFIG_ALPHA) && !defined(__alpha_bwx__)
87 typedef u32 __bitwise blk_status_t;
88 #else
89 typedef u8 __bitwise blk_status_t;
90 #endif
91 #define	BLK_STS_OK 0
92 #define BLK_STS_NOTSUPP		((__force blk_status_t)1)
93 #define BLK_STS_TIMEOUT		((__force blk_status_t)2)
94 #define BLK_STS_NOSPC		((__force blk_status_t)3)
95 #define BLK_STS_TRANSPORT	((__force blk_status_t)4)
96 #define BLK_STS_TARGET		((__force blk_status_t)5)
97 #define BLK_STS_NEXUS		((__force blk_status_t)6)
98 #define BLK_STS_MEDIUM		((__force blk_status_t)7)
99 #define BLK_STS_PROTECTION	((__force blk_status_t)8)
100 #define BLK_STS_RESOURCE	((__force blk_status_t)9)
101 #define BLK_STS_IOERR		((__force blk_status_t)10)
102 
103 /* hack for device mapper, don't use elsewhere: */
104 #define BLK_STS_DM_REQUEUE    ((__force blk_status_t)11)
105 
106 #define BLK_STS_AGAIN		((__force blk_status_t)12)
107 
108 /*
109  * BLK_STS_DEV_RESOURCE is returned from the driver to the block layer if
110  * device related resources are unavailable, but the driver can guarantee
111  * that the queue will be rerun in the future once resources become
112  * available again. This is typically the case for device specific
113  * resources that are consumed for IO. If the driver fails allocating these
114  * resources, we know that inflight (or pending) IO will free these
115  * resource upon completion.
116  *
117  * This is different from BLK_STS_RESOURCE in that it explicitly references
118  * a device specific resource. For resources of wider scope, allocation
119  * failure can happen without having pending IO. This means that we can't
120  * rely on request completions freeing these resources, as IO may not be in
121  * flight. Examples of that are kernel memory allocations, DMA mappings, or
122  * any other system wide resources.
123  */
124 #define BLK_STS_DEV_RESOURCE	((__force blk_status_t)13)
125 
126 /*
127  * BLK_STS_ZONE_RESOURCE is returned from the driver to the block layer if zone
128  * related resources are unavailable, but the driver can guarantee the queue
129  * will be rerun in the future once the resources become available again.
130  *
131  * This is different from BLK_STS_DEV_RESOURCE in that it explicitly references
132  * a zone specific resource and IO to a different zone on the same device could
133  * still be served. Examples of that are zones that are write-locked, but a read
134  * to the same zone could be served.
135  */
136 #define BLK_STS_ZONE_RESOURCE	((__force blk_status_t)14)
137 
138 /*
139  * BLK_STS_ZONE_OPEN_RESOURCE is returned from the driver in the completion
140  * path if the device returns a status indicating that too many zone resources
141  * are currently open. The same command should be successful if resubmitted
142  * after the number of open zones decreases below the device's limits, which is
143  * reported in the request_queue's max_open_zones.
144  */
145 #define BLK_STS_ZONE_OPEN_RESOURCE	((__force blk_status_t)15)
146 
147 /*
148  * BLK_STS_ZONE_ACTIVE_RESOURCE is returned from the driver in the completion
149  * path if the device returns a status indicating that too many zone resources
150  * are currently active. The same command should be successful if resubmitted
151  * after the number of active zones decreases below the device's limits, which
152  * is reported in the request_queue's max_active_zones.
153  */
154 #define BLK_STS_ZONE_ACTIVE_RESOURCE	((__force blk_status_t)16)
155 
156 /**
157  * blk_path_error - returns true if error may be path related
158  * @error: status the request was completed with
159  *
160  * Description:
161  *     This classifies block error status into non-retryable errors and ones
162  *     that may be successful if retried on a failover path.
