1 // SPDX-License-Identifier: GPL-2.0
2 /******************************************************************************
3 * rtl871x_security.c
4 *
5 * Copyright(c) 2007 - 2010 Realtek Corporation. All rights reserved.
6 * Linux device driver for RTL8192SU
7 *
8 * Modifications for inclusion into the Linux staging tree are
9 * Copyright(c) 2010 Larry Finger. All rights reserved.
10 *
11 * Contact information:
12 * WLