1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the TCP module.
8 *
9 * Version: @(#)tcp.h 1.0.5 05/23/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 */
14 #ifndef _TCP_H
15 #define _TCP_H
16
17 #define FASTRETRANS_DEBUG 1
18
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48
49 extern struct inet_hashinfo tcp_hashinfo;
50
51 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
52 int tcp_orphan_count_sum(void);
53
54 void tcp_time_wait(struct sock *sk, int state, int timeo);
55
56 #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER)
57 #define MAX_TCP_OPTION_SPACE 40
58 #define TCP_MIN_SND_MSS 48
59 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
60
61 /*
62 * Never offer a window over 32767 without using window scaling. Some
63 * poor stacks do signed 16bit maths!
64 */
65 #define MAX_TCP_WINDOW 32767U
66
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS 88U
69
70 /* The initial MTU to use for probing */
71 #define TCP_BASE_MSS 1024
72
73 /* probing interval, default to 10 minutes as per RFC4821 */
74 #define TCP_PROBE_INTERVAL 600
75
76 /* Specify interval when tcp mtu probing will stop */
77 #define TCP_PROBE_THRESHOLD 8
78
79 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
80 #define TCP_FASTRETRANS_THRESH 3
81
82 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
83 #define TCP_MAX_QUICKACKS 16U
84
85 /* Maximal number of window scale according to RFC1323 */
86 #define TCP_MAX_WSCALE 14U
87
88 /* urg_data states */
89 #define TCP_URG_VALID 0x0100
90 #define TCP_URG_NOTYET 0x0200
91 #define TCP_URG_READ 0x0400
92
93 #define TCP_RETR1 3 /*
94 * This is how many retries it does before it
95 * tries to figure out if the gateway is
96 * down. Minimal RFC value is 3; it corresponds
97 * to ~3sec-8min depending on RTO.
98 */
99
100 #define TCP_RETR2 15 /*
101 * This should take at least
102 * 90 minutes to time out.
103 * RFC1122 says that the limit is 100 sec.
104 * 15 is ~13-30min depending on RTO.
105 */
106
107 #define TCP_SYN_RETRIES 6 /* This is how many retries are done
108 * when active opening a connection.
109 * RFC1122 says the minimum retry MUST
110 * be at least 180secs. Nevertheless
111 * this value is corresponding to
112 * 63secs of retransmission with the
113 * current initial RTO.
114 */
115
116 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
117 * when passive opening a connection.
118 * This is corresponding to 31secs of
119 * retransmission with the current
120 * initial RTO.
121 */
122
123 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
124 * state, about 60 seconds */
125 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
126 /* BSD style FIN_WAIT2 deadlock breaker.
127 * It used to be 3min, new value is 60sec,
128 * to combine FIN-WAIT-2 timeout with
129 * TIME-WAIT timer.
130 */
131 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
132
133 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
134 #if HZ >= 100
135 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
136 #define TCP_ATO_MIN ((unsigned)(HZ/25))
137 #else
138 #define TCP_DELACK_MIN 4U
139 #define TCP_ATO_MIN 4U
140 #endif
141 #define TCP_RTO_MAX ((unsigned)(120*HZ))
142 #define TCP_RTO_MIN ((unsigned)(HZ/5))
143 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
144 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
145 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
146 * used as a fallback RTO for the
147 * initial data transmission if no
148 * valid RTT sample has been acquired,
149 * most likely due to retrans in 3WHS.
150 */
151
152 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
153 * for local resources.
154 */
155 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
156 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
157 #define TCP_KEEPALIVE_INTVL (75*HZ)
158
159 #define MAX_TCP_KEEPIDLE 32767
160 #define MAX_TCP_KEEPINTVL 32767
161 #define MAX_TCP_KEEPCNT 127
162 #define MAX_TCP_SYNCNT 127
163
164 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
165
166 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
167 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
168 * after this time. It should be equal
169 * (or greater than) TCP_TIMEWAIT_LEN
170 * to provide reliability equal to one
171 * provided by timewait state.
172 */
173 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host
174 * timestamps. It must be less than
175 * minimal timewait lifetime.
176 */
177 /*
178 * TCP option
179 */
180
181 #define TCPOPT_NOP 1 /* Padding */
182 #define TCPOPT_EOL 0 /* End of options */
183 #define TCPOPT_MSS 2 /* Segment size negotiating */
184 #define TCPOPT_WINDOW 3 /* Window scaling */
185 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */
186 #define TCPOPT_SACK 5 /* SACK Block */
187 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
188 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
189 #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */
190 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */
191 #define TCPOPT_EXP 254 /* Experimental */
192 /* Magic number to be after the option value for sharing TCP
193 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
194 */
195 #define TCPOPT_FASTOPEN_MAGIC 0xF989
196 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9
197
198 /*
199 * TCP option lengths
200 */
201
202 #define TCPOLEN_MSS 4
203 #define TCPOLEN_WINDOW 3
204 #define TCPOLEN_SACK_PERM 2
205 #define TCPOLEN_TIMESTAMP 10
206 #define TCPOLEN_MD5SIG 18
207 #define TCPOLEN_FASTOPEN_BASE 2
208 #define TCPOLEN_EXP_FASTOPEN_BASE 4
209 #define TCPOLEN_EXP_SMC_BASE 6
210
211 /* But this is what stacks really send out. */
212 #define TCPOLEN_TSTAMP_ALIGNED 12
213 #define TCPOLEN_WSCALE_ALIGNED 4
214 #define TCPOLEN_SACKPERM_ALIGNED 4
215 #define TCPOLEN_SACK_BASE 2
216 #define TCPOLEN_SACK_BASE_ALIGNED 4
217 #define TCPOLEN_SACK_PERBLOCK 8
218 #define TCPOLEN_MD5SIG_ALIGNED 20
219 #define TCPOLEN_MSS_ALIGNED 4
220 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8
221
222 /* Flags in tp->nonagle */
223 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
224 #define TCP_NAGLE_CORK 2 /* Socket is corked */
225 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
226
227 /* TCP thin-stream limits */
228 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
229
230 /* TCP initial congestion window as per rfc6928 */
231 #define TCP_INIT_CWND 10
232
233 /* Bit Flags for sysctl_tcp_fastopen */
234 #define TFO_CLIENT_ENABLE 1
235 #define TFO_SERVER_ENABLE 2
236 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
237
238 /* Accept SYN data w/o any cookie option */
239 #define TFO_SERVER_COOKIE_NOT_REQD 0x200
240
241 /* Force enable TFO on all listeners, i.e., not requiring the
242 * TCP_FASTOPEN socket option.
243 */
244 #define TFO_SERVER_WO_SOCKOPT1 0x400
245
246
247 /* sysctl variables for tcp */
248 extern int sysctl_tcp_max_orphans;
249 extern long sysctl_tcp_mem[3];
250
251 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */
252 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */
253 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */
254
255 extern atomic_long_t tcp_memory_allocated;
256 extern struct percpu_counter tcp_sockets_allocated;
257 extern unsigned long tcp_memory_pressure;
258
259 /* optimized version of sk_under_memory_pressure() for TCP sockets */
tcp_under_memory_pressure(const struct sock * sk)260 static inline bool tcp_under_memory_pressure(const struct sock *sk)
261 {
262 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
263 mem_cgroup_under_socket_pressure(sk->sk_memcg))
264 return true;
265
266 return READ_ONCE(tcp_memory_pressure);
267 }
268 /*
269 * The next routines deal with comparing 32 bit unsigned ints
270 * and worry about wraparound (automatic with unsigned arithmetic).