163  *
164  * Return:
165  *     %false - retrying failover path will not help
166  *     %true  - may succeed if retried
167  */
blk_path_error(blk_status_t error)168 static inline bool blk_path_error(blk_status_t error)
169 {
170 	switch (error) {
171 	case BLK_STS_NOTSUPP:
172 	case BLK_STS_NOSPC:
173 	case BLK_STS_TARGET:
174 	case BLK_STS_NEXUS:
175 	case BLK_STS_MEDIUM:
176 	case BLK_STS_PROTECTION:
177 		return false;
178 	}
179 
180 	/* Anything else could be a path failure, so should be retried */
181 	return true;
182 }
183 
184 /*
185  * From most significant bit:
186  * 1 bit: reserved for other usage, see below
187  * 12 bits: original size of bio
188  * 51 bits: issue time of bio
189  */
190 #define BIO_ISSUE_RES_BITS      1
191 #define BIO_ISSUE_SIZE_BITS     12
192 #define BIO_ISSUE_RES_SHIFT     (64 - BIO_ISSUE_RES_BITS)
193 #define BIO_ISSUE_SIZE_SHIFT    (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS)
194 #define BIO_ISSUE_TIME_MASK     ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1)
195 #define BIO_ISSUE_SIZE_MASK     \
196 	(((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT)
197 #define BIO_ISSUE_RES_MASK      (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1))
198 
199 /* Reserved bit for blk-throtl */
200 #define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63)
201 
202 struct bio_issue {
203 	u64 value;
204 };
205 
__bio_issue_time(u64 time)206 static inline u64 __bio_issue_time(u64 time)
207 {
208 	return time & BIO_ISSUE_TIME_MASK;
209 }
210 
bio_issue_time(struct bio_issue * issue)211 static inline u64 bio_issue_time(struct bio_issue *issue)
212 {
213 	return __bio_issue_time(issue->value);
214 }
215 
bio_issue_size(struct bio_issue * issue)216 static inline sector_t bio_issue_size(struct bio_issue *issue)
217 {
218 	return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT);
219 }
220 
bio_issue_init(struct bio_issue * issue,sector_t size)221 static inline void bio_issue_init(struct bio_issue *issue,
222 				       sector_t size)
223 {
224 	size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1;
225 	issue->value = ((issue->value & BIO_ISSUE_RES_MASK) |
226 			(ktime_get_ns() & BIO_ISSUE_TIME_MASK) |
227 			((u64)size << BIO_ISSUE_SIZE_SHIFT));
228 }
229 
230 typedef unsigned int blk_qc_t;
231 #define BLK_QC_T_NONE		-1U
232 
233 /*
234  * main unit of I/O for the block layer and lower layers (ie drivers and
235  * stacking drivers)
236  */
237 struct bio {
238 	struct bio		*bi_next;	/* request queue link */
239 	struct block_device	*bi_bdev;
240 	unsigned int		bi_opf;		/* bottom bits req flags,
241 						 * top bits REQ_OP. Use
242 						 * accessors.
243 						 */
244 	unsigned short		bi_flags;	/* BIO_* below */
245 	unsigned short		bi_ioprio;
246 	unsigned short		bi_write_hint;
247 	blk_status_t		bi_status;
248 	atomic_t		__bi_remaining;
249 
250 	struct bvec_iter	bi_iter;
251 
252 	blk_qc_t		bi_cookie;
253 	bio_end_io_t		*bi_end_io;
254 	void			*bi_private;
255 #ifdef CONFIG_BLK_CGROUP
256 	/*
257 	 * Represents the association of the css and request_queue for the bio.
258 	 * If a bio goes direct to device, it will not have a blkg as it will
259 	 * not have a request_queue associated with it.  The reference is put
260 	 * on release of the bio.
