1 /* SPDX-License-Identifier: GPL-2.0-or-later
2  *
3  * Copyright (C) 2005 David Brownell
4  */
5 
6 #ifndef __LINUX_SPI_H
7 #define __LINUX_SPI_H
8 
9 #include <linux/bits.h>
10 #include <linux/device.h>
11 #include <linux/mod_devicetable.h>
12 #include <linux/slab.h>
13 #include <linux/kthread.h>
14 #include <linux/completion.h>
15 #include <linux/scatterlist.h>
16 #include <linux/gpio/consumer.h>
17 #include <linux/ptp_clock_kernel.h>
18 
19 #include <uapi/linux/spi/spi.h>
20 
21 struct dma_chan;
22 struct software_node;
23 struct spi_controller;
24 struct spi_transfer;
25 struct spi_controller_mem_ops;
26 
27 /*
28  * INTERFACES between SPI master-side drivers and SPI slave protocol handlers,
29  * and SPI infrastructure.
30  */
31 extern struct bus_type spi_bus_type;
32 
33 /**
34  * struct spi_statistics - statistics for spi transfers
35  * @lock:          lock protecting this structure
36  *
37  * @messages:      number of spi-messages handled
38  * @transfers:     number of spi_transfers handled
39  * @errors:        number of errors during spi_transfer
40  * @timedout:      number of timeouts during spi_transfer
41  *
42  * @spi_sync:      number of times spi_sync is used
43  * @spi_sync_immediate:
44  *                 number of times spi_sync is executed immediately
45  *                 in calling context without queuing and scheduling
46  * @spi_async:     number of times spi_async is used
47  *
48  * @bytes:         number of bytes transferred to/from device
49  * @bytes_tx:      number of bytes sent to device
50  * @bytes_rx:      number of bytes received from device
51  *
52  * @transfer_bytes_histo:
53  *                 transfer bytes histogramm
54  *
55  * @transfers_split_maxsize:
56  *                 number of transfers that have been split because of
57  *                 maxsize limit
58  */
59 struct spi_statistics {
60 	spinlock_t		lock; /* lock for the whole structure */
61 
62 	unsigned long		messages;
63 	unsigned long		transfers;
64 	unsigned long		errors;
65 	unsigned long		timedout;
66 
67 	unsigned long		spi_sync;
68 	unsigned long		spi_sync_immediate;
69 	unsigned long		spi_async;
70 
71 	unsigned long long	bytes;
72 	unsigned long long	bytes_rx;
73 	unsigned long long	bytes_tx;
74 
75 #define SPI_STATISTICS_HISTO_SIZE 17
76 	unsigned long transfer_bytes_histo[SPI_STATISTICS_HISTO_SIZE];
77 
78 	unsigned long transfers_split_maxsize;
79 };
80 
81 #define SPI_STATISTICS_ADD_TO_FIELD(stats, field, count)	\
82 	do {							\
83 		unsigned long flags;				\
84 		spin_lock_irqsave(&(stats)->lock, flags);	\
85 		(stats)->field += count;			\
86 		spin_unlock_irqrestore(&(stats)->lock, flags);	\
87 	} while (0)
88 
89 #define SPI_STATISTICS_INCREMENT_FIELD(stats, field)	\
90 	SPI_STATISTICS_ADD_TO_FIELD(stats, field, 1)
91 
92 /**
93  * struct spi_delay - SPI delay information
94  * @value: Value for the delay
95  * @unit: Unit for the delay
96  */
97 struct spi_delay {
98 #define SPI_DELAY_UNIT_USECS	0
99 #define SPI_DELAY_UNIT_NSECS	1
100 #define SPI_DELAY_UNIT_SCK	2
101 	u16	value;
102 	u8	unit;
103 };
104 
105 extern int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer);
106 extern int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer);
107 
108 /**
109  * struct spi_device - Controller side proxy for an SPI slave device
110  * @dev: Driver model representation of the device.
111  * @controller: SPI controller used with the device.
112  * @master: Copy of controller, for backwards compatibility.
113  * @max_speed_hz: Maximum clock rate to be used with this chip
114  *	(on this board); may be changed by the device's driver.
115  *	The spi_transfer.speed_hz can override this for each transfer.
116  * @chip_select: Chipselect, distinguishing chips handled by @controller.
117  * @mode: The spi mode defines how data is clocked out and in.
118  *	This may be changed by the device's driver.
119  *	The "active low" default for chipselect mode can be overridden
120  *	(by specifying SPI_CS_HIGH) as can the "MSB first" default for
121  *	each word in a transfer (by specifying SPI_LSB_FIRST).
122  * @bits_per_word: Data transfers involve one or more words; word sizes
123  *	like eight or 12 bits are common.  In-memory wordsizes are
124  *	powers of two bytes (e.g. 20 bit samples use 32 bits).
125  *	This may be changed by the device's driver, or left at the
126  *	default (0) indicating protocol words are eight bit bytes.
127  *	The spi_transfer.bits_per_word can override this for each transfer.
128  * @rt: Make the pump thread real time priority.
129  * @irq: Negative, or the number passed to request_irq() to receive
130  *	interrupts from this device.
131  * @controller_state: Controller's runtime state
132  * @controller_data: Board-specific definitions for controller, such as
133  *	FIFO initialization parameters; from board_info.controller_data
134  * @modalias: Name of the driver to use with this device, or an alias
135  *	for that name.  This appears in the sysfs "modalias" attribute
136  *	for driver coldplugging, and in uevents used for hotplugging
137  * @driver_override: If the name of a driver is written to this attribute, then
138  *	the device will bind to the named driver and only the named driver.
139  * @cs_gpio: LEGACY: gpio number of the chipselect line (optional, -ENOENT when
140  *	not using a GPIO line) use cs_gpiod in new drivers by opting in on
141  *	the spi_master.
142  * @cs_gpiod: gpio descriptor of the chipselect line (optional, NULL when
143  *	not using a GPIO line)
144  * @word_delay: delay to be inserted between consecutive
145  *	words of a transfer
146  * @cs_setup: delay to be introduced by the controller after CS is asserted
147  * @cs_hold: delay to be introduced by the controller before CS is deasserted
148  * @cs_inactive: delay to be introduced by the controller after CS is
149  *	deasserted. If @cs_change_delay is used from @spi_transfer, then the
150  *	two delays will be added up.
151  * @statistics: statistics for the spi_device
152  *
153  * A @spi_device is used to interchange data between an SPI slave
154  * (usually a discrete chip) and CPU memory.
155  *
156  * In @dev, the platform_data is used to hold information about this
157  * device that's meaningful to the device's protocol driver, but not
158  * to its controller.  One example might be an identifier for a chip
159  * variant with slightly different functionality; another might be
160  * information about how this particular board wires the chip's pins.
161  */
162 struct spi_device {
163 	struct device		dev;
164 	struct spi_controller	*controller;
165 	struct spi_controller	*master;	/* compatibility layer */
166 	u32			max_speed_hz;
167 	u8			chip_select;
168 	u8			bits_per_word;
169 	bool			rt;
170 #define SPI_NO_TX	BIT(31)		/* no transmit wire */
171 #define SPI_NO_RX	BIT(30)		/* no receive wire */
172 	/*
173 	 * All bits defined above should be covered by SPI_MODE_KERNEL_MASK.
174 	 * The SPI_MODE_KERNEL_MASK has the SPI_MODE_USER_MASK counterpart,
175 	 * which is defined in 'include/uapi/linux/spi/spi.h'.
176 	 * The bits defined here are from bit 31 downwards, while in
177 	 * SPI_MODE_USER_MASK are from 0 upwards.
178 	 * These bits must not overlap. A static assert check should make sure of that.
179 	 * If adding extra bits, make sure to decrease the bit index below as well.
180 	 */
181 #define SPI_MODE_KERNEL_MASK	(~(BIT(30) - 1))
182 	u32			mode;
183 	int			irq;
184 	void			*controller_state;
185 	void			*controller_data;
186 	char			modalias[SPI_NAME_SIZE];
187 	const char		*driver_override;
188 	int			cs_gpio;	/* LEGACY: chip select gpio */
189 	struct gpio_desc	*cs_gpiod;	/* chip select gpio desc */
190 	struct spi_delay	word_delay; /* inter-word delay */
191 	/* CS delays */
192 	struct spi_delay	cs_setup;
193 	struct spi_delay	cs_hold;
194 	struct spi_delay	cs_inactive;
195 
196 	/* the statistics */
197 	struct spi_statistics	statistics;
198 
199 	/*
200 	 * likely need more hooks for more protocol options affecting how
201 	 * the controller talks to each chip, like:
202 	 *  - memory packing (12 bit samples into low bits, others zeroed)
203 	 *  - priority
204 	 *  - chipselect delays
205 	 *  - ...
206 	 */
207 };
208 
209 /* Make sure that SPI_MODE_KERNEL_MASK & SPI_MODE_USER_MASK don't overlap */
210 static_assert((SPI_MODE_KERNEL_MASK & SPI_MODE_USER_MASK) == 0,
211 	      "SPI_MODE_USER_MASK & SPI_MODE_KERNEL_MASK must not overlap");
212 
to_spi_device(struct device * dev)213 static inline struct spi_device *to_spi_device(struct device *dev)
214 {
215 	return dev ? container_of(dev, struct spi_device, dev) : NULL;
216 }
217 
218 /* most drivers won't need to care about device refcounting */
spi_dev_get(struct spi_device * spi)219 static inline struct spi_device *spi_dev_get(struct spi_device *spi)
220 {
221 	return (spi && get_device(&spi->dev)) ? spi : NULL;
222 }
223 
spi_dev_put(struct spi_device * spi)224 static inline void spi_dev_put(struct spi_device *spi)
225 {
226 	if (spi)
227 		put_device(&spi->dev);
228 }
229 
230 /* ctldata is for the bus_controller driver's runtime state */
spi_get_ctldata(struct spi_device * spi)231 static inline void *spi_get_ctldata(struct spi_device *spi)
232 {
233 	return spi->controller_state;
234 }
235 
spi_set_ctldata(struct spi_device * spi,void * state)236 static inline void spi_set_ctldata(struct spi_device *spi, void *state)
237 {
238 	spi->controller_state = state;
239 }
240 
241 /* device driver data */
242 
spi_set_drvdata(struct spi_device * spi,void * data)243 static inline void spi_set_drvdata(struct spi_device *spi, void *data)
244 {
245 	dev_set_drvdata(&spi->dev, data);
246 }
247 
spi_get_drvdata(struct spi_device * spi)248 static inline void *spi_get_drvdata(struct spi_device *spi)
249 {
250 	return dev_get_drvdata(&spi->dev);
251 }
252 
253 struct spi_message;
254 
255 /**
256  * struct spi_driver - Host side "protocol" driver
257  * @id_table: List of SPI devices supported by this driver
258  * @probe: Binds this driver to the spi device.  Drivers can verify
259  *	that the device is actually present, and may need to configure
260  *	characteristics (such as bits_per_word) which weren't needed for
261  *	the initial configuration done during system setup.
262  * @remove: Unbinds this driver from the spi device
263  * @shutdown: Standard shutdown callback used during system state
264  *	transitions such as powerdown/halt and kexec
265  * @driver: SPI device drivers should initialize the name and owner
266  *	field of this structure.
267  *
268  * This represents the kind of device driver that uses SPI messages to
269  * interact with the hardware at the other end of a SPI link.  It's called
270  * a "protocol" driver because it works through messages rather than talking
271  * directly to SPI hardware (which is what the underlying SPI controller
272  * driver does to pass those messages).  These protocols are defined in the
273  * specification for the device(s) supported by the driver.
274  *
275  * As a rule, those device protocols represent the lowest level interface
276  * supported by a driver, and it will support upper level interfaces too.
277  * Examples of such upper levels include frameworks like MTD, networking,
278  * MMC, RTC, filesystem character device nodes, and hardware monitoring.
279  */
280 struct spi_driver {
281 	const struct spi_device_id *id_table;
282 	int			(*probe)(struct spi_device *spi);
283 	int			(*remove)(struct spi_device *spi);
284 	void			(*shutdown)(struct spi_device *spi);
285 	struct device_driver	driver;
286 };
287 
to_spi_driver(struct device_driver * drv)288 static inline struct spi_driver *to_spi_driver(struct device_driver *drv)
289 {
290 	return drv ? container_of(drv, struct spi_driver, driver) : NULL;
291 }
292 
293 extern int __spi_register_driver(struct module *owner, struct spi_driver *sdrv);
294 
295 /**
296  * spi_unregister_driver - reverse effect of spi_register_driver
297  * @sdrv: the driver to unregister
298  * Context: can sleep
299  */
spi_unregister_driver(struct spi_driver * sdrv)300 static inline void spi_unregister_driver(struct spi_driver *sdrv)
301 {
302 	if (sdrv)
303 		driver_unregister(&sdrv->driver);
304 }
305 
306 extern struct spi_device *spi_new_ancillary_device(struct spi_device *spi, u8 chip_select);
307 
308 /* use a define to avoid include chaining to get THIS_MODULE */
309 #define spi_register_driver(driver) \
310 	__spi_register_driver(THIS_MODULE, driver)
311 
312 /**
313  * module_spi_driver() - Helper macro for registering a SPI driver
314  * @__spi_driver: spi_driver struct
315  *
316  * Helper macro for SPI drivers which do not do anything special in module
317  * init/exit. This eliminates a lot of boilerplate. Each module may only
318  * use this macro once, and calling it replaces module_init() and module_exit()
319  */
320 #define module_spi_driver(__spi_driver) \
321 	module_driver(__spi_driver, spi_register_driver, \
322 			spi_unregister_driver)
323 
324 /**
325  * struct spi_controller - interface to SPI master or slave controller
326  * @dev: device interface to this driver
327  * @list: link with the global spi_controller list
328  * @bus_num: board-specific (and often SOC-specific) identifier for a
329  *	given SPI controller.
330  * @num_chipselect: chipselects are used to distinguish individual
331  *	SPI slaves, and are numbered from zero to num_chipselects.
332  *	each slave has a chipselect signal, but it's common that not
333  *	every chipselect is connected to a slave.
334  * @dma_alignment: SPI controller constraint on DMA buffers alignment.
335  * @mode_bits: flags understood by this controller driver
336  * @buswidth_override_bits: flags to override for this controller driver
337  * @bits_per_word_mask: A mask indicating which values of bits_per_word are
338  *	supported by the driver. Bit n indicates that a bits_per_word n+1 is
339  *	supported. If set, the SPI core will reject any transfer with an
340  *	unsupported bits_per_word. If not set, this value is simply ignored,
341  *	and it's up to the individual driver to perform any validation.
342  * @min_speed_hz: Lowest supported transfer speed
343  * @max_speed_hz: Highest supported transfer speed
344  * @flags: other constraints relevant to this driver
345  * @slave: indicates that this is an SPI slave controller
346  * @devm_allocated: whether the allocation of this struct is devres-managed
347  * @max_transfer_size: function that returns the max transfer size for
348  *	a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
349  * @max_message_size: function that returns the max message size for
350  *	a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
351  * @io_mutex: mutex for physical bus access
352  * @bus_lock_spinlock: spinlock for SPI bus locking
353  * @bus_lock_mutex: mutex for exclusion of multiple callers
354  * @bus_lock_flag: indicates that the SPI bus is locked for exclusive use
355  * @setup: updates the device mode and clocking records used by a
356  *	device's SPI controller; protocol code may call this.  This
357  *	must fail if an unrecognized or unsupported mode is requested.
358  *	It's always safe to call this unless transfers are pending on
359  *	the device whose settings are being modified.
360  * @set_cs_timing: optional hook for SPI devices to request SPI master
361  * controller for configuring specific CS setup time, hold time and inactive
362  * delay interms of clock counts
363  * @transfer: adds a message to the controller's transfer queue.
364  * @cleanup: frees controller-specific state
365  * @can_dma: determine whether this controller supports DMA
366  * @queued: whether this controller is providing an internal message queue
367  * @kworker: pointer to thread struct for message pump
368  * @pump_messages: work struct for scheduling work to the message pump
369  * @queue_lock: spinlock to syncronise access to message queue
370  * @queue: message queue
371  * @idling: the device is entering idle state
372  * @cur_msg: the currently in-flight message
373  * @cur_msg_prepared: spi_prepare_message was called for the currently
374  *                    in-flight message
375  * @cur_msg_mapped: message has been mapped for DMA
376  * @last_cs_enable: was enable true on the last call to set_cs.
377  * @last_cs_mode_high: was (mode & SPI_CS_HIGH) true on the last call to set_cs.
378  * @xfer_completion: used by core transfer_one_message()
379  * @busy: message pump is busy
380  * @running: message pump is running
381  * @rt: whether this queue is set to run as a realtime task
382  * @auto_runtime_pm: the core should ensure a runtime PM reference is held
383  *                   while the hardware is prepared, using the parent
384  *                   device for the spidev
385  * @max_dma_len: Maximum length of a DMA transfer for the device.
386  * @prepare_transfer_hardware: a message will soon arrive from the queue
387  *	so the subsystem requests the driver to prepare the transfer hardware
388  *	by issuing this call
389  * @transfer_one_message: the subsystem calls the driver to transfer a single
390  *	message while queuing transfers that arrive in the meantime. When the
391  *	driver is finished with this message, it must call
392  *	spi_finalize_current_message() so the subsystem can issue the next
393  *	message
394  * @unprepare_transfer_hardware: there are currently no more messages on the
395  *	queue so the subsystem notifies the driver that it may relax the
396  *	hardware by issuing this call
397  *
398  * @set_cs: set the logic level of the chip select line.  May be called
399  *          from interrupt context.
400  * @prepare_message: set up the controller to transfer a single message,
401  *                   for example doing DMA mapping.  Called from threaded
402  *                   context.
403  * @transfer_one: transfer a single spi_transfer.
404  *
405  *                  - return 0 if the transfer is finished,
406  *                  - return 1 if the transfer is still in progress. When
407  *                    the driver is finished with this transfer it must
408  *                    call spi_finalize_current_transfer() so the subsystem
409  *                    can issue the next transfer. Note: transfer_one and
410  *                    transfer_one_message are mutually exclusive; when both
411  *                    are set, the generic subsystem does not call your
412  *                    transfer_one callback.
413  * @handle_err: the subsystem calls the driver to handle an error that occurs
414  *		in the generic implementation of transfer_one_message().
415  * @mem_ops: optimized/dedicated operations for interactions with SPI memory.
416  *	     This field is optional and should only be implemented if the
417  *	     controller has native support for memory like operations.
418  * @unprepare_message: undo any work done by prepare_message().
419  * @slave_abort: abort the ongoing transfer request on an SPI slave controller
420  * @cs_gpios: LEGACY: array of GPIO descs to use as chip select lines; one per
421  *	CS number. Any individual value may be -ENOENT for CS lines that
422  *	are not GPIOs (driven by the SPI controller itself). Use the cs_gpiods
423  *	in new drivers.
424  * @cs_gpiods: Array of GPIO descs to use as chip select lines; one per CS
425  *	number. Any individual value may be NULL for CS lines that
426  *	are not GPIOs (driven by the SPI controller itself).
427  * @use_gpio_descriptors: Turns on the code in the SPI core to parse and grab
428  *	GPIO descriptors rather than using global GPIO numbers grabbed by the
429  *	driver. This will fill in @cs_gpiods and @cs_gpios should not be used,
430  *	and SPI devices will have the cs_gpiod assigned rather than cs_gpio.
431  * @unused_native_cs: When cs_gpiods is used, spi_register_controller() will
432  *	fill in this field with the first unused native CS, to be used by SPI
433  *	controller drivers that need to drive a native CS when using GPIO CS.
434  * @max_native_cs: When cs_gpiods is used, and this field is filled in,
435  *	spi_register_controller() will validate all native CS (including the
436  *	unused native CS) against this value.
437  * @statistics: statistics for the spi_controller
438  * @dma_tx: DMA transmit channel
439  * @dma_rx: DMA receive channel
440  * @dummy_rx: dummy receive buffer for full-duplex devices
441  * @dummy_tx: dummy transmit buffer for full-duplex devices
442  * @fw_translate_cs: If the boot firmware uses different numbering scheme
443  *	what Linux expects, this optional hook can be used to translate
444  *	between the two.
445  * @ptp_sts_supported: If the driver sets this to true, it must provide a
446  *	time snapshot in @spi_transfer->ptp_sts as close as possible to the
447  *	moment in time when @spi_transfer->ptp_sts_word_pre and
448  *	@spi_transfer->ptp_sts_word_post were transmitted.
449  *	If the driver does not set this, the SPI core takes the snapshot as
450  *	close to the driver hand-over as possible.
451  * @irq_flags: Interrupt enable state during PTP system timestamping
452  * @fallback: fallback to pio if dma transfer return failure with
453  *	SPI_TRANS_FAIL_NO_START.
454  *
455  * Each SPI controller can communicate with one or more @spi_device
456  * children.  These make a small bus, sharing MOSI, MISO and SCK signals
457  * but not chip select signals.  Each device may be configured to use a
458  * different clock rate, since those shared signals are ignored unless
459  * the chip is selected.
460  *
461  * The driver for an SPI controller manages access to those devices through
462  * a queue of spi_message transactions, copying data between CPU memory and
463  * an SPI slave device.  For each such message it queues, it calls the
464  * message's completion function when the transaction completes.
465  */
466 struct spi_controller {
467 	struct device	dev;
468 
469 	struct list_head list;
470 
471 	/* other than negative (== assign one dynamically), bus_num is fully
472 	 * board-specific.  usually that simplifies to being SOC-specific.
473 	 * example:  one SOC has three SPI controllers, numbered 0..2,
474 	 * and one board's schematics might show it using SPI-2.  software
475 	 * would normally use bus_num=2 for that controller.
476 	 */
477 	s16			bus_num;
478 
479 	/* chipselects will be integral to many controllers; some others
480 	 * might use board-specific GPIOs.
481 	 */
482 	u16			num_chipselect;
483 
484 	/* some SPI controllers pose alignment requirements on DMAable
485 	 * buffers; let protocol drivers know about these requirements.
486 	 */
487 	u16			dma_alignment;
488 
489 	/* spi_device.mode flags understood by this controller driver */
490 	u32			mode_bits;
491 
492 	/* spi_device.mode flags override flags for this controller */
493 	u32			buswidth_override_bits;
494 
495 	/* bitmask of supported bits_per_word for transfers */
496 	u32			bits_per_word_mask;
497 #define SPI_BPW_MASK(bits) BIT((bits) - 1)
498 #define SPI_BPW_RANGE_MASK(min, max) GENMASK((max) - 1, (min) - 1)
499 
500 	/* limits on transfer speed */
501 	u32			min_speed_hz;
502 	u32			max_speed_hz;
503 
504 	/* other constraints relevant to this driver */
505 	u16			flags;
506 #define SPI_CONTROLLER_HALF_DUPLEX	BIT(0)	/* can't do full duplex */
507 #define SPI_CONTROLLER_NO_RX		BIT(1)	/* can't do buffer read */
508 #define SPI_CONTROLLER_NO_TX		BIT(2)	/* can't do buffer write */
509 #define SPI_CONTROLLER_MUST_RX		BIT(3)	/* requires rx */
510 #define SPI_CONTROLLER_MUST_TX		BIT(4)	/* requires tx */
511 
512 #define SPI_MASTER_GPIO_SS		BIT(5)	/* GPIO CS must select slave */
513 
514 	/* flag indicating if the allocation of this struct is devres-managed */
515 	bool			devm_allocated;
516 
517 	/* flag indicating this is an SPI slave controller */
518 	bool			slave;
519 
520 	/*
521 	 * on some hardware transfer / message size may be constrained
522 	 * the limit may depend on device transfer settings
523 	 */
524 	size_t (*max_transfer_size)(struct spi_device *spi);
525 	size_t (*max_message_size)(struct spi_device *spi);
526 
527 	/* I/O mutex */
528 	struct mutex		io_mutex;
529 
530 	/* Used to avoid adding the same CS twice */
531 	struct mutex		add_lock;
532 
533 	/* lock and mutex for SPI bus locking */
534 	spinlock_t		bus_lock_spinlock;
535 	struct mutex		bus_lock_mutex;
536 
537 	/* flag indicating that the SPI bus is locked for exclusive use */
538 	bool			bus_lock_flag;
539 
540 	/* Setup mode and clock, etc (spi driver may call many times).