271 */
272
before(__u32 seq1,__u32 seq2)273 static inline bool before(__u32 seq1, __u32 seq2)
274 {
275 return (__s32)(seq1-seq2) < 0;
276 }
277 #define after(seq2, seq1) before(seq1, seq2)
278
279 /* is s2<=s1<=s3 ? */
between(__u32 seq1,__u32 seq2,__u32 seq3)280 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
281 {
282 return seq3 - seq2 >= seq1 - seq2;
283 }
284
tcp_out_of_memory(struct sock * sk)285 static inline bool tcp_out_of_memory(struct sock *sk)
286 {
287 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
288 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
289 return true;
290 return false;
291 }
292
tcp_wmem_free_skb(struct sock * sk,struct sk_buff * skb)293 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
294 {
295 sk_wmem_queued_add(sk, -skb->truesize);
296 if (!skb_zcopy_pure(skb))
297 sk_mem_uncharge(sk, skb->truesize);
298 else
299 sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
300 __kfree_skb(skb);
301 }
302
303 void sk_forced_mem_schedule(struct sock *sk, int size);
304
305 bool tcp_check_oom(struct sock *sk, int shift);
306
307
308 extern struct proto tcp_prot;
309
310 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
311 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
312 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
313 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
314
315 void tcp_tasklet_init(void);
316
317 int tcp_v4_err(struct sk_buff *skb, u32);
318
319 void tcp_shutdown(struct sock *sk, int how);
320
321 int tcp_v4_early_demux(struct sk_buff *skb);
322 int tcp_v4_rcv(struct sk_buff *skb);
323
324 void tcp_remove_empty_skb(struct sock *sk);
325 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
326 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
327 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
328 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
329 int flags);
330 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
331 size_t size, int flags);
332 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
333 size_t size, int flags);
334 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
335 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
336 int size_goal);
337 void tcp_release_cb(struct sock *sk);
338 void tcp_wfree(struct sk_buff *skb);
339 void tcp_write_timer_handler(struct sock *sk);
340 void tcp_delack_timer_handler(struct sock *sk);
341 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
342 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
343 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
344 void tcp_rcv_space_adjust(struct sock *sk);
345 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
346 void tcp_twsk_destructor(struct sock *sk);
347 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
348 struct pipe_inode_info *pipe, size_t len,
349 unsigned int flags);
350 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
351 bool force_schedule);
352
353 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
tcp_dec_quickack_mode(struct sock * sk,const unsigned int pkts)354 static inline void tcp_dec_quickack_mode(struct sock *sk,
355 const unsigned int pkts)
356 {
357 struct inet_connection_sock *icsk = inet_csk(sk);
358
359 if (icsk->icsk_ack.quick) {
360 if (pkts >= icsk->icsk_ack.quick) {
361 icsk->icsk_ack.quick = 0;
362 /* Leaving quickack mode we deflate ATO. */
363 icsk->icsk_ack.ato = TCP_ATO_MIN;
364 } else
365 icsk->icsk_ack.quick -= pkts;
366 }
367 }
368
369 #define TCP_ECN_OK 1
370 #define TCP_ECN_QUEUE_CWR 2
371 #define TCP_ECN_DEMAND_CWR 4
372 #define TCP_ECN_SEEN 8
373
374 enum tcp_tw_status {
375 TCP_TW_SUCCESS = 0,
376 TCP_TW_RST = 1,
377 TCP_TW_ACK = 2,
378 TCP_TW_SYN = 3
379 };
380
381
382 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
383 struct sk_buff *skb,
384 const struct tcphdr *th);
385 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
386 struct request_sock *req, bool fastopen,
387 bool *lost_race);
388 int tcp_child_process(struct sock *parent, struct sock *child,
389 struct sk_buff *skb);
390 void tcp_enter_loss(struct sock *sk);
391 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
392 void tcp_clear_retrans(struct tcp_sock *tp);
393 void tcp_update_metrics(struct sock *sk);
394 void tcp_init_metrics(struct sock *sk);
395 void tcp_metrics_init(void);
396 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
397 void __tcp_close(struct sock *sk, long timeout);
398 void tcp_close(struct sock *sk, long timeout);
399 void tcp_init_sock(struct sock *sk);
400 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
401 __poll_t tcp_poll(struct file *file, struct socket *sock,
402 struct poll_table_struct *wait);
403 int tcp_getsockopt(struct sock *sk, int level, int optname,
404 char __user *optval, int __user *optlen);
405 bool tcp_bpf_bypass_getsockopt(int level, int optname);
406 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
407 unsigned int optlen);
408 void tcp_set_keepalive(struct sock *sk, int val);
409 void tcp_syn_ack_timeout(const struct request_sock *req);
410 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
411 int flags, int *addr_len);
412 int tcp_set_rcvlowat(struct sock *sk, int val);
413 int tcp_set_window_clamp(struct sock *sk, int val);
414 void tcp_update_recv_tstamps(struct sk_buff *skb,
415 struct scm_timestamping_internal *tss);
416 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
417 struct scm_timestamping_internal *tss);
418 void tcp_data_ready(struct sock *sk);
419 #ifdef CONFIG_MMU
420 int tcp_mmap(struct file *file, struct socket *sock,
421 struct vm_area_struct *vma);
422 #endif
423 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
424 struct tcp_options_received *opt_rx,
425 int estab, struct tcp_fastopen_cookie *foc);
426 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
427
428 /*
429 * BPF SKB-less helpers
430 */
431 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
432 struct tcphdr *th, u32 *cookie);
433 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
434 struct tcphdr *th, u32 *cookie);
435 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
436 const struct tcp_request_sock_ops *af_ops,
437 struct sock *sk, struct tcphdr *th);
438 /*
439 * TCP v4 functions exported for the inet6 API
440 */
441
442 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
443 void tcp_v4_mtu_reduced(struct sock *sk);
444 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
445 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
446 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
447 struct sock *tcp_create_openreq_child(const struct sock *sk,
448 struct request_sock *req,
449 struct sk_buff *skb);
450 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
451 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
452 struct request_sock *req,
453 struct dst_entry *dst,
454 struct request_sock *req_unhash,
455 bool *own_req);
456 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
457 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
458 int tcp_connect(struct sock *sk);
459 enum tcp_synack_type {
460 TCP_SYNACK_NORMAL,
461 TCP_SYNACK_FASTOPEN,
462 TCP_SYNACK_COOKIE,
463 };
464 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
465 struct request_sock *req,
466 struct tcp_fastopen_cookie *foc,
467 enum tcp_synack_type synack_type,
468 struct sk_buff *syn_skb);
469 int tcp_disconnect(struct sock *sk, int flags);
470
471 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
472 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
473 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
474
475 /* From syncookies.c */
476 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
477 struct request_sock *req,
478 struct dst_entry *dst, u32 tsoff);
479 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
480 u32 cookie);
481 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
482 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
483 struct sock *sk, struct sk_buff *skb);
484 #ifdef CONFIG_SYN_COOKIES
485
486 /* Syncookies use a monotonic timer which increments every 60 seconds.
487 * This counter is used both as a hash input and partially encoded into
488 * the cookie value. A cookie is only validated further if the delta
489 * between the current counter value and the encoded one is less than this,
490 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
491 * the counter advances immediately after a cookie is generated).
492 */
493 #define MAX_SYNCOOKIE_AGE 2
494 #define TCP_SYNCOOKIE_PERIOD (60 * HZ)
495 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
496
497 /* syncookies: remember time of last synqueue overflow
498 * But do not dirty this field too often (once per second is enough)
499 * It is racy as we do not hold a lock, but race is very minor.
500 */
tcp_synq_overflow(const struct sock * sk)501 static inline void tcp_synq_overflow(const struct sock *sk)
502 {
503 unsigned int last_overflow;
504 unsigned int now = jiffies;
505
506 if (sk->sk_reuseport) {
507 struct sock_reuseport *reuse;
508
509 reuse = rcu_dereference(sk->sk_reuseport_cb);
510 if (likely(reuse)) {
511 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
512 if (!time_between32(now, last_overflow,
513 last_overflow + HZ))
514 WRITE_ONCE(reuse->synq_overflow_ts, now);
515 return;
516 }
517 }
518
519 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
520 if (!time_between32(now, last_overflow, last_overflow + HZ))
521 WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
522 }
523
524 /* syncookies: no recent synqueue overflow on this listening socket? */
tcp_synq_no_recent_overflow(const struct sock * sk)525 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
526 {
527 unsigned int last_overflow;
528 unsigned int now = jiffies;
529
530 if (sk->sk_reuseport) {
531 struct sock_reuseport *reuse;
532
533 reuse = rcu_dereference(sk->sk_reuseport_cb);
534 if (likely(reuse)) {
535 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
536 return !time_between32(now, last_overflow - HZ,
537 last_overflow +
538 TCP_SYNCOOKIE_VALID);
539 }
540 }
541
542 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
543
544 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
545 * then we're under synflood. However, we have to use
546 * 'last_overflow - HZ' as lower bound. That's because a concurrent
547 * tcp_synq_overflow() could update .ts_recent_stamp after we read
548 * jiffies but before we store .ts_recent_stamp into last_overflow,
549 * which could lead to rejecting a valid syncookie.
550 */
551 return !time_between32(now, last_overflow - HZ,
552 last_overflow + TCP_SYNCOOKIE_VALID);
553 }
554
tcp_cookie_time(void)555 static inline u32 tcp_cookie_time(void)
556 {
557 u64 val = get_jiffies_64();
558
559 do_div(val, TCP_SYNCOOKIE_PERIOD);
560 return val;
561 }
562
563 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
564 u16 *mssp);
565 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
566 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
567 bool cookie_timestamp_decode(const struct net *net,
568 struct tcp_options_received *opt);
569 bool cookie_ecn_ok(const struct tcp_options_received *opt,
570 const struct net *net, const struct dst_entry *dst);
571
572 /* From net/ipv6/syncookies.c */
573 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
574 u32 cookie);
575 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
576
577 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
578 const struct tcphdr *th, u16 *mssp);
579 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
580 #endif
581 /* tcp_output.c */
582
583 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
584 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
585 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
586 int nonagle);
587 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
588 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
589 void tcp_retransmit_timer(struct sock *sk);
590 void tcp_xmit_retransmit_queue(struct sock *);
591 void tcp_simple_retransmit(struct sock *);
592 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
593 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
594 enum tcp_queue {
595 TCP_FRAG_IN_WRITE_QUEUE,
596 TCP_FRAG_IN_RTX_QUEUE,
597 };
598 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
599 struct sk_buff *skb, u32 len,
600 unsigned int mss_now, gfp_t gfp);
601
602 void tcp_send_probe0(struct sock *);
603 void tcp_send_partial(struct sock *);
604 int tcp_write_wakeup(struct sock *, int mib);
605 void tcp_send_fin(struct sock *sk);
606 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
607 int tcp_send_synack(struct sock *);
608 void tcp_push_one(struct sock *, unsigned int mss_now);
609 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
610 void tcp_send_ack(struct sock *sk);
611 void tcp_send_delayed_ack(struct sock *sk);
612 void tcp_send_loss_probe(struct sock *sk);
613 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
614 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
615 const struct sk_buff *next_skb);
616
617 /* tcp_input.c */
618 void tcp_rearm_rto(struct sock *sk);
619 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
620 void tcp_reset(struct sock *sk, struct sk_buff *skb);
621 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
622 void tcp_fin(struct sock *sk);
623
624 /* tcp_timer.c */
625 void tcp_init_xmit_timers(struct sock *);
tcp_clear_xmit_timers(struct sock * sk)626 static inline void tcp_clear_xmit_timers(struct sock *sk)
627 {
628 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
629 __sock_put(sk);
630
631 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
632 __sock_put(sk);
633
634 inet_csk_clear_xmit_timers(sk);
635 }
636
637 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
638 unsigned int tcp_current_mss(struct sock *sk);
639 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
640
641 /* Bound MSS / TSO packet size with the half of the window */
tcp_bound_to_half_wnd(struct tcp_sock * tp,int pktsize)642 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
643 {
644 int cutoff;
645
646 /* When peer uses tiny windows, there is no use in packetizing
647 * to sub-MSS pieces for the sake of SWS or making sure there
648 * are enough packets in the pipe for fast recovery.