261 	 */
262 	struct blkcg_gq		*bi_blkg;
263 	struct bio_issue	bi_issue;
264 #ifdef CONFIG_BLK_CGROUP_IOCOST
265 	u64			bi_iocost_cost;
266 #endif
267 #endif
268 
269 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
270 	struct bio_crypt_ctx	*bi_crypt_context;
271 #endif
272 
273 	union {
274 #if defined(CONFIG_BLK_DEV_INTEGRITY)
275 		struct bio_integrity_payload *bi_integrity; /* data integrity */
276 #endif
277 	};
278 
279 	unsigned short		bi_vcnt;	/* how many bio_vec's */
280 
281 	/*
282 	 * Everything starting with bi_max_vecs will be preserved by bio_reset()
283 	 */
284 
285 	unsigned short		bi_max_vecs;	/* max bvl_vecs we can hold */
286 
287 	atomic_t		__bi_cnt;	/* pin count */
288 
289 	struct bio_vec		*bi_io_vec;	/* the actual vec list */
290 
291 	struct bio_set		*bi_pool;
292 
293 	/*
294 	 * We can inline a number of vecs at the end of the bio, to avoid
295 	 * double allocations for a small number of bio_vecs. This member
296 	 * MUST obviously be kept at the very end of the bio.
297 	 */
298 	struct bio_vec		bi_inline_vecs[];
299 };
300 
301 #define BIO_RESET_BYTES		offsetof(struct bio, bi_max_vecs)
302 #define BIO_MAX_SECTORS		(UINT_MAX >> SECTOR_SHIFT)
303 
304 /*
305  * bio flags
306  */
307 enum {
308 	BIO_NO_PAGE_REF,	/* don't put release vec pages */
309 	BIO_CLONED,		/* doesn't own data */
310 	BIO_BOUNCED,		/* bio is a bounce bio */
311 	BIO_WORKINGSET,		/* contains userspace workingset pages */
312 	BIO_QUIET,		/* Make BIO Quiet */
313 	BIO_CHAIN,		/* chained bio, ->bi_remaining in effect */
314 	BIO_REFFED,		/* bio has elevated ->bi_cnt */
315 	BIO_THROTTLED,		/* This bio has already been subjected to
316 				 * throttling rules. Don't do it again. */
317 	BIO_TRACE_COMPLETION,	/* bio_endio() should trace the final completion
318 				 * of this bio. */
319 	BIO_CGROUP_ACCT,	/* has been accounted to a cgroup */
320 	BIO_TRACKED,		/* set if bio goes through the rq_qos path */
321 	BIO_REMAPPED,
322 	BIO_ZONE_WRITE_LOCKED,	/* Owns a zoned device zone write lock */
323 	BIO_PERCPU_CACHE,	/* can participate in per-cpu alloc cache */
324 	BIO_FLAG_LAST
325 };
326 
327 typedef __u32 __bitwise blk_mq_req_flags_t;
328 
329 /*
330  * Operations and flags common to the bio and request structures.
331  * We use 8 bits for encoding the operation, and the remaining 24 for flags.
332  *
333  * The least significant bit of the operation number indicates the data
334  * transfer direction:
335  *
336  *   - if the least significant bit is set transfers are TO the device
337  *   - if the least significant bit is not set transfers are FROM the device
338  *
339  * If a operation does not transfer data the least significant bit has no
340  * meaning.