541 	 *
542 	 * IMPORTANT:  this may be called when transfers to another
543 	 * device are active.  DO NOT UPDATE SHARED REGISTERS in ways
544 	 * which could break those transfers.
545 	 */
546 	int			(*setup)(struct spi_device *spi);
547 
548 	/*
549 	 * set_cs_timing() method is for SPI controllers that supports
550 	 * configuring CS timing.
551 	 *
552 	 * This hook allows SPI client drivers to request SPI controllers
553 	 * to configure specific CS timing through spi_set_cs_timing() after
554 	 * spi_setup().
555 	 */
556 	int (*set_cs_timing)(struct spi_device *spi);
557 
558 	/* bidirectional bulk transfers
559 	 *
560 	 * + The transfer() method may not sleep; its main role is
561 	 *   just to add the message to the queue.
562 	 * + For now there's no remove-from-queue operation, or
563 	 *   any other request management
564 	 * + To a given spi_device, message queueing is pure fifo
565 	 *
566 	 * + The controller's main job is to process its message queue,
567 	 *   selecting a chip (for masters), then transferring data
568 	 * + If there are multiple spi_device children, the i/o queue
569 	 *   arbitration algorithm is unspecified (round robin, fifo,
570 	 *   priority, reservations, preemption, etc)
571 	 *
572 	 * + Chipselect stays active during the entire message
573 	 *   (unless modified by spi_transfer.cs_change != 0).
574 	 * + The message transfers use clock and SPI mode parameters
575 	 *   previously established by setup() for this device
576 	 */
577 	int			(*transfer)(struct spi_device *spi,
578 						struct spi_message *mesg);
579 
580 	/* called on release() to free memory provided by spi_controller */
581 	void			(*cleanup)(struct spi_device *spi);
582 
583 	/*
584 	 * Used to enable core support for DMA handling, if can_dma()
585 	 * exists and returns true then the transfer will be mapped
586 	 * prior to transfer_one() being called.  The driver should
587 	 * not modify or store xfer and dma_tx and dma_rx must be set
588 	 * while the device is prepared.
589 	 */
590 	bool			(*can_dma)(struct spi_controller *ctlr,
591 					   struct spi_device *spi,
592 					   struct spi_transfer *xfer);
593 	struct device *dma_map_dev;
594 
595 	/*
596 	 * These hooks are for drivers that want to use the generic
597 	 * controller transfer queueing mechanism. If these are used, the
598 	 * transfer() function above must NOT be specified by the driver.
599 	 * Over time we expect SPI drivers to be phased over to this API.
600 	 */
601 	bool				queued;
602 	struct kthread_worker		*kworker;
603 	struct kthread_work		pump_messages;
604 	spinlock_t			queue_lock;
605 	struct list_head		queue;
606 	struct spi_message		*cur_msg;
607 	bool				idling;
608 	bool				busy;
609 	bool				running;
610 	bool				rt;
611 	bool				auto_runtime_pm;
612 	bool                            cur_msg_prepared;
613 	bool				cur_msg_mapped;
614 	bool				last_cs_enable;
615 	bool				last_cs_mode_high;
616 	bool                            fallback;
617 	struct completion               xfer_completion;
618 	size_t				max_dma_len;
619 
620 	int (*prepare_transfer_hardware)(struct spi_controller *ctlr);
621 	int (*transfer_one_message)(struct spi_controller *ctlr,
622 				    struct spi_message *mesg);
623 	int (*unprepare_transfer_hardware)(struct spi_controller *ctlr);
624 	int (*prepare_message)(struct spi_controller *ctlr,
625 			       struct spi_message *message);
626 	int (*unprepare_message)(struct spi_controller *ctlr,
627 				 struct spi_message *message);
628 	int (*slave_abort)(struct spi_controller *ctlr);
629 
630 	/*
631 	 * These hooks are for drivers that use a generic implementation
632 	 * of transfer_one_message() provided by the core.
633 	 */
634 	void (*set_cs)(struct spi_device *spi, bool enable);
635 	int (*transfer_one)(struct spi_controller *ctlr, struct spi_device *spi,
636 			    struct spi_transfer *transfer);
637 	void (*handle_err)(struct spi_controller *ctlr,
638 			   struct spi_message *message);
639 
640 	/* Optimized handlers for SPI memory-like operations. */
641 	const struct spi_controller_mem_ops *mem_ops;
642 
643 	/* gpio chip select */
644 	int			*cs_gpios;
645 	struct gpio_desc	**cs_gpiods;
646 	bool			use_gpio_descriptors;
647 	s8			unused_native_cs;
648 	s8			max_native_cs;
649 
650 	/* statistics */
651 	struct spi_statistics	statistics;
652 
653 	/* DMA channels for use with core dmaengine helpers */
654 	struct dma_chan		*dma_tx;
655 	struct dma_chan		*dma_rx;
656 
657 	/* dummy data for full duplex devices */
658 	void			*dummy_rx;
659 	void			*dummy_tx;
660 
661 	int (*fw_translate_cs)(struct spi_controller *ctlr, unsigned cs);
662 
663 	/*
664 	 * Driver sets this field to indicate it is able to snapshot SPI
665 	 * transfers (needed e.g. for reading the time of POSIX clocks)
666 	 */
667 	bool			ptp_sts_supported;
668 
669 	/* Interrupt enable state during PTP system timestamping */
670 	unsigned long		irq_flags;
671 };
672 
spi_controller_get_devdata(struct spi_controller * ctlr)673 static inline void *spi_controller_get_devdata(struct spi_controller *ctlr)
674 {
675 	return dev_get_drvdata(&ctlr->dev);
676 }
677 
spi_controller_set_devdata(struct spi_controller * ctlr,void * data)678 static inline void spi_controller_set_devdata(struct spi_controller *ctlr,
679 					      void *data)
680 {
681 	dev_set_drvdata(&ctlr->dev, data);
682 }
683 
spi_controller_get(struct spi_controller * ctlr)684 static inline struct spi_controller *spi_controller_get(struct spi_controller *ctlr)
685 {
686 	if (!ctlr || !get_device(&ctlr->dev))
687 		return NULL;
688 	return ctlr;
689 }
690 
spi_controller_put(struct spi_controller * ctlr)691 static inline void spi_controller_put(struct spi_controller *ctlr)
692 {
693 	if (ctlr)
694 		put_device(&ctlr->dev);
695 }
696 
spi_controller_is_slave(struct spi_controller * ctlr)697 static inline bool spi_controller_is_slave(struct spi_controller *ctlr)
698 {
699 	return IS_ENABLED(CONFIG_SPI_SLAVE) && ctlr->slave;
700 }
701 
702 /* PM calls that need to be issued by the driver */
703 extern int spi_controller_suspend(struct spi_controller *ctlr);
704 extern int spi_controller_resume(struct spi_controller *ctlr);
705 
706 /* Calls the driver make to interact with the message queue */
707 extern struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr);
708 extern void spi_finalize_current_message(struct spi_controller *ctlr);
709 extern void spi_finalize_current_transfer(struct spi_controller *ctlr);
710 
711 /* Helper calls for driver to timestamp transfer */
712 void spi_take_timestamp_pre(struct spi_controller *ctlr,
713 			    struct spi_transfer *xfer,
714 			    size_t progress, bool irqs_off);
715 void spi_take_timestamp_post(struct spi_controller *ctlr,
716 			     struct spi_transfer *xfer,
717 			     size_t progress, bool irqs_off);
718 
719 /* the spi driver core manages memory for the spi_controller classdev */
720 extern struct spi_controller *__spi_alloc_controller(struct device *host,
721 						unsigned int size, bool slave);
722 
spi_alloc_master(struct device * host,unsigned int size)723 static inline struct spi_controller *spi_alloc_master(struct device *host,
724 						      unsigned int size)
725 {
726 	return __spi_alloc_controller(host, size, false);
727 }
728 
spi_alloc_slave(struct device * host,unsigned int size)729 static inline struct spi_controller *spi_alloc_slave(struct device *host,
730 						     unsigned int size)
731 {
732 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
733 		return NULL;
734 
735 	return __spi_alloc_controller(host, size, true);
736 }
737 
738 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
739 						   unsigned int size,
740 						   bool slave);
741 
devm_spi_alloc_master(struct device * dev,unsigned int size)742 static inline struct spi_controller *devm_spi_alloc_master(struct device *dev,
743 							   unsigned int size)
744 {
745 	return __devm_spi_alloc_controller(dev, size, false);
746 }
747 
devm_spi_alloc_slave(struct device * dev,unsigned int size)748 static inline struct spi_controller *devm_spi_alloc_slave(struct device *dev,
749 							  unsigned int size)
750 {
751 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
752 		return NULL;
753 
754 	return __devm_spi_alloc_controller(dev, size, true);
755 }
756 
757 extern int spi_register_controller(struct spi_controller *ctlr);
758 extern int devm_spi_register_controller(struct device *dev,
759 					struct spi_controller *ctlr);
760 extern void spi_unregister_controller(struct spi_controller *ctlr);
761 
762 /*
763  * SPI resource management while processing a SPI message
764  */
765 
766 typedef void (*spi_res_release_t)(struct spi_controller *ctlr,
767 				  struct spi_message *msg,
768 				  void *res);
769 
770 /**
771  * struct spi_res - spi resource management structure
772  * @entry:   list entry
773  * @release: release code called prior to freeing this resource
774  * @data:    extra data allocated for the specific use-case
775  *
776  * this is based on ideas from devres, but focused on life-cycle
777  * management during spi_message processing
778  */
779 struct spi_res {
780 	struct list_head        entry;
781 	spi_res_release_t       release;
782 	unsigned long long      data[]; /* guarantee ull alignment */
783 };
784 
785 /*---------------------------------------------------------------------------*/
786 
787 /*
788  * I/O INTERFACE between SPI controller and protocol drivers
789  *
790  * Protocol drivers use a queue of spi_messages, each transferring data
791  * between the controller and memory buffers.