649 *
650 * On the other hand, for extremely large MSS devices, handling
651 * smaller than MSS windows in this way does make sense.
652 */
653 if (tp->max_window > TCP_MSS_DEFAULT)
654 cutoff = (tp->max_window >> 1);
655 else
656 cutoff = tp->max_window;
657
658 if (cutoff && pktsize > cutoff)
659 return max_t(int, cutoff, 68U - tp->tcp_header_len);
660 else
661 return pktsize;
662 }
663
664 /* tcp.c */
665 void tcp_get_info(struct sock *, struct tcp_info *);
666
667 /* Read 'sendfile()'-style from a TCP socket */
668 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
669 sk_read_actor_t recv_actor);
670
671 void tcp_initialize_rcv_mss(struct sock *sk);
672
673 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
674 int tcp_mss_to_mtu(struct sock *sk, int mss);
675 void tcp_mtup_init(struct sock *sk);
676
tcp_bound_rto(const struct sock * sk)677 static inline void tcp_bound_rto(const struct sock *sk)
678 {
679 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
680 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
681 }
682
__tcp_set_rto(const struct tcp_sock * tp)683 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
684 {
685 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
686 }
687
__tcp_fast_path_on(struct tcp_sock * tp,u32 snd_wnd)688 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
689 {
690 /* mptcp hooks are only on the slow path */
691 if (sk_is_mptcp((struct sock *)tp))
692 return;
693
694 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
695 ntohl(TCP_FLAG_ACK) |
696 snd_wnd);
697 }
698
tcp_fast_path_on(struct tcp_sock * tp)699 static inline void tcp_fast_path_on(struct tcp_sock *tp)
700 {
701 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
702 }
703
tcp_fast_path_check(struct sock * sk)704 static inline void tcp_fast_path_check(struct sock *sk)
705 {
706 struct tcp_sock *tp = tcp_sk(sk);
707
708 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
709 tp->rcv_wnd &&
710 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
711 !tp->urg_data)
712 tcp_fast_path_on(tp);
713 }
714
715 /* Compute the actual rto_min value */
tcp_rto_min(struct sock * sk)716 static inline u32 tcp_rto_min(struct sock *sk)
717 {
718 const struct dst_entry *dst = __sk_dst_get(sk);
719 u32 rto_min = inet_csk(sk)->icsk_rto_min;
720
721 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
722 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
723 return rto_min;
724 }
725
tcp_rto_min_us(struct sock * sk)726 static inline u32 tcp_rto_min_us(struct sock *sk)
727 {
728 return jiffies_to_usecs(tcp_rto_min(sk));
729 }
730
tcp_ca_dst_locked(const struct dst_entry * dst)731 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
732 {
733 return dst_metric_locked(dst, RTAX_CC_ALGO);
734 }
735
736 /* Minimum RTT in usec. ~0 means not available. */
tcp_min_rtt(const struct tcp_sock * tp)737 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
738 {
739 return minmax_get(&tp->rtt_min);
740 }
741
742 /* Compute the actual receive window we are currently advertising.
743 * Rcv_nxt can be after the window if our peer push more data
744 * than the offered window.
745 */
tcp_receive_window(const struct tcp_sock * tp)746 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
747 {
748 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
749
750 if (win < 0)
751 win = 0;
752 return (u32) win;
753 }
754
755 /* Choose a new window, without checks for shrinking, and without
756 * scaling applied to the result. The caller does these things
757 * if necessary. This is a "raw" window selection.
758 */
759 u32 __tcp_select_window(struct sock *sk);
760
761 void tcp_send_window_probe(struct sock *sk);
762
763 /* TCP uses 32bit jiffies to save some space.
764 * Note that this is different from tcp_time_stamp, which
765 * historically has been the same until linux-4.13.
766 */
767 #define tcp_jiffies32 ((u32)jiffies)
768
769 /*
770 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
771 * It is no longer tied to jiffies, but to 1 ms clock.
772 * Note: double check if you want to use tcp_jiffies32 instead of this.
773 */
774 #define TCP_TS_HZ 1000
775
tcp_clock_ns(void)776 static inline u64 tcp_clock_ns(void)
777 {
778 return ktime_get_ns();
779 }
780
tcp_clock_us(void)781 static inline u64 tcp_clock_us(void)
782 {
783 return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
784 }
785
786 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
tcp_time_stamp(const struct tcp_sock * tp)787 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
788 {
789 return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
790 }
791
792 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
tcp_ns_to_ts(u64 ns)793 static inline u32 tcp_ns_to_ts(u64 ns)
794 {
795 return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
796 }
797
798 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
tcp_time_stamp_raw(void)799 static inline u32 tcp_time_stamp_raw(void)
800 {
801 return tcp_ns_to_ts(tcp_clock_ns());
802 }
803
804 void tcp_mstamp_refresh(struct tcp_sock *tp);
805
tcp_stamp_us_delta(u64 t1,u64 t0)806 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
807 {
808 return max_t(s64, t1 - t0, 0);
809 }
810
tcp_skb_timestamp(const struct sk_buff * skb)811 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
812 {
813 return tcp_ns_to_ts(skb->skb_mstamp_ns);
814 }
815
816 /* provide the departure time in us unit */
tcp_skb_timestamp_us(const struct sk_buff * skb)817 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
818 {
819 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
820 }
821
822
823 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
824
825 #define TCPHDR_FIN 0x01
826 #define TCPHDR_SYN 0x02
827 #define TCPHDR_RST 0x04
828 #define TCPHDR_PSH 0x08
829 #define TCPHDR_ACK 0x10
830 #define TCPHDR_URG 0x20
831 #define TCPHDR_ECE 0x40
832 #define TCPHDR_CWR 0x80
833
834 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
835
836 /* This is what the send packet queuing engine uses to pass
837 * TCP per-packet control information to the transmission code.
838 * We also store the host-order sequence numbers in here too.
839 * This is 44 bytes if IPV6 is enabled.
840 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
841 */
842 struct tcp_skb_cb {
843 __u32 seq; /* Starting sequence number */
844 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
845 union {
846 /* Note : tcp_tw_isn is used in input path only
847 * (isn chosen by tcp_timewait_state_process())
848 *
849 * tcp_gso_segs/size are used in write queue only,
850 * cf tcp_skb_pcount()/tcp_skb_mss()
851 */
852 __u32 tcp_tw_isn;
853 struct {
854 u16 tcp_gso_segs;
855 u16 tcp_gso_size;
856 };
857 };
858 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
859
860 __u8 sacked; /* State flags for SACK. */
861 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
862 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
863 #define TCPCB_LOST 0x04 /* SKB is lost */
864 #define TCPCB_TAGBITS 0x07 /* All tag bits */
865 #define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp_ns) */
866 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
867 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
868 TCPCB_REPAIRED)
869
870 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
871 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */
872 eor:1, /* Is skb MSG_EOR marked? */
873 has_rxtstamp:1, /* SKB has a RX timestamp */
874 unused:5;
875 __u32 ack_seq; /* Sequence number ACK'd */
876 union {
877 struct {
878 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
879 /* There is space for up to 24 bytes */
880 __u32 is_app_limited:1, /* cwnd not fully used? */
881 delivered_ce:20,
882 unused:11;
883 /* pkts S/ACKed so far upon tx of skb, incl retrans: */
884 __u32 delivered;
885 /* start of send pipeline phase */
886 u64 first_tx_mstamp;
887 /* when we reached the "delivered" count */
888 u64 delivered_mstamp;
889 } tx; /* only used for outgoing skbs */
890 union {
891 struct inet_skb_parm h4;
892 #if IS_ENABLED(CONFIG_IPV6)
893 struct inet6_skb_parm h6;
894 #endif
895 } header; /* For incoming skbs */
896 };
897 };
898
899 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
900
901 extern const struct inet_connection_sock_af_ops ipv4_specific;
902
903 #if IS_ENABLED(CONFIG_IPV6)
904 /* This is the variant of inet6_iif() that must be used by TCP,
905 * as TCP moves IP6CB into a different location in skb->cb[]
906 */
tcp_v6_iif(const struct sk_buff * skb)907 static inline int tcp_v6_iif(const struct sk_buff *skb)
908 {
909 return TCP_SKB_CB(skb)->header.h6.iif;
910 }
911
tcp_v6_iif_l3_slave(const struct sk_buff * skb)912 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
913 {
914 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
915
916 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
917 }
918
919 /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v6_sdif(const struct sk_buff * skb)920 static inline int tcp_v6_sdif(const struct sk_buff *skb)
921 {
922 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
923 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
924 return TCP_SKB_CB(skb)->header.h6.iif;
925 #endif
926 return 0;
927 }
928
929 extern const struct inet_connection_sock_af_ops ipv6_specific;
930
931 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
932 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
933 INDIRECT_CALLABLE_DECLARE(void tcp_v6_early_demux(struct sk_buff *skb));
934
935 #endif
936
937 /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v4_sdif(struct sk_buff * skb)938 static inline int tcp_v4_sdif(struct sk_buff *skb)
939 {
940 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
941 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
942 return TCP_SKB_CB(skb)->header.h4.iif;
943 #endif
944 return 0;
945 }
946
947 /* Due to TSO, an SKB can be composed of multiple actual
948 * packets. To keep these tracked properly, we use this.