341  */
342 #define REQ_OP_BITS	8
343 #define REQ_OP_MASK	((1 << REQ_OP_BITS) - 1)
344 #define REQ_FLAG_BITS	24
345 
346 enum req_opf {
347 	/* read sectors from the device */
348 	REQ_OP_READ		= 0,
349 	/* write sectors to the device */
350 	REQ_OP_WRITE		= 1,
351 	/* flush the volatile write cache */
352 	REQ_OP_FLUSH		= 2,
353 	/* discard sectors */
354 	REQ_OP_DISCARD		= 3,
355 	/* securely erase sectors */
356 	REQ_OP_SECURE_ERASE	= 5,
357 	/* write the same sector many times */
358 	REQ_OP_WRITE_SAME	= 7,
359 	/* write the zero filled sector many times */
360 	REQ_OP_WRITE_ZEROES	= 9,
361 	/* Open a zone */
362 	REQ_OP_ZONE_OPEN	= 10,
363 	/* Close a zone */
364 	REQ_OP_ZONE_CLOSE	= 11,
365 	/* Transition a zone to full */
366 	REQ_OP_ZONE_FINISH	= 12,
367 	/* write data at the current zone write pointer */
368 	REQ_OP_ZONE_APPEND	= 13,
369 	/* reset a zone write pointer */
370 	REQ_OP_ZONE_RESET	= 15,
371 	/* reset all the zone present on the device */
372 	REQ_OP_ZONE_RESET_ALL	= 17,
373 
374 	/* Driver private requests */
375 	REQ_OP_DRV_IN		= 34,
376 	REQ_OP_DRV_OUT		= 35,
377 
378 	REQ_OP_LAST,
379 };
380 
381 enum req_flag_bits {
382 	__REQ_FAILFAST_DEV =	/* no driver retries of device errors */
383 		REQ_OP_BITS,
384 	__REQ_FAILFAST_TRANSPORT, /* no driver retries of transport errors */
385 	__REQ_FAILFAST_DRIVER,	/* no driver retries of driver errors */
386 	__REQ_SYNC,		/* request is sync (sync write or read) */
387 	__REQ_META,		/* metadata io request */
388 	__REQ_PRIO,		/* boost priority in cfq */
389 	__REQ_NOMERGE,		/* don't touch this for merging */
390 	__REQ_IDLE,		/* anticipate more IO after this one */
391 	__REQ_INTEGRITY,	/* I/O includes block integrity payload */
392 	__REQ_FUA,		/* forced unit access */
393 	__REQ_PREFLUSH,		/* request for cache flush */
394 	__REQ_RAHEAD,		/* read ahead, can fail anytime */
395 	__REQ_BACKGROUND,	/* background IO */
396 	__REQ_NOWAIT,           /* Don't wait if request will block */
397 	/*
398 	 * When a shared kthread needs to issue a bio for a cgroup, doing
399 	 * so synchronously can lead to priority inversions as the kthread
400 	 * can be trapped waiting for that cgroup.  CGROUP_PUNT flag makes
401 	 * submit_bio() punt the actual issuing to a dedicated per-blkcg
402 	 * work item to avoid such priority inversions.
403 	 */
404 	__REQ_CGROUP_PUNT,
405 
406 	/* command specific flags for REQ_OP_WRITE_ZEROES: */
407 	__REQ_NOUNMAP,		/* do not free blocks when zeroing */
408 
409 	__REQ_POLLED,		/* caller polls for completion using bio_poll */
410 
411 	/* for driver use */
412 	__REQ_DRV,
413 	__REQ_SWAP,		/* swapping request. */
414 	__REQ_NR_BITS,		/* stops here */
415 };
416 
417 #define REQ_FAILFAST_DEV	(1ULL << __REQ_FAILFAST_DEV)
418 #define REQ_FAILFAST_TRANSPORT	(1ULL << __REQ_FAILFAST_TRANSPORT)
419 #define REQ_FAILFAST_DRIVER	(1ULL << __REQ_FAILFAST_DRIVER)
420 #define REQ_SYNC		(1ULL << __REQ_SYNC)
421 #define REQ_META		(1ULL << __REQ_META)
422 #define REQ_PRIO		(1ULL << __REQ_PRIO)
423 #define REQ_NOMERGE		(1ULL << __REQ_NOMERGE)