792  *
793  * The spi_messages themselves consist of a series of read+write transfer
794  * segments.  Those segments always read the same number of bits as they
795  * write; but one or the other is easily ignored by passing a null buffer
796  * pointer.  (This is unlike most types of I/O API, because SPI hardware
797  * is full duplex.)
798  *
799  * NOTE:  Allocation of spi_transfer and spi_message memory is entirely
800  * up to the protocol driver, which guarantees the integrity of both (as
801  * well as the data buffers) for as long as the message is queued.
802  */
803 
804 /**
805  * struct spi_transfer - a read/write buffer pair
806  * @tx_buf: data to be written (dma-safe memory), or NULL
807  * @rx_buf: data to be read (dma-safe memory), or NULL
808  * @tx_dma: DMA address of tx_buf, if @spi_message.is_dma_mapped
809  * @rx_dma: DMA address of rx_buf, if @spi_message.is_dma_mapped
810  * @tx_nbits: number of bits used for writing. If 0 the default
811  *      (SPI_NBITS_SINGLE) is used.
812  * @rx_nbits: number of bits used for reading. If 0 the default
813  *      (SPI_NBITS_SINGLE) is used.
814  * @len: size of rx and tx buffers (in bytes)
815  * @speed_hz: Select a speed other than the device default for this
816  *      transfer. If 0 the default (from @spi_device) is used.
817  * @bits_per_word: select a bits_per_word other than the device default
818  *      for this transfer. If 0 the default (from @spi_device) is used.
819  * @dummy_data: indicates transfer is dummy bytes transfer.
820  * @cs_change: affects chipselect after this transfer completes
821  * @cs_change_delay: delay between cs deassert and assert when
822  *      @cs_change is set and @spi_transfer is not the last in @spi_message
823  * @delay: delay to be introduced after this transfer before
824  *	(optionally) changing the chipselect status, then starting
825  *	the next transfer or completing this @spi_message.
826  * @word_delay: inter word delay to be introduced after each word size
827  *	(set by bits_per_word) transmission.
828  * @effective_speed_hz: the effective SCK-speed that was used to
829  *      transfer this transfer. Set to 0 if the spi bus driver does
830  *      not support it.
831  * @transfer_list: transfers are sequenced through @spi_message.transfers
832  * @tx_sg: Scatterlist for transmit, currently not for client use
833  * @rx_sg: Scatterlist for receive, currently not for client use
834  * @ptp_sts_word_pre: The word (subject to bits_per_word semantics) offset
835  *	within @tx_buf for which the SPI device is requesting that the time
836  *	snapshot for this transfer begins. Upon completing the SPI transfer,
837  *	this value may have changed compared to what was requested, depending
838  *	on the available snapshotting resolution (DMA transfer,
839  *	@ptp_sts_supported is false, etc).
840  * @ptp_sts_word_post: See @ptp_sts_word_post. The two can be equal (meaning
841  *	that a single byte should be snapshotted).
842  *	If the core takes care of the timestamp (if @ptp_sts_supported is false
843  *	for this controller), it will set @ptp_sts_word_pre to 0, and
844  *	@ptp_sts_word_post to the length of the transfer. This is done
845  *	purposefully (instead of setting to spi_transfer->len - 1) to denote
846  *	that a transfer-level snapshot taken from within the driver may still
847  *	be of higher quality.
848  * @ptp_sts: Pointer to a memory location held by the SPI slave device where a
849  *	PTP system timestamp structure may lie. If drivers use PIO or their
850  *	hardware has some sort of assist for retrieving exact transfer timing,
851  *	they can (and should) assert @ptp_sts_supported and populate this
852  *	structure using the ptp_read_system_*ts helper functions.
853  *	The timestamp must represent the time at which the SPI slave device has
854  *	processed the word, i.e. the "pre" timestamp should be taken before
855  *	transmitting the "pre" word, and the "post" timestamp after receiving
856  *	transmit confirmation from the controller for the "post" word.
857  * @timestamped: true if the transfer has been timestamped
858  * @error: Error status logged by spi controller driver.
859  *
860  * SPI transfers always write the same number of bytes as they read.
861  * Protocol drivers should always provide @rx_buf and/or @tx_buf.
862  * In some cases, they may also want to provide DMA addresses for
863  * the data being transferred; that may reduce overhead, when the
864  * underlying driver uses dma.
865  *
866  * If the transmit buffer is null, zeroes will be shifted out
867  * while filling @rx_buf.  If the receive buffer is null, the data
868  * shifted in will be discarded.  Only "len" bytes shift out (or in).
869  * It's an error to try to shift out a partial word.  (For example, by
870  * shifting out three bytes with word size of sixteen or twenty bits;
871  * the former uses two bytes per word, the latter uses four bytes.)
872  *
873  * In-memory data values are always in native CPU byte order, translated
874  * from the wire byte order (big-endian except with SPI_LSB_FIRST).  So
875  * for example when bits_per_word is sixteen, buffers are 2N bytes long
876  * (@len = 2N) and hold N sixteen bit words in CPU byte order.
877  *
878  * When the word size of the SPI transfer is not a power-of-two multiple
879  * of eight bits, those in-memory words include extra bits.  In-memory
880  * words are always seen by protocol drivers as right-justified, so the
881  * undefined (rx) or unused (tx) bits are always the most significant bits.
882  *
883  * All SPI transfers start with the relevant chipselect active.  Normally
884  * it stays selected until after the last transfer in a message.  Drivers
885  * can affect the chipselect signal using cs_change.
886  *
887  * (i) If the transfer isn't the last one in the message, this flag is
888  * used to make the chipselect briefly go inactive in the middle of the
889  * message.  Toggling chipselect in this way may be needed to terminate
890  * a chip command, letting a single spi_message perform all of group of
891  * chip transactions together.
892  *
893  * (ii) When the transfer is the last one in the message, the chip may
894  * stay selected until the next transfer.  On multi-device SPI busses
895  * with nothing blocking messages going to other devices, this is just
896  * a performance hint; starting a message to another device deselects
897  * this one.  But in other cases, this can be used to ensure correctness.
898  * Some devices need protocol transactions to be built from a series of
899  * spi_message submissions, where the content of one message is determined
900  * by the results of previous messages and where the whole transaction
901  * ends when the chipselect goes intactive.