949 */
tcp_skb_pcount(const struct sk_buff * skb)950 static inline int tcp_skb_pcount(const struct sk_buff *skb)
951 {
952 return TCP_SKB_CB(skb)->tcp_gso_segs;
953 }
954
tcp_skb_pcount_set(struct sk_buff * skb,int segs)955 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
956 {
957 TCP_SKB_CB(skb)->tcp_gso_segs = segs;
958 }
959
tcp_skb_pcount_add(struct sk_buff * skb,int segs)960 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
961 {
962 TCP_SKB_CB(skb)->tcp_gso_segs += segs;
963 }
964
965 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
tcp_skb_mss(const struct sk_buff * skb)966 static inline int tcp_skb_mss(const struct sk_buff *skb)
967 {
968 return TCP_SKB_CB(skb)->tcp_gso_size;
969 }
970
tcp_skb_can_collapse_to(const struct sk_buff * skb)971 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
972 {
973 return likely(!TCP_SKB_CB(skb)->eor);
974 }
975
tcp_skb_can_collapse(const struct sk_buff * to,const struct sk_buff * from)976 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
977 const struct sk_buff *from)
978 {
979 return likely(tcp_skb_can_collapse_to(to) &&
980 mptcp_skb_can_collapse(to, from) &&
981 skb_pure_zcopy_same(to, from));
982 }
983
984 /* Events passed to congestion control interface */
985 enum tcp_ca_event {
986 CA_EVENT_TX_START, /* first transmit when no packets in flight */
987 CA_EVENT_CWND_RESTART, /* congestion window restart */
988 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
989 CA_EVENT_LOSS, /* loss timeout */
990 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */
991 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */
992 };
993
994 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
995 enum tcp_ca_ack_event_flags {
996 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */
997 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */
998 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */
999 };
1000
1001 /*
1002 * Interface for adding new TCP congestion control handlers
1003 */
1004 #define TCP_CA_NAME_MAX 16
1005 #define TCP_CA_MAX 128
1006 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
1007
1008 #define TCP_CA_UNSPEC 0
1009
1010 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1011 #define TCP_CONG_NON_RESTRICTED 0x1
1012 /* Requires ECN/ECT set on all packets */
1013 #define TCP_CONG_NEEDS_ECN 0x2
1014 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1015
1016 union tcp_cc_info;
1017
1018 struct ack_sample {
1019 u32 pkts_acked;
1020 s32 rtt_us;
1021 u32 in_flight;
1022 };
1023
1024 /* A rate sample measures the number of (original/retransmitted) data
1025 * packets delivered "delivered" over an interval of time "interval_us".
1026 * The tcp_rate.c code fills in the rate sample, and congestion
1027 * control modules that define a cong_control function to run at the end
1028 * of ACK processing can optionally chose to consult this sample when
1029 * setting cwnd and pacing rate.
1030 * A sample is invalid if "delivered" or "interval_us" is negative.
1031 */
1032 struct rate_sample {
1033 u64 prior_mstamp; /* starting timestamp for interval */
1034 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */
1035 u32 prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1036 s32 delivered; /* number of packets delivered over interval */
1037 s32 delivered_ce; /* number of packets delivered w/ CE marks*/
1038 long interval_us; /* time for tp->delivered to incr "delivered" */
1039 u32 snd_interval_us; /* snd interval for delivered packets */
1040 u32 rcv_interval_us; /* rcv interval for delivered packets */
1041 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */
1042 int losses; /* number of packets marked lost upon ACK */
1043 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */
1044 u32 prior_in_flight; /* in flight before this ACK */
1045 bool is_app_limited; /* is sample from packet with bubble in pipe? */
1046 bool is_retrans; /* is sample from retransmission? */
1047 bool is_ack_delayed; /* is this (likely) a delayed ACK? */
1048 };
1049
1050 struct tcp_congestion_ops {
1051 /* fast path fields are put first to fill one cache line */
1052
1053 /* return slow start threshold (required) */
1054 u32 (*ssthresh)(struct sock *sk);
1055
1056 /* do new cwnd calculation (required) */
1057 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1058
1059 /* call before changing ca_state (optional) */
1060 void (*set_state)(struct sock *sk, u8 new_state);
1061
1062 /* call when cwnd event occurs (optional) */
1063 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1064
1065 /* call when ack arrives (optional) */
1066 void (*in_ack_event)(struct sock *sk, u32 flags);
1067
1068 /* hook for packet ack accounting (optional) */
1069 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1070
1071 /* override sysctl_tcp_min_tso_segs */
1072 u32 (*min_tso_segs)(struct sock *sk);
1073
1074 /* call when packets are delivered to update cwnd and pacing rate,
1075 * after all the ca_state processing. (optional)
1076 */
1077 void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1078
1079
1080 /* new value of cwnd after loss (required) */
1081 u32 (*undo_cwnd)(struct sock *sk);
1082 /* returns the multiplier used in tcp_sndbuf_expand (optional) */
1083 u32 (*sndbuf_expand)(struct sock *sk);
1084
1085 /* control/slow paths put last */
1086 /* get info for inet_diag (optional) */
1087 size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1088 union tcp_cc_info *info);
1089
1090 char name[TCP_CA_NAME_MAX];
1091 struct module *owner;
1092 struct list_head list;
1093 u32 key;
1094 u32 flags;
1095
1096 /* initialize private data (optional) */
1097 void (*init)(struct sock *sk);
1098 /* cleanup private data (optional) */
1099 void (*release)(struct sock *sk);
1100 } ____cacheline_aligned_in_smp;
1101
1102 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1103 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1104
1105 void tcp_assign_congestion_control(struct sock *sk);
1106 void tcp_init_congestion_control(struct sock *sk);
1107 void tcp_cleanup_congestion_control(struct sock *sk);
1108 int tcp_set_default_congestion_control(struct net *net, const char *name);
1109 void tcp_get_default_congestion_control(struct net *net, char *name);
1110 void tcp_get_available_congestion_control(char *buf, size_t len);
1111 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1112 int tcp_set_allowed_congestion_control(char *allowed);
1113 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1114 bool cap_net_admin);
1115 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1116 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1117
1118 u32 tcp_reno_ssthresh(struct sock *sk);
1119 u32 tcp_reno_undo_cwnd(struct sock *sk);
1120 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1121 extern struct tcp_congestion_ops tcp_reno;
1122
1123 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1124 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1125 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1126 #ifdef CONFIG_INET
1127 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1128 #else
tcp_ca_get_name_by_key(u32 key,char * buffer)1129 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1130 {
1131 return NULL;
1132 }
1133 #endif
1134
tcp_ca_needs_ecn(const struct sock * sk)1135 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1136 {
1137 const struct inet_connection_sock *icsk = inet_csk(sk);
1138
1139 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1140 }
1141
tcp_set_ca_state(struct sock * sk,const u8 ca_state)1142 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1143 {
1144 struct inet_connection_sock *icsk = inet_csk(sk);
1145
1146 if (icsk->icsk_ca_ops->set_state)
1147 icsk->icsk_ca_ops->set_state(sk, ca_state);
1148 icsk->icsk_ca_state = ca_state;
1149 }
1150
tcp_ca_event(struct sock * sk,const enum tcp_ca_event event)1151 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1152 {
1153 const struct inet_connection_sock *icsk = inet_csk(sk);
1154
1155 if (icsk->icsk_ca_ops->cwnd_event)
1156 icsk->icsk_ca_ops->cwnd_event(sk, event);
1157 }
1158
1159 /* From tcp_rate.c */
1160 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1161 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1162 struct rate_sample *rs);
1163 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1164 bool is_sack_reneg, struct rate_sample *rs);
1165 void tcp_rate_check_app_limited(struct sock *sk);
1166
1167 /* These functions determine how the current flow behaves in respect of SACK
1168 * handling. SACK is negotiated with the peer, and therefore it can vary
1169 * between different flows.
1170 *
1171 * tcp_is_sack - SACK enabled
1172 * tcp_is_reno - No SACK
1173 */
tcp_is_sack(const struct tcp_sock * tp)1174 static inline int tcp_is_sack(const struct tcp_sock *tp)
1175 {
1176 return likely(tp->rx_opt.sack_ok);
1177 }
1178
tcp_is_reno(const struct tcp_sock * tp)1179 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1180 {
1181 return !tcp_is_sack(tp);
1182 }
1183
tcp_left_out(const struct tcp_sock * tp)1184 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1185 {
1186 return tp->sacked_out + tp->lost_out;
1187 }
1188
1189 /* This determines how many packets are "in the network" to the best
1190 * of our knowledge. In many cases it is conservative, but where
1191 * detailed information is available from the receiver (via SACK
1192 * blocks etc.) we can make more aggressive calculations.
1193 *
1194 * Use this for decisions involving congestion control, use just
1195 * tp->packets_out to determine if the send queue is empty or not.
1196 *
1197 * Read this equation as:
1198 *
1199 * "Packets sent once on transmission queue" MINUS
1200 * "Packets left network, but not honestly ACKed yet" PLUS
1201 * "Packets fast retransmitted"
1202 */
tcp_packets_in_flight(const struct tcp_sock * tp)1203 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1204 {
1205 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1206 }
1207
1208 #define TCP_INFINITE_SSTHRESH 0x7fffffff
1209
tcp_in_slow_start(const struct tcp_sock * tp)1210 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1211 {
1212 return tp->snd_cwnd < tp->snd_ssthresh;
1213 }
1214
tcp_in_initial_slowstart(const struct tcp_sock * tp)1215 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1216 {
1217 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1218 }
1219
tcp_in_cwnd_reduction(const struct sock * sk)1220 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1221 {
1222 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1223 (1 << inet_csk(sk)->icsk_ca_state);
1224 }
1225
1226 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1227 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1228 * ssthresh.