424 #define REQ_IDLE		(1ULL << __REQ_IDLE)
425 #define REQ_INTEGRITY		(1ULL << __REQ_INTEGRITY)
426 #define REQ_FUA			(1ULL << __REQ_FUA)
427 #define REQ_PREFLUSH		(1ULL << __REQ_PREFLUSH)
428 #define REQ_RAHEAD		(1ULL << __REQ_RAHEAD)
429 #define REQ_BACKGROUND		(1ULL << __REQ_BACKGROUND)
430 #define REQ_NOWAIT		(1ULL << __REQ_NOWAIT)
431 #define REQ_CGROUP_PUNT		(1ULL << __REQ_CGROUP_PUNT)
432 
433 #define REQ_NOUNMAP		(1ULL << __REQ_NOUNMAP)
434 #define REQ_POLLED		(1ULL << __REQ_POLLED)
435 
436 #define REQ_DRV			(1ULL << __REQ_DRV)
437 #define REQ_SWAP		(1ULL << __REQ_SWAP)
438 
439 #define REQ_FAILFAST_MASK \
440 	(REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT | REQ_FAILFAST_DRIVER)
441 
442 #define REQ_NOMERGE_FLAGS \
443 	(REQ_NOMERGE | REQ_PREFLUSH | REQ_FUA)
444 
445 enum stat_group {
446 	STAT_READ,
447 	STAT_WRITE,
448 	STAT_DISCARD,
449 	STAT_FLUSH,
450 
451 	NR_STAT_GROUPS
452 };
453 
454 #define bio_op(bio) \
455 	((bio)->bi_opf & REQ_OP_MASK)
456 
457 /* obsolete, don't use in new code */
bio_set_op_attrs(struct bio * bio,unsigned op,unsigned op_flags)458 static inline void bio_set_op_attrs(struct bio *bio, unsigned op,
459 		unsigned op_flags)
460 {
461 	bio->bi_opf = op | op_flags;
462 }
463 
op_is_write(unsigned int op)464 static inline bool op_is_write(unsigned int op)
465 {
466 	return (op & 1);
467 }
468 
469 /*
470  * Check if the bio or request is one that needs special treatment in the
471  * flush state machine.
472  */
op_is_flush(unsigned int op)473 static inline bool op_is_flush(unsigned int op)
474 {
475 	return op & (REQ_FUA | REQ_PREFLUSH);
476 }
477 
478 /*
479  * Reads are always treated as synchronous, as are requests with the FUA or
480  * PREFLUSH flag.  Other operations may be marked as synchronous using the
481  * REQ_SYNC flag.
482  */
op_is_sync(unsigned int op)483 static inline bool op_is_sync(unsigned int op)
484 {
485 	return (op & REQ_OP_MASK) == REQ_OP_READ ||
486 		(op & (REQ_SYNC | REQ_FUA | REQ_PREFLUSH));
487 }
488 
op_is_discard(unsigned int op)489 static inline bool op_is_discard(unsigned int op)
490 {
491 	return (op & REQ_OP_MASK) == REQ_OP_DISCARD;
492 }
493 
494 /*
495  * Check if a bio or request operation is a zone management operation, with
496  * the exception of REQ_OP_ZONE_RESET_ALL which is treated as a special case
497  * due to its different handling in the block layer and device response in
498  * case of command failure.
499  */
op_is_zone_mgmt(enum req_opf op)500 static inline bool op_is_zone_mgmt(enum req_opf op)
501 {
502 	switch (op & REQ_OP_MASK) {
503 	case REQ_OP_ZONE_RESET:
504 	case REQ_OP_ZONE_OPEN:
505 	case REQ_OP_ZONE_CLOSE:
506 	case REQ_OP_ZONE_FINISH:
507 		return true;
508 	default:
509 		return false;
510 	}
511 }
512 
op_stat_group(unsigned int op)513 static inline int op_stat_group(unsigned int op)
514 {
515 	if (op_is_discard(op))
516 		return STAT_DISCARD;
517 	return op_is_write(op);
518 }
519 
520 struct blk_rq_stat {
521 	u64 mean;
522 	u64 min;
523 	u64 max;
524 	u32 nr_samples;
525 	u64 batch;
526 };
527 
528 #endif /* __LINUX_BLK_TYPES_H */
529