902  *
903  * When SPI can transfer in 1x,2x or 4x. It can get this transfer information
904  * from device through @tx_nbits and @rx_nbits. In Bi-direction, these
905  * two should both be set. User can set transfer mode with SPI_NBITS_SINGLE(1x)
906  * SPI_NBITS_DUAL(2x) and SPI_NBITS_QUAD(4x) to support these three transfer.
907  *
908  * The code that submits an spi_message (and its spi_transfers)
909  * to the lower layers is responsible for managing its memory.
910  * Zero-initialize every field you don't set up explicitly, to
911  * insulate against future API updates.  After you submit a message
912  * and its transfers, ignore them until its completion callback.
913  */
914 struct spi_transfer {
915 	/* it's ok if tx_buf == rx_buf (right?)
916 	 * for MicroWire, one buffer must be null
917 	 * buffers must work with dma_*map_single() calls, unless
918 	 *   spi_message.is_dma_mapped reports a pre-existing mapping
919 	 */
920 	const void	*tx_buf;
921 	void		*rx_buf;
922 	unsigned	len;
923 
924 	dma_addr_t	tx_dma;
925 	dma_addr_t	rx_dma;
926 	struct sg_table tx_sg;
927 	struct sg_table rx_sg;
928 
929 	unsigned	dummy_data:1;
930 	unsigned	cs_change:1;
931 	unsigned	tx_nbits:3;
932 	unsigned	rx_nbits:3;
933 #define	SPI_NBITS_SINGLE	0x01 /* 1bit transfer */
934 #define	SPI_NBITS_DUAL		0x02 /* 2bits transfer */
935 #define	SPI_NBITS_QUAD		0x04 /* 4bits transfer */
936 	u8		bits_per_word;
937 	struct spi_delay	delay;
938 	struct spi_delay	cs_change_delay;
939 	struct spi_delay	word_delay;
940 	u32		speed_hz;
941 
942 	u32		effective_speed_hz;
943 
944 	unsigned int	ptp_sts_word_pre;
945 	unsigned int	ptp_sts_word_post;
946 
947 	struct ptp_system_timestamp *ptp_sts;
948 
949 	bool		timestamped;
950 
951 	struct list_head transfer_list;
952 
953 #define SPI_TRANS_FAIL_NO_START	BIT(0)
954 	u16		error;
955 };
956 
957 /**
958  * struct spi_message - one multi-segment SPI transaction
959  * @transfers: list of transfer segments in this transaction
960  * @spi: SPI device to which the transaction is queued
961  * @is_dma_mapped: if true, the caller provided both dma and cpu virtual
962  *	addresses for each transfer buffer
963  * @complete: called to report transaction completions
964  * @context: the argument to complete() when it's called
965  * @frame_length: the total number of bytes in the message
966  * @actual_length: the total number of bytes that were transferred in all
967  *	successful segments
968  * @status: zero for success, else negative errno
969  * @queue: for use by whichever driver currently owns the message
970  * @state: for use by whichever driver currently owns the message
971  * @resources: for resource management when the spi message is processed
972  *
973  * A @spi_message is used to execute an atomic sequence of data transfers,
974  * each represented by a struct spi_transfer.  The sequence is "atomic"
975  * in the sense that no other spi_message may use that SPI bus until that
976  * sequence completes.  On some systems, many such sequences can execute as
977  * a single programmed DMA transfer.  On all systems, these messages are
978  * queued, and might complete after transactions to other devices.  Messages
979  * sent to a given spi_device are always executed in FIFO order.
980  *
981  * The code that submits an spi_message (and its spi_transfers)
982  * to the lower layers is responsible for managing its memory.
983  * Zero-initialize every field you don't set up explicitly, to
984  * insulate against future API updates.  After you submit a message
985  * and its transfers, ignore them until its completion callback.
986  */
987 struct spi_message {
988 	struct list_head	transfers;
989 
990 	struct spi_device	*spi;
991 
992 	unsigned		is_dma_mapped:1;
993 
994 	/* REVISIT:  we might want a flag affecting the behavior of the
995 	 * last transfer ... allowing things like "read 16 bit length L"
996 	 * immediately followed by "read L bytes".  Basically imposing
997 	 * a specific message scheduling algorithm.
998 	 *
999 	 * Some controller drivers (message-at-a-time queue processing)
1000 	 * could provide that as their default scheduling algorithm.  But
1001 	 * others (with multi-message pipelines) could need a flag to
1002 	 * tell them about such special cases.
1003 	 */
1004 
1005 	/* completion is reported through a callback */
1006 	void			(*complete)(void *context);
1007 	void			*context;
1008 	unsigned		frame_length;
1009 	unsigned		actual_length;
1010 	int			status;
1011 
1012 	/* for optional use by whatever driver currently owns the
1013 	 * spi_message ...  between calls to spi_async and then later
1014 	 * complete(), that's the spi_controller controller driver.
1015 	 */
1016 	struct list_head	queue;
1017 	void			*state;
1018 
1019 	/* list of spi_res reources when the spi message is processed */
1020 	struct list_head        resources;
1021 };
1022 
spi_message_init_no_memset(struct spi_message * m)1023 static inline void spi_message_init_no_memset(struct spi_message *m)
1024 {
1025 	INIT_LIST_HEAD(&m->transfers);
1026 	INIT_LIST_HEAD(&m->resources);
1027 }
1028 
spi_message_init(struct spi_message * m)1029 static inline void spi_message_init(struct spi_message *m)
1030 {
1031 	memset(m, 0, sizeof *m);
1032 	spi_message_init_no_memset(m);
1033 }
1034 
1035 static inline void
spi_message_add_tail(struct spi_transfer * t,struct spi_message * m)1036 spi_message_add_tail(struct spi_transfer *t, struct spi_message *m)
1037 {
1038 	list_add_tail(&t->transfer_list, &m->transfers);
1039 }
1040 
1041 static inline void
spi_transfer_del(struct spi_transfer * t)1042 spi_transfer_del(struct spi_transfer *t)
1043 {
1044 	list_del(&t->transfer_list);
1045 }
1046 
1047 static inline int
spi_transfer_delay_exec(struct spi_transfer * t)1048 spi_transfer_delay_exec(struct spi_transfer *t)
1049 {
1050 	return spi_delay_exec(&t->delay, t);
1051 }
1052 
1053 /**
1054  * spi_message_init_with_transfers - Initialize spi_message and append transfers
1055  * @m: spi_message to be initialized
1056  * @xfers: An array of spi transfers
1057  * @num_xfers: Number of items in the xfer array
1058  *
1059  * This function initializes the given spi_message and adds each spi_transfer in
1060  * the given array to the message.
1061  */
1062 static inline void
spi_message_init_with_transfers(struct spi_message * m,struct spi_transfer * xfers,unsigned int num_xfers)1063 spi_message_init_with_transfers(struct spi_message *m,
1064 struct spi_transfer *xfers, unsigned int num_xfers)
1065 {
1066 	unsigned int i;
1067 
1068 	spi_message_init(m);
1069 	for (i = 0; i < num_xfers; ++i)
1070 		spi_message_add_tail(&xfers[i], m);
1071 }
1072 
1073 /* It's fine to embed message and transaction structures in other data
1074  * structures so long as you don't free them while they're in use.
1075  */
1076 
spi_message_alloc(unsigned ntrans,gfp_t flags)1077 static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags)
1078 {
1079 	struct spi_message *m;
1080 
1081 	m = kzalloc(sizeof(struct spi_message)
1082 			+ ntrans * sizeof(struct spi_transfer),
1083 			flags);
1084 	if (m) {
1085 		unsigned i;
1086 		struct spi_transfer *t = (struct spi_transfer *)(m + 1);
1087 
1088 		spi_message_init_no_memset(m);
1089 		for (i = 0; i < ntrans; i++, t++)
1090 			spi_message_add_tail(t, m);
1091 	}
1092 	return m;
1093 }
1094 
spi_message_free(struct spi_message * m)1095 static inline void spi_message_free(struct spi_message *m)
1096 {
1097 	kfree(m);
1098 }
1099 
1100 extern int spi_setup(struct spi_device *spi);
1101 extern int spi_async(struct spi_device *spi, struct spi_message *message);
1102 extern int spi_slave_abort(struct spi_device *spi);
1103 
1104 static inline size_t
spi_max_message_size(struct spi_device * spi)1105 spi_max_message_size(struct spi_device *spi)
1106 {
1107 	struct spi_controller *ctlr = spi->controller;
1108 
1109 	if (!ctlr->max_message_size)
1110 		return SIZE_MAX;
1111 	return ctlr->max_message_size(spi);
1112 }
1113 
1114 static inline size_t
spi_max_transfer_size(struct spi_device * spi)1115 spi_max_transfer_size(struct spi_device *spi)
1116 {
1117 	struct spi_controller *ctlr = spi->controller;
1118 	size_t tr_max = SIZE_MAX;
1119 	size_t msg_max = spi_max_message_size(spi);
1120 
1121 	if (ctlr->max_transfer_size)
1122 		tr_max = ctlr->max_transfer_size(spi);
1123 
1124 	/* transfer size limit must not be greater than messsage size limit */
1125 	return min(tr_max, msg_max);
1126 }
1127 
1128 /**
1129  * spi_is_bpw_supported - Check if bits per word is supported
1130  * @spi: SPI device
1131  * @bpw: Bits per word
1132  *
1133  * This function checks to see if the SPI controller supports @bpw.
1134  *
1135  * Returns:
1136  * True if @bpw is supported, false otherwise.
1137  */
spi_is_bpw_supported(struct spi_device * spi,u32 bpw)1138 static inline bool spi_is_bpw_supported(struct spi_device *spi, u32 bpw)
1139 {
1140 	u32 bpw_mask = spi->master->bits_per_word_mask;
1141 
1142 	if (bpw == 8 || (bpw <= 32 && bpw_mask & SPI_BPW_MASK(bpw)))
1143 		return true;
1144 
1145 	return false;
1146 }
1147 
1148 /*---------------------------------------------------------------------------*/
1149 
1150 /* SPI transfer replacement methods which make use of spi_res */
1151 
1152 struct spi_replaced_transfers;
1153 typedef void (*spi_replaced_release_t)(struct spi_controller *ctlr,
1154 				       struct spi_message *msg,
1155 				       struct spi_replaced_transfers *res);
1156 /**
1157  * struct spi_replaced_transfers - structure describing the spi_transfer
1158  *                                 replacements that have occurred
1159  *                                 so that they can get reverted
1160  * @release:            some extra release code to get executed prior to
1161  *                      relasing this structure
1162  * @extradata:          pointer to some extra data if requested or NULL
1163  * @replaced_transfers: transfers that have been replaced and which need
1164  *                      to get restored
1165  * @replaced_after:     the transfer after which the @replaced_transfers
1166  *                      are to get re-inserted
1167  * @inserted:           number of transfers inserted
1168  * @inserted_transfers: array of spi_transfers of array-size @inserted,
1169  *                      that have been replacing replaced_transfers
1170  *
1171  * note: that @extradata will point to @inserted_transfers[@inserted]
1172  * if some extra allocation is requested, so alignment will be the same
1173  * as for spi_transfers
1174  */
1175 struct spi_replaced_transfers {
1176 	spi_replaced_release_t release;
1177 	void *extradata;
1178 	struct list_head replaced_transfers;
1179 	struct list_head *replaced_after;
1180 	size_t inserted;
1181 	struct spi_transfer inserted_transfers[];
1182 };
1183 
1184 /*---------------------------------------------------------------------------*/
1185 
1186 /* SPI transfer transformation methods */
1187 
1188 extern int spi_split_transfers_maxsize(struct spi_controller *ctlr,
1189 				       struct spi_message *msg,
1190 				       size_t maxsize,
1191 				       gfp_t gfp);
1192 
1193 /*---------------------------------------------------------------------------*/
1194 
1195 /* All these synchronous SPI transfer routines are utilities layered
1196  * over the core async transfer primitive.  Here, "synchronous" means
1197  * they will sleep uninterruptibly until the async transfer completes.
1198  */
1199 
1200 extern int spi_sync(struct spi_device *spi, struct spi_message *message);
1201 extern int spi_sync_locked(struct spi_device *spi, struct spi_message *message);
1202 extern int spi_bus_lock(struct spi_controller *ctlr);
1203 extern int spi_bus_unlock(struct spi_controller *ctlr);
1204 
1205 /**
1206  * spi_sync_transfer - synchronous SPI data transfer
1207  * @spi: device with which data will be exchanged
1208  * @xfers: An array of spi_transfers
1209  * @num_xfers: Number of items in the xfer array
1210  * Context: can sleep
1211  *
1212  * Does a synchronous SPI data transfer of the given spi_transfer array.
1213  *
1214  * For more specific semantics see spi_sync().
1215  *
1216  * Return: zero on success, else a negative error code.
1217  */
1218 static inline int
spi_sync_transfer(struct spi_device * spi,struct spi_transfer * xfers,unsigned int num_xfers)1219 spi_sync_transfer(struct spi_device *spi, struct spi_transfer *xfers,
1220 	unsigned int num_xfers)
1221 {
1222 	struct spi_message msg;
1223 
1224 	spi_message_init_with_transfers(&msg, xfers, num_xfers);
1225 
1226 	return spi_sync(spi, &msg);
1227 }
1228 
1229 /**
1230  * spi_write - SPI synchronous write
1231  * @spi: device to which data will be written
1232  * @buf: data buffer
1233  * @len: data buffer size
1234  * Context: can sleep
1235  *
1236  * This function writes the buffer @buf.
1237  * Callable only from contexts that can sleep.
1238  *
1239  * Return: zero on success, else a negative error code.
1240  */
1241 static inline int
spi_write(struct spi_device * spi,const void * buf,size_t len)1242 spi_write(struct spi_device *spi, const void *buf, size_t len)
1243 {
1244 	struct spi_transfer	t = {
1245 			.tx_buf		= buf,
1246 			.len		= len,
1247 		};
1248 
1249 	return spi_sync_transfer(spi, &t, 1);
1250 }
1251 
1252 /**
1253  * spi_read - SPI synchronous read
1254  * @spi: device from which data will be read
1255  * @buf: data buffer
1256  * @len: data buffer size
1257  * Context: can sleep
1258  *
1259  * This function reads the buffer @buf.
1260  * Callable only from contexts that can sleep.
1261  *
1262  * Return: zero on success, else a negative error code.
1263  */
1264 static inline int
spi_read(struct spi_device * spi,void * buf,size_t len)1265 spi_read(struct spi_device *spi, void *buf, size_t len)
1266 {
1267 	struct spi_transfer	t = {
1268 			.rx_buf		= buf,
1269 			.len		= len,
1270 		};
1271 
1272 	return spi_sync_transfer(spi, &t, 1);
1273 }
1274 
1275 /* this copies txbuf and rxbuf data; for small transfers only! */
1276 extern int spi_write_then_read(struct spi_device *spi,
1277 		const void *txbuf, unsigned n_tx,
1278 		void *rxbuf, unsigned n_rx);
1279 
1280 /**
1281  * spi_w8r8 - SPI synchronous 8 bit write followed by 8 bit read
1282  * @spi: device with which data will be exchanged
1283  * @cmd: command to be written before data is read back
1284  * Context: can sleep
1285  *
1286  * Callable only from contexts that can sleep.
1287  *
1288  * Return: the (unsigned) eight bit number returned by the
1289  * device, or else a negative error code.
1290  */
spi_w8r8(struct spi_device * spi,u8 cmd)1291 static inline ssize_t spi_w8r8(struct spi_device *spi, u8 cmd)
1292 {
1293 	ssize_t			status;
1294 	u8			result;
1295 
1296 	status = spi_write_then_read(spi, &cmd, 1, &result, 1);
1297 
1298 	/* return negative errno or unsigned value */
1299 	return (status < 0) ? status : result;
1300 }
1301 
1302 /**
1303  * spi_w8r16 - SPI synchronous 8 bit write followed by 16 bit read
1304  * @spi: device with which data will be exchanged
1305  * @cmd: command to be written before data is read back
1306  * Context: can sleep
1307  *
1308  * The number is returned in wire-order, which is at least sometimes
1309  * big-endian.