1229 */
tcp_current_ssthresh(const struct sock * sk)1230 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1231 {
1232 const struct tcp_sock *tp = tcp_sk(sk);
1233
1234 if (tcp_in_cwnd_reduction(sk))
1235 return tp->snd_ssthresh;
1236 else
1237 return max(tp->snd_ssthresh,
1238 ((tp->snd_cwnd >> 1) +
1239 (tp->snd_cwnd >> 2)));
1240 }
1241
1242 /* Use define here intentionally to get WARN_ON location shown at the caller */
1243 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1244
1245 void tcp_enter_cwr(struct sock *sk);
1246 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1247
1248 /* The maximum number of MSS of available cwnd for which TSO defers
1249 * sending if not using sysctl_tcp_tso_win_divisor.
1250 */
tcp_max_tso_deferred_mss(const struct tcp_sock * tp)1251 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1252 {
1253 return 3;
1254 }
1255
1256 /* Returns end sequence number of the receiver's advertised window */
tcp_wnd_end(const struct tcp_sock * tp)1257 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1258 {
1259 return tp->snd_una + tp->snd_wnd;
1260 }
1261
1262 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1263 * flexible approach. The RFC suggests cwnd should not be raised unless
1264 * it was fully used previously. And that's exactly what we do in
1265 * congestion avoidance mode. But in slow start we allow cwnd to grow
1266 * as long as the application has used half the cwnd.
1267 * Example :
1268 * cwnd is 10 (IW10), but application sends 9 frames.
1269 * We allow cwnd to reach 18 when all frames are ACKed.
1270 * This check is safe because it's as aggressive as slow start which already
1271 * risks 100% overshoot. The advantage is that we discourage application to
1272 * either send more filler packets or data to artificially blow up the cwnd
1273 * usage, and allow application-limited process to probe bw more aggressively.
1274 */
tcp_is_cwnd_limited(const struct sock * sk)1275 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1276 {
1277 const struct tcp_sock *tp = tcp_sk(sk);
1278
1279 /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1280 if (tcp_in_slow_start(tp))
1281 return tp->snd_cwnd < 2 * tp->max_packets_out;
1282
1283 return tp->is_cwnd_limited;
1284 }
1285
1286 /* BBR congestion control needs pacing.
1287 * Same remark for SO_MAX_PACING_RATE.
1288 * sch_fq packet scheduler is efficiently handling pacing,
1289 * but is not always installed/used.
1290 * Return true if TCP stack should pace packets itself.
1291 */
tcp_needs_internal_pacing(const struct sock * sk)1292 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1293 {
1294 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1295 }
1296
1297 /* Estimates in how many jiffies next packet for this flow can be sent.
1298 * Scheduling a retransmit timer too early would be silly.
1299 */
tcp_pacing_delay(const struct sock * sk)1300 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1301 {
1302 s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1303
1304 return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1305 }
1306
tcp_reset_xmit_timer(struct sock * sk,const int what,unsigned long when,const unsigned long max_when)1307 static inline void tcp_reset_xmit_timer(struct sock *sk,
1308 const int what,
1309 unsigned long when,
1310 const unsigned long max_when)
1311 {
1312 inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1313 max_when);
1314 }
1315
1316 /* Something is really bad, we could not queue an additional packet,
1317 * because qdisc is full or receiver sent a 0 window, or we are paced.
1318 * We do not want to add fuel to the fire, or abort too early,
1319 * so make sure the timer we arm now is at least 200ms in the future,
1320 * regardless of current icsk_rto value (as it could be ~2ms)
1321 */
tcp_probe0_base(const struct sock * sk)1322 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1323 {
1324 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1325 }
1326
1327 /* Variant of inet_csk_rto_backoff() used for zero window probes */
tcp_probe0_when(const struct sock * sk,unsigned long max_when)1328 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1329 unsigned long max_when)
1330 {
1331 u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1332 inet_csk(sk)->icsk_backoff);
1333 u64 when = (u64)tcp_probe0_base(sk) << backoff;
1334
1335 return (unsigned long)min_t(u64, when, max_when);
1336 }
1337
tcp_check_probe_timer(struct sock * sk)1338 static inline void tcp_check_probe_timer(struct sock *sk)
1339 {
1340 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1341 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1342 tcp_probe0_base(sk), TCP_RTO_MAX);
1343 }
1344
tcp_init_wl(struct tcp_sock * tp,u32 seq)1345 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1346 {
1347 tp->snd_wl1 = seq;
1348 }
1349
tcp_update_wl(struct tcp_sock * tp,u32 seq)1350 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1351 {
1352 tp->snd_wl1 = seq;
1353 }
1354
1355 /*
1356 * Calculate(/check) TCP checksum
1357 */
tcp_v4_check(int len,__be32 saddr,__be32 daddr,__wsum base)1358 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1359 __be32 daddr, __wsum base)
1360 {
1361 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1362 }
1363
tcp_checksum_complete(struct sk_buff * skb)1364 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1365 {
1366 return !skb_csum_unnecessary(skb) &&
1367 __skb_checksum_complete(skb);
1368 }
1369
1370 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1371 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1372 void tcp_set_state(struct sock *sk, int state);
1373 void tcp_done(struct sock *sk);
1374 int tcp_abort(struct sock *sk, int err);
1375
tcp_sack_reset(struct tcp_options_received * rx_opt)1376 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1377 {
1378 rx_opt->dsack = 0;
1379 rx_opt->num_sacks = 0;
1380 }
1381
1382 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1383
tcp_slow_start_after_idle_check(struct sock * sk)1384 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1385 {
1386 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1387 struct tcp_sock *tp = tcp_sk(sk);
1388 s32 delta;
1389
1390 if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1391 ca_ops->cong_control)
1392 return;
1393 delta = tcp_jiffies32 - tp->lsndtime;
1394 if (delta > inet_csk(sk)->icsk_rto)
1395 tcp_cwnd_restart(sk, delta);
1396 }
1397
1398 /* Determine a window scaling and initial window to offer. */
1399 void tcp_select_initial_window(const struct sock *sk, int __space,
1400 __u32 mss, __u32 *rcv_wnd,
1401 __u32 *window_clamp, int wscale_ok,
1402 __u8 *rcv_wscale, __u32 init_rcv_wnd);
1403
tcp_win_from_space(const struct sock * sk,int space)1404 static inline int tcp_win_from_space(const struct sock *sk, int space)
1405 {
1406 int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1407
1408 return tcp_adv_win_scale <= 0 ?
1409 (space>>(-tcp_adv_win_scale)) :
1410 space - (space>>tcp_adv_win_scale);
1411 }
1412
1413 /* Note: caller must be prepared to deal with negative returns */
tcp_space(const struct sock * sk)1414 static inline int tcp_space(const struct sock *sk)
1415 {
1416 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1417 READ_ONCE(sk->sk_backlog.len) -
1418 atomic_read(&sk->sk_rmem_alloc));
1419 }
1420
tcp_full_space(const struct sock * sk)1421 static inline int tcp_full_space(const struct sock *sk)
1422 {
1423 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1424 }
1425
tcp_adjust_rcv_ssthresh(struct sock * sk)1426 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1427 {
1428 int unused_mem = sk_unused_reserved_mem(sk);
1429 struct tcp_sock *tp = tcp_sk(sk);
1430
1431 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
1432 if (unused_mem)
1433 tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1434 tcp_win_from_space(sk, unused_mem));
1435 }
1436
1437 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1438
1439 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1440 * If 87.5 % (7/8) of the space has been consumed, we want to override
1441 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1442 * len/truesize ratio.
1443 */
tcp_rmem_pressure(const struct sock * sk)1444 static inline bool tcp_rmem_pressure(const struct sock *sk)
1445 {
1446 int rcvbuf, threshold;
1447
1448 if (tcp_under_memory_pressure(sk))
1449 return true;
1450
1451 rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1452 threshold = rcvbuf - (rcvbuf >> 3);
1453
1454 return atomic_read(&sk->sk_rmem_alloc) > threshold;
1455 }
1456
tcp_epollin_ready(const struct sock * sk,int target)1457 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1458 {
1459 const struct tcp_sock *tp = tcp_sk(sk);
1460 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1461
1462 if (avail <= 0)
1463 return false;
1464
1465 return (avail >= target) || tcp_rmem_pressure(sk) ||
1466 (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1467 }
1468
1469 extern void tcp_openreq_init_rwin(struct request_sock *req,
1470 const struct sock *sk_listener,
1471 const struct dst_entry *dst);
1472
1473 void tcp_enter_memory_pressure(struct sock *sk);
1474 void tcp_leave_memory_pressure(struct sock *sk);
1475
keepalive_intvl_when(const struct tcp_sock * tp)1476 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1477 {
1478 struct net *net = sock_net((struct sock *)tp);
1479
1480 return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1481 }
1482
keepalive_time_when(const struct tcp_sock * tp)1483 static inline int keepalive_time_when(const struct tcp_sock *tp)
1484 {
1485 struct net *net = sock_net((struct sock *)tp);
1486
1487 return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1488 }
1489
keepalive_probes(const struct tcp_sock * tp)1490 static inline int keepalive_probes(const struct tcp_sock *tp)
1491 {
1492 struct net *net = sock_net((struct sock *)tp);
1493
1494 return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1495 }
1496
keepalive_time_elapsed(const struct tcp_sock * tp)1497 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1498 {
1499 const struct inet_connection_sock *icsk = &tp->inet_conn;
1500
1501 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1502 tcp_jiffies32 - tp->rcv_tstamp);
1503 }
1504
tcp_fin_time(const struct sock * sk)1505 static inline int tcp_fin_time(const struct sock *sk)
1506 {
1507 int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1508 const int rto = inet_csk(sk)->icsk_rto;
1509
1510 if (fin_timeout < (rto << 2) - (rto >> 1))
1511 fin_timeout = (rto << 2) - (rto >> 1);
1512
1513 return fin_timeout;
1514 }
1515
tcp_paws_check(const struct tcp_options_received * rx_opt,int paws_win)1516 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1517 int paws_win)
1518 {
1519 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1520 return true;
1521 if (unlikely(!time_before32(ktime_get_seconds(),
1522 rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1523 return true;
1524 /*
1525 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1526 * then following tcp messages have valid values. Ignore 0 value,
1527 * or else 'negative' tsval might forbid us to accept their packets.
1528 */
1529 if (!rx_opt->ts_recent)
1530 return true;
1531 return false;
1532 }
1533
tcp_paws_reject(const struct tcp_options_received * rx_opt,int rst)1534 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1535 int rst)
1536 {
1537 if (tcp_paws_check(rx_opt, 0))
1538 return false;
1539
1540 /* RST segments are not recommended to carry timestamp,
1541 and, if they do, it is recommended to ignore PAWS because
1542 "their cleanup function should take precedence over timestamps."
1543 Certainly, it is mistake. It is necessary to understand the reasons
1544 of this constraint to relax it: if peer reboots, clock may go
1545 out-of-sync and half-open connections will not be reset.
1546 Actually, the problem would be not existing if all
1547 the implementations followed draft about maintaining clock
1548 via reboots. Linux-2.2 DOES NOT!
1549
1550 However, we can relax time bounds for RST segments to MSL.
1551 */
1552 if (rst && !time_before32(ktime_get_seconds(),
1553 rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1554 return false;
1555 return true;
1556 }
1557
1558 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1559 int mib_idx, u32 *last_oow_ack_time);
1560
tcp_mib_init(struct net * net)1561 static inline void tcp_mib_init(struct net *net)
1562 {
1563 /* See RFC 2012 */
1564 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1565 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1566 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1567 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1568 }
1569
1570 /* from STCP */
tcp_clear_retrans_hints_partial(struct tcp_sock * tp)1571 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1572 {
1573 tp->lost_skb_hint = NULL;
1574 }
1575
tcp_clear_all_retrans_hints(struct tcp_sock * tp)1576 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1577 {
1578 tcp_clear_retrans_hints_partial(tp);
1579 tp->retransmit_skb_hint = NULL;
1580 }
1581
1582 union tcp_md5_addr {
1583 struct in_addr a4;
1584 #if IS_ENABLED(CONFIG_IPV6)
1585 struct in6_addr a6;
1586 #endif
1587 };
1588
1589 /* - key database */
1590 struct tcp_md5sig_key {
1591 struct hlist_node node;
1592 u8 keylen;
1593 u8 family; /* AF_INET or AF_INET6 */
1594 u8 prefixlen;
1595 u8 flags;
1596 union tcp_md5_addr addr;
1597 int l3index; /* set if key added with L3 scope */
1598 u8 key[TCP_MD5SIG_MAXKEYLEN];
1599 struct rcu_head rcu;
1600 };
1601
1602 /* - sock block */
1603 struct tcp_md5sig_info {
1604 struct hlist_head head;
1605 struct rcu_head rcu;
1606 };
1607
1608 /* - pseudo header */
1609 struct tcp4_pseudohdr {
1610 __be32 saddr;
1611 __be32 daddr;
1612 __u8 pad;
1613 __u8 protocol;
1614 __be16 len;
1615 };
1616
1617 struct tcp6_pseudohdr {
1618 struct in6_addr saddr;
1619 struct in6_addr daddr;
1620 __be32 len;
1621 __be32 protocol; /* including padding */
1622 };
1623
1624 union tcp_md5sum_block {
1625 struct tcp4_pseudohdr ip4;
1626 #if IS_ENABLED(CONFIG_IPV6)
1627 struct tcp6_pseudohdr ip6;
1628 #endif
1629 };
1630
1631 /* - pool: digest algorithm, hash description and scratch buffer */
1632 struct tcp_md5sig_pool {
1633 struct ahash_request *md5_req;
1634 void *scratch;
1635 };
1636
1637 /* - functions */
1638 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1639 const struct sock *sk, const struct sk_buff *skb);
1640 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1641 int family, u8 prefixlen, int l3index, u8 flags,
1642 const u8 *newkey, u8 newkeylen, gfp_t gfp);
1643 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1644 int family, u8 prefixlen, int l3index, u8 flags);
1645 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1646 const struct sock *addr_sk);
1647
1648 #ifdef CONFIG_TCP_MD5SIG
1649 #include <linux/jump_label.h>
1650 extern struct static_key_false tcp_md5_needed;
1651 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1652 const union tcp_md5_addr *addr,
1653 int family);
1654 static inline struct tcp_md5sig_key *
tcp_md5_do_lookup(const struct sock * sk,int l3index,const union tcp_md5_addr * addr,int family)1655 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1656 const union tcp_md5_addr *addr, int family)
1657 {
1658 if (!static_branch_unlikely(&tcp_md5_needed))
1659 return NULL;
1660 return __tcp_md5_do_lookup(sk, l3index, addr, family);
1661 }
1662
1663 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1664 #else
1665 static inline struct tcp_md5sig_key *
tcp_md5_do_lookup(const struct sock * sk,int l3index,const union tcp_md5_addr * addr,int family)1666 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1667 const union tcp_md5_addr *addr, int family)
1668 {
1669 return NULL;
1670 }
1671 #define tcp_twsk_md5_key(twsk) NULL
1672 #endif
1673
1674 bool tcp_alloc_md5sig_pool(void);
1675
1676 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
tcp_put_md5sig_pool(void)1677 static inline void tcp_put_md5sig_pool(void)
1678 {
1679 local_bh_enable();
1680 }
1681
1682 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1683 unsigned int header_len);
1684 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1685 const struct tcp_md5sig_key *key);
1686
1687 /* From tcp_fastopen.c */
1688 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1689 struct tcp_fastopen_cookie *cookie);
1690 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1691 struct tcp_fastopen_cookie *cookie, bool syn_lost,
1692 u16 try_exp);
1693 struct tcp_fastopen_request {
1694 /* Fast Open cookie. Size 0 means a cookie request */
1695 struct tcp_fastopen_cookie cookie;
1696 struct msghdr *data; /* data in MSG_FASTOPEN */
1697 size_t size;
1698 int copied; /* queued in tcp_connect() */
1699 struct ubuf_info *uarg;
1700 };
1701 void tcp_free_fastopen_req(struct tcp_sock *tp);
1702 void tcp_fastopen_destroy_cipher(struct sock *sk);
1703 void tcp_fastopen_ctx_destroy(struct net *net);
1704 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1705 void *primary_key, void *backup_key);
1706 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1707 u64 *key);
1708 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1709 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1710 struct request_sock *req,
1711 struct tcp_fastopen_cookie *foc,
1712 const struct dst_entry *dst);
1713 void tcp_fastopen_init_key_once(struct net *net);
1714 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1715 struct tcp_fastopen_cookie *cookie);
1716 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1717 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1718 #define TCP_FASTOPEN_KEY_MAX 2
1719 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1720 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1721
1722 /* Fastopen key context */
1723 struct tcp_fastopen_context {
1724 siphash_key_t key[TCP_FASTOPEN_KEY_MAX];
1725 int num;
1726 struct rcu_head rcu;
1727 };
1728
1729 void tcp_fastopen_active_disable(struct sock *sk);
1730 bool tcp_fastopen_active_should_disable(struct sock *sk);
1731 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1732 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1733
1734 /* Caller needs to wrap with rcu_read_(un)lock() */
1735 static inline
tcp_fastopen_get_ctx(const struct sock * sk)1736 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1737 {
1738 struct tcp_fastopen_context *ctx;
1739
1740 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1741 if (!ctx)
1742 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1743 return ctx;
1744 }
1745
1746 static inline
tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie * foc,const struct tcp_fastopen_cookie * orig)1747 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1748 const struct tcp_fastopen_cookie *orig)
1749 {
1750 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1751 orig->len == foc->len &&
1752 !memcmp(orig->val, foc->val, foc->len))
1753 return true;
1754 return false;
1755 }
1756
1757 static inline
tcp_fastopen_context_len(const struct tcp_fastopen_context * ctx)1758 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1759 {
1760 return ctx->num;
1761 }
1762
1763 /* Latencies incurred by various limits for a sender. They are
1764 * chronograph-like stats that are mutually exclusive.