1310  *
1311  * Callable only from contexts that can sleep.
1312  *
1313  * Return: the (unsigned) sixteen bit number returned by the
1314  * device, or else a negative error code.
1315  */
spi_w8r16(struct spi_device * spi,u8 cmd)1316 static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
1317 {
1318 	ssize_t			status;
1319 	u16			result;
1320 
1321 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1322 
1323 	/* return negative errno or unsigned value */
1324 	return (status < 0) ? status : result;
1325 }
1326 
1327 /**
1328  * spi_w8r16be - SPI synchronous 8 bit write followed by 16 bit big-endian read
1329  * @spi: device with which data will be exchanged
1330  * @cmd: command to be written before data is read back
1331  * Context: can sleep
1332  *
1333  * This function is similar to spi_w8r16, with the exception that it will
1334  * convert the read 16 bit data word from big-endian to native endianness.
1335  *
1336  * Callable only from contexts that can sleep.
1337  *
1338  * Return: the (unsigned) sixteen bit number returned by the device in cpu
1339  * endianness, or else a negative error code.
1340  */
spi_w8r16be(struct spi_device * spi,u8 cmd)1341 static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
1342 
1343 {
1344 	ssize_t status;
1345 	__be16 result;
1346 
1347 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1348 	if (status < 0)
1349 		return status;
1350 
1351 	return be16_to_cpu(result);
1352 }
1353 
1354 /*---------------------------------------------------------------------------*/
1355 
1356 /*
1357  * INTERFACE between board init code and SPI infrastructure.
1358  *
1359  * No SPI driver ever sees these SPI device table segments, but
1360  * it's how the SPI core (or adapters that get hotplugged) grows
1361  * the driver model tree.
1362  *
1363  * As a rule, SPI devices can't be probed.  Instead, board init code
1364  * provides a table listing the devices which are present, with enough
1365  * information to bind and set up the device's driver.  There's basic
1366  * support for nonstatic configurations too; enough to handle adding
1367  * parport adapters, or microcontrollers acting as USB-to-SPI bridges.
1368  */
1369 
1370 /**
1371  * struct spi_board_info - board-specific template for a SPI device
1372  * @modalias: Initializes spi_device.modalias; identifies the driver.
1373  * @platform_data: Initializes spi_device.platform_data; the particular
1374  *	data stored there is driver-specific.
1375  * @swnode: Software node for the device.
1376  * @controller_data: Initializes spi_device.controller_data; some
1377  *	controllers need hints about hardware setup, e.g. for DMA.
1378  * @irq: Initializes spi_device.irq; depends on how the board is wired.
1379  * @max_speed_hz: Initializes spi_device.max_speed_hz; based on limits
1380  *	from the chip datasheet and board-specific signal quality issues.
1381  * @bus_num: Identifies which spi_controller parents the spi_device; unused
1382  *	by spi_new_device(), and otherwise depends on board wiring.
1383  * @chip_select: Initializes spi_device.chip_select; depends on how
1384  *	the board is wired.
1385  * @mode: Initializes spi_device.mode; based on the chip datasheet, board
1386  *	wiring (some devices support both 3WIRE and standard modes), and
1387  *	possibly presence of an inverter in the chipselect path.
1388  *
1389  * When adding new SPI devices to the device tree, these structures serve
1390  * as a partial device template.  They hold information which can't always
1391  * be determined by drivers.  Information that probe() can establish (such
1392  * as the default transfer wordsize) is not included here.
1393  *
1394  * These structures are used in two places.  Their primary role is to
1395  * be stored in tables of board-specific device descriptors, which are
1396  * declared early in board initialization and then used (much later) to
1397  * populate a controller's device tree after the that controller's driver
1398  * initializes.  A secondary (and atypical) role is as a parameter to
1399  * spi_new_device() call, which happens after those controller drivers
1400  * are active in some dynamic board configuration models.
1401  */
1402 struct spi_board_info {
1403 	/* the device name and module name are coupled, like platform_bus;
1404 	 * "modalias" is normally the driver name.
1405 	 *
1406 	 * platform_data goes to spi_device.dev.platform_data,
1407 	 * controller_data goes to spi_device.controller_data,
1408 	 * irq is copied too
1409 	 */
1410 	char		modalias[SPI_NAME_SIZE];
1411 	const void	*platform_data;
1412 	const struct software_node *swnode;
1413 	void		*controller_data;
1414 	int		irq;
1415 
1416 	/* slower signaling on noisy or low voltage boards */
1417 	u32		max_speed_hz;
1418 
1419 
1420 	/* bus_num is board specific and matches the bus_num of some
1421 	 * spi_controller that will probably be registered later.
1422 	 *
1423 	 * chip_select reflects how this chip is wired to that master;
1424 	 * it's less than num_chipselect.
1425 	 */
1426 	u16		bus_num;
1427 	u16		chip_select;
1428 
1429 	/* mode becomes spi_device.mode, and is essential for chips
1430 	 * where the default of SPI_CS_HIGH = 0 is wrong.
1431 	 */
1432 	u32		mode;
1433 
1434 	/* ... may need additional spi_device chip config data here.
1435 	 * avoid stuff protocol drivers can set; but include stuff
1436 	 * needed to behave without being bound to a driver:
1437 	 *  - quirks like clock rate mattering when not selected
1438 	 */
1439 };
1440 
1441 #ifdef	CONFIG_SPI
1442 extern int
1443 spi_register_board_info(struct spi_board_info const *info, unsigned n);
1444 #else
1445 /* board init code may ignore whether SPI is configured or not */
1446 static inline int
spi_register_board_info(struct spi_board_info const * info,unsigned n)1447 spi_register_board_info(struct spi_board_info const *info, unsigned n)
1448 	{ return 0; }
1449 #endif
1450 
1451 /* If you're hotplugging an adapter with devices (parport, usb, etc)
1452  * use spi_new_device() to describe each device.  You can also call
1453  * spi_unregister_device() to start making that device vanish, but
1454  * normally that would be handled by spi_unregister_controller().
1455  */
1456 extern struct spi_device *
1457 spi_new_device(struct spi_controller *, struct spi_board_info *);
1458 
1459 extern void spi_unregister_device(struct spi_device *spi);
1460 
1461 extern const struct spi_device_id *
1462 spi_get_device_id(const struct spi_device *sdev);
1463 
1464 static inline bool
spi_transfer_is_last(struct spi_controller * ctlr,struct spi_transfer * xfer)1465 spi_transfer_is_last(struct spi_controller *ctlr, struct spi_transfer *xfer)
1466 {
1467 	return list_is_last(&xfer->transfer_list, &ctlr->cur_msg->transfers);
1468 }
1469 
1470 /* Compatibility layer */
1471 #define spi_master			spi_controller
1472 
1473 #define SPI_MASTER_HALF_DUPLEX		SPI_CONTROLLER_HALF_DUPLEX
1474 #define SPI_MASTER_NO_RX		SPI_CONTROLLER_NO_RX
1475 #define SPI_MASTER_NO_TX		SPI_CONTROLLER_NO_TX
1476 #define SPI_MASTER_MUST_RX		SPI_CONTROLLER_MUST_RX
1477 #define SPI_MASTER_MUST_TX		SPI_CONTROLLER_MUST_TX
1478 
1479 #define spi_master_get_devdata(_ctlr)	spi_controller_get_devdata(_ctlr)
1480 #define spi_master_set_devdata(_ctlr, _data)	\
1481 	spi_controller_set_devdata(_ctlr, _data)
1482 #define spi_master_get(_ctlr)		spi_controller_get(_ctlr)
1483 #define spi_master_put(_ctlr)		spi_controller_put(_ctlr)
1484 #define spi_master_suspend(_ctlr)	spi_controller_suspend(_ctlr)
1485 #define spi_master_resume(_ctlr)	spi_controller_resume(_ctlr)
1486 
1487 #define spi_register_master(_ctlr)	spi_register_controller(_ctlr)
1488 #define devm_spi_register_master(_dev, _ctlr) \
1489 	devm_spi_register_controller(_dev, _ctlr)
1490 #define spi_unregister_master(_ctlr)	spi_unregister_controller(_ctlr)
1491 
1492 #endif /* __LINUX_SPI_H */
1493