1765 */
1766 enum tcp_chrono {
1767 TCP_CHRONO_UNSPEC,
1768 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1769 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1770 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1771 __TCP_CHRONO_MAX,
1772 };
1773
1774 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1775 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1776
1777 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1778 * the same memory storage than skb->destructor/_skb_refdst
1779 */
tcp_skb_tsorted_anchor_cleanup(struct sk_buff * skb)1780 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1781 {
1782 skb->destructor = NULL;
1783 skb->_skb_refdst = 0UL;
1784 }
1785
1786 #define tcp_skb_tsorted_save(skb) { \
1787 unsigned long _save = skb->_skb_refdst; \
1788 skb->_skb_refdst = 0UL;
1789
1790 #define tcp_skb_tsorted_restore(skb) \
1791 skb->_skb_refdst = _save; \
1792 }
1793
1794 void tcp_write_queue_purge(struct sock *sk);
1795
tcp_rtx_queue_head(const struct sock * sk)1796 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1797 {
1798 return skb_rb_first(&sk->tcp_rtx_queue);
1799 }
1800
tcp_rtx_queue_tail(const struct sock * sk)1801 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1802 {
1803 return skb_rb_last(&sk->tcp_rtx_queue);
1804 }
1805
tcp_write_queue_head(const struct sock * sk)1806 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1807 {
1808 return skb_peek(&sk->sk_write_queue);
1809 }
1810
tcp_write_queue_tail(const struct sock * sk)1811 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1812 {
1813 return skb_peek_tail(&sk->sk_write_queue);
1814 }
1815
1816 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1817 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1818
tcp_send_head(const struct sock * sk)1819 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1820 {
1821 return skb_peek(&sk->sk_write_queue);
1822 }
1823
tcp_skb_is_last(const struct sock * sk,const struct sk_buff * skb)1824 static inline bool tcp_skb_is_last(const struct sock *sk,
1825 const struct sk_buff *skb)
1826 {
1827 return skb_queue_is_last(&sk->sk_write_queue, skb);
1828 }
1829
1830 /**
1831 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1832 * @sk: socket
1833 *
1834 * Since the write queue can have a temporary empty skb in it,
1835 * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1836 */
tcp_write_queue_empty(const struct sock * sk)1837 static inline bool tcp_write_queue_empty(const struct sock *sk)
1838 {
1839 const struct tcp_sock *tp = tcp_sk(sk);
1840
1841 return tp->write_seq == tp->snd_nxt;
1842 }
1843
tcp_rtx_queue_empty(const struct sock * sk)1844 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1845 {
1846 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1847 }
1848
tcp_rtx_and_write_queues_empty(const struct sock * sk)1849 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1850 {
1851 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1852 }
1853
tcp_add_write_queue_tail(struct sock * sk,struct sk_buff * skb)1854 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1855 {
1856 __skb_queue_tail(&sk->sk_write_queue, skb);
1857
1858 /* Queue it, remembering where we must start sending. */
1859 if (sk->sk_write_queue.next == skb)
1860 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1861 }
1862
1863 /* Insert new before skb on the write queue of sk. */
tcp_insert_write_queue_before(struct sk_buff * new,struct sk_buff * skb,struct sock * sk)1864 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1865 struct sk_buff *skb,
1866 struct sock *sk)
1867 {
1868 __skb_queue_before(&sk->sk_write_queue, skb, new);
1869 }
1870
tcp_unlink_write_queue(struct sk_buff * skb,struct sock * sk)1871 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1872 {
1873 tcp_skb_tsorted_anchor_cleanup(skb);
1874 __skb_unlink(skb, &sk->sk_write_queue);
1875 }
1876
1877 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1878
tcp_rtx_queue_unlink(struct sk_buff * skb,struct sock * sk)1879 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1880 {
1881 tcp_skb_tsorted_anchor_cleanup(skb);
1882 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1883 }
1884
tcp_rtx_queue_unlink_and_free(struct sk_buff * skb,struct sock * sk)1885 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1886 {
1887 list_del(&skb->tcp_tsorted_anchor);
1888 tcp_rtx_queue_unlink(skb, sk);
1889 tcp_wmem_free_skb(sk, skb);
1890 }
1891
tcp_push_pending_frames(struct sock * sk)1892 static inline void tcp_push_pending_frames(struct sock *sk)
1893 {
1894 if (tcp_send_head(sk)) {
1895 struct tcp_sock *tp = tcp_sk(sk);
1896
1897 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1898 }
1899 }
1900
1901 /* Start sequence of the skb just after the highest skb with SACKed
1902 * bit, valid only if sacked_out > 0 or when the caller has ensured
1903 * validity by itself.
1904 */
tcp_highest_sack_seq(struct tcp_sock * tp)1905 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1906 {
1907 if (!tp->sacked_out)
1908 return tp->snd_una;
1909
1910 if (tp->highest_sack == NULL)
1911 return tp->snd_nxt;
1912
1913 return TCP_SKB_CB(tp->highest_sack)->seq;
1914 }
1915
tcp_advance_highest_sack(struct sock * sk,struct sk_buff * skb)1916 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1917 {
1918 tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1919 }
1920
tcp_highest_sack(struct sock * sk)1921 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1922 {
1923 return tcp_sk(sk)->highest_sack;
1924 }
1925
tcp_highest_sack_reset(struct sock * sk)1926 static inline void tcp_highest_sack_reset(struct sock *sk)
1927 {
1928 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1929 }
1930
1931 /* Called when old skb is about to be deleted and replaced by new skb */
tcp_highest_sack_replace(struct sock * sk,struct sk_buff * old,struct sk_buff * new)1932 static inline void tcp_highest_sack_replace(struct sock *sk,
1933 struct sk_buff *old,
1934 struct sk_buff *new)
1935 {
1936 if (old == tcp_highest_sack(sk))
1937 tcp_sk(sk)->highest_sack = new;
1938 }
1939
1940 /* This helper checks if socket has IP_TRANSPARENT set */
inet_sk_transparent(const struct sock * sk)1941 static inline bool inet_sk_transparent(const struct sock *sk)
1942 {
1943 switch (sk->sk_state) {
1944 case TCP_TIME_WAIT:
1945 return inet_twsk(sk)->tw_transparent;
1946 case TCP_NEW_SYN_RECV:
1947 return inet_rsk(inet_reqsk(sk))->no_srccheck;
1948 }
1949 return inet_sk(sk)->transparent;
1950 }
1951
1952 /* Determines whether this is a thin stream (which may suffer from
1953 * increased latency). Used to trigger latency-reducing mechanisms.
1954 */
tcp_stream_is_thin(struct tcp_sock * tp)1955 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1956 {
1957 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1958 }
1959
1960 /* /proc */
1961 enum tcp_seq_states {
1962 TCP_SEQ_STATE_LISTENING,
1963 TCP_SEQ_STATE_ESTABLISHED,
1964 };
1965
1966 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1967 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1968 void tcp_seq_stop(struct seq_file *seq, void *v);
1969
1970 struct tcp_seq_afinfo {
1971 sa_family_t family;
1972 };
1973
1974 struct tcp_iter_state {
1975 struct seq_net_private p;
1976 enum tcp_seq_states state;
1977 struct sock *syn_wait_sk;
1978 int bucket, offset, sbucket, num;
1979 loff_t last_pos;
1980 };
1981
1982 extern struct request_sock_ops tcp_request_sock_ops;
1983 extern struct request_sock_ops tcp6_request_sock_ops;
1984
1985 void tcp_v4_destroy_sock(struct sock *sk);
1986
1987 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1988 netdev_features_t features);
1989 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1990 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
1991 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
1992 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
1993 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
1994 int tcp_gro_complete(struct sk_buff *skb);
1995
1996 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1997
tcp_notsent_lowat(const struct tcp_sock * tp)1998 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1999 {
2000 struct net *net = sock_net((struct sock *)tp);
2001 return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
2002 }
2003
2004 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2005
2006 #ifdef CONFIG_PROC_FS
2007 int tcp4_proc_init(void);
2008 void tcp4_proc_exit(void);
2009 #endif
2010
2011 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2012 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2013 const struct tcp_request_sock_ops *af_ops,
2014 struct sock *sk, struct sk_buff *skb);
2015
2016 /* TCP af-specific functions */
2017 struct tcp_sock_af_ops {
2018 #ifdef CONFIG_TCP_MD5SIG
2019 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk,
2020 const struct sock *addr_sk);
2021 int (*calc_md5_hash)(char *location,
2022 const struct tcp_md5sig_key *md5,
2023 const struct sock *sk,
2024 const struct sk_buff *skb);
2025 int (*md5_parse)(struct sock *sk,
2026 int optname,
2027 sockptr_t optval,
2028 int optlen);
2029 #endif
2030 };
2031
2032 struct tcp_request_sock_ops {
2033 u16 mss_clamp;
2034 #ifdef CONFIG_TCP_MD5SIG
2035 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2036 const struct sock *addr_sk);
2037 int (*calc_md5_hash) (char *location,
2038 const struct tcp_md5sig_key *md5,
2039 const struct sock *sk,
2040 const struct sk_buff *skb);
2041 #endif
2042 #ifdef CONFIG_SYN_COOKIES
2043 __u32 (*cookie_init_seq)(const struct sk_buff *skb,
2044 __u16 *mss);
2045 #endif
2046 struct dst_entry *(*route_req)(const struct sock *sk,
2047 struct sk_buff *skb,
2048 struct flowi *fl,
2049 struct request_sock *req);
2050 u32 (*init_seq)(const struct sk_buff *skb);
2051 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2052 int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2053 struct flowi *fl, struct request_sock *req,
2054 struct tcp_fastopen_cookie *foc,
2055 enum tcp_synack_type synack_type,
2056 struct sk_buff *syn_skb);
2057 };
2058
2059 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2060 #if IS_ENABLED(CONFIG_IPV6)
2061 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2062 #endif
2063
2064 #ifdef CONFIG_SYN_COOKIES
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)2065 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2066 const struct sock *sk, struct sk_buff *skb,
2067 __u16 *mss)
2068 {
2069 tcp_synq_overflow(sk);
2070 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2071 return ops->cookie_init_seq(skb, mss);
2072 }
2073 #else
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)2074 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2075 const struct sock *sk, struct sk_buff *skb,
2076 __u16 *mss)
2077 {
2078 return 0;
2079 }
2080 #endif
2081
2082 int tcpv4_offload_init(void);
2083
2084 void tcp_v4_init(void);
2085 void tcp_init(void);
2086
2087 /* tcp_recovery.c */
2088 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2089 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2090 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2091 u32 reo_wnd);
2092 extern bool tcp_rack_mark_lost(struct sock *sk);
2093 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2094 u64 xmit_time);
2095 extern void tcp_rack_reo_timeout(struct sock *sk);
2096 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2097
2098 /* At how many usecs into the future should the RTO fire? */
tcp_rto_delta_us(const struct sock * sk)2099 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2100 {
2101 const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2102 u32 rto = inet_csk(sk)->icsk_rto;
2103 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2104
2105 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2106 }
2107
2108 /*
2109 * Save and compile IPv4 options, return a pointer to it
2110 */
tcp_v4_save_options(struct net * net,struct sk_buff * skb)2111 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2112 struct sk_buff *skb)
2113 {
2114 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2115 struct ip_options_rcu *dopt = NULL;
2116
2117 if (opt->optlen) {
2118 int opt_size = sizeof(*dopt) + opt->optlen;
2119
2120 dopt = kmalloc(opt_size, GFP_ATOMIC);
2121 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2122 kfree(dopt);
2123 dopt = NULL;
2124 }
2125 }
2126 return dopt;
2127 }
2128
2129 /* locally generated TCP pure ACKs have skb->truesize == 2
2130 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2131 * This is much faster than dissecting the packet to find out.
2132 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2133 */
skb_is_tcp_pure_ack(const struct sk_buff * skb)2134 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2135 {
2136 return skb->truesize == 2;
2137 }
2138
skb_set_tcp_pure_ack(struct sk_buff * skb)2139 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2140 {
2141 skb->truesize = 2;
2142 }
2143
tcp_inq(struct sock * sk)2144 static inline int tcp_inq(struct sock *sk)
2145 {
2146 struct tcp_sock *tp = tcp_sk(sk);
2147 int answ;
2148
2149 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2150 answ = 0;
2151 } else if (sock_flag(sk, SOCK_URGINLINE) ||
2152 !tp->urg_data ||
2153 before(tp->urg_seq, tp->copied_seq) ||
2154 !before(tp->urg_seq, tp->rcv_nxt)) {
2155
2156 answ = tp->rcv_nxt - tp->copied_seq;
2157
2158 /* Subtract 1, if FIN was received */
2159 if (answ && sock_flag(sk, SOCK_DONE))
2160 answ--;
2161 } else {
2162 answ = tp->urg_seq - tp->copied_seq;
2163 }
2164
2165 return answ;
2166 }
2167
2168 int tcp_peek_len(struct socket *sock);
2169
tcp_segs_in(struct tcp_sock * tp,const struct sk_buff * skb)2170 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2171 {
2172 u16 segs_in;
2173
2174 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2175 tp->segs_in += segs_in;
2176 if (skb->len > tcp_hdrlen(skb))
2177 tp->data_segs_in += segs_in;
2178 }
2179
2180 /*
2181 * TCP listen path runs lockless.
2182 * We forced "struct sock" to be const qualified to make sure
2183 * we don't modify one of its field by mistake.
2184 * Here, we increment sk_drops which is an atomic_t, so we can safely
2185 * make sock writable again.
2186 */
tcp_listendrop(const struct sock * sk)2187 static inline void tcp_listendrop(const struct sock *sk)
2188 {
2189 atomic_inc(&((struct sock *)sk)->sk_drops);
2190 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2191 }
2192
2193 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2194
2195 /*
2196 * Interface for adding Upper Level Protocols over TCP
2197 */
2198
2199 #define TCP_ULP_NAME_MAX 16
2200 #define TCP_ULP_MAX 128
2201 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2202
2203 struct tcp_ulp_ops {
2204 struct list_head list;
2205
2206 /* initialize ulp */
2207 int (*init)(struct sock *sk);
2208 /* update ulp */
2209 void (*update)(struct sock *sk, struct proto *p,
2210 void (*write_space)(struct sock *sk));
2211 /* cleanup ulp */
2212 void (*release)(struct sock *sk);
2213 /* diagnostic */
2214 int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2215 size_t (*get_info_size)(const struct sock *sk);
2216 /* clone ulp */
2217 void (*clone)(const struct request_sock *req, struct sock *newsk,
2218 const gfp_t priority);
2219
2220 char name[TCP_ULP_NAME_MAX];
2221 struct module *owner;
2222 };
2223 int tcp_register_ulp(struct tcp_ulp_ops *type);
2224 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2225 int tcp_set_ulp(struct sock *sk, const char *name);
2226 void tcp_get_available_ulp(char *buf, size_t len);
2227 void tcp_cleanup_ulp(struct sock *sk);
2228 void tcp_update_ulp(struct sock *sk, struct proto *p,
2229 void (*write_space)(struct sock *sk));
2230
2231 #define MODULE_ALIAS_TCP_ULP(name) \
2232 __MODULE_INFO(alias, alias_userspace, name); \
2233 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2234
2235 #ifdef CONFIG_NET_SOCK_MSG
2236 struct sk_msg;
2237 struct sk_psock;
2238
2239 #ifdef CONFIG_BPF_SYSCALL
2240 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2241 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2242 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2243 #endif /* CONFIG_BPF_SYSCALL */
2244
2245 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2246 int flags);
2247 #endif /* CONFIG_NET_SOCK_MSG */
2248
2249 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
tcp_bpf_clone(const struct sock * sk,struct sock * newsk)2250 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2251 {
2252 }
2253 #endif
2254
2255 #ifdef CONFIG_CGROUP_BPF
bpf_skops_init_skb(struct bpf_sock_ops_kern * skops,struct sk_buff * skb,unsigned int end_offset)2256 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2257 struct sk_buff *skb,
2258 unsigned int end_offset)
2259 {
2260 skops->skb = skb;
2261 skops->skb_data_end = skb->data + end_offset;
2262 }
2263 #else
bpf_skops_init_skb(struct bpf_sock_ops_kern * skops,struct sk_buff * skb,unsigned int end_offset)2264 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2265 struct sk_buff *skb,
2266 unsigned int end_offset)
2267 {
2268 }
2269 #endif
2270
2271 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2272 * is < 0, then the BPF op failed (for example if the loaded BPF
2273 * program does not support the chosen operation or there is no BPF
2274 * program loaded).
2275 */
2276 #ifdef CONFIG_BPF
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2277 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2278 {
2279 struct bpf_sock_ops_kern sock_ops;
2280 int ret;
2281
2282 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2283 if (sk_fullsock(sk)) {
2284 sock_ops.is_fullsock = 1;
2285 sock_owned_by_me(sk);
2286 }
2287
2288 sock_ops.sk = sk;
2289 sock_ops.op = op;
2290 if (nargs > 0)
2291 memcpy(sock_ops.args, args, nargs * sizeof(*args));
2292
2293 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2294 if (ret == 0)
2295 ret = sock_ops.reply;
2296 else
2297 ret = -1;
2298 return ret;
2299 }
2300
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2301 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2302 {
2303 u32 args[2] = {arg1, arg2};
2304
2305 return tcp_call_bpf(sk, op, 2, args);
2306 }
2307
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2308 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2309 u32 arg3)
2310 {
2311 u32 args[3] = {arg1, arg2, arg3};
2312
2313 return tcp_call_bpf(sk, op, 3, args);
2314 }
2315
2316 #else
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2317 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2318 {
2319 return -EPERM;
2320 }
2321
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2322 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2323 {
2324 return -EPERM;
2325 }
2326
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2327 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2328 u32 arg3)
2329 {
2330 return -EPERM;
2331 }
2332
2333 #endif
2334
tcp_timeout_init(struct sock * sk)2335 static inline u32 tcp_timeout_init(struct sock *sk)
2336 {
2337 int timeout;
2338
2339 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2340
2341 if (timeout <= 0)
2342 timeout = TCP_TIMEOUT_INIT;
2343 return timeout;
2344 }
2345
tcp_rwnd_init_bpf(struct sock * sk)2346 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2347 {
2348 int rwnd;
2349
2350 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2351
2352 if (rwnd < 0)
2353 rwnd = 0;
2354 return rwnd;
2355 }
2356
tcp_bpf_ca_needs_ecn(struct sock * sk)2357 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2358 {
2359 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2360 }
2361
tcp_bpf_rtt(struct sock * sk)2362 static inline void tcp_bpf_rtt(struct sock *sk)
2363 {
2364 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2365 tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2366 }
2367
2368 #if IS_ENABLED(CONFIG_SMC)
2369 extern struct static_key_false tcp_have_smc;
2370 #endif
2371
2372 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2373 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2374 void (*cad)(struct sock *sk, u32 ack_seq));
2375 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2376 void clean_acked_data_flush(void);
2377 #endif
2378
2379 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
tcp_add_tx_delay(struct sk_buff * skb,const struct tcp_sock * tp)2380 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2381 const struct tcp_sock *tp)
2382 {
2383 if (static_branch_unlikely(&tcp_tx_delay_enabled))
2384 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2385 }
2386
2387 /* Compute Earliest Departure Time for some control packets
2388 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2389 */
tcp_transmit_time(const struct sock * sk)2390 static inline u64 tcp_transmit_time(const struct sock *sk)
2391 {
2392 if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2393 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2394 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2395
2396 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2397 }
2398 return 0;
2399 }
2400
2401 #endif /* _TCP_H */
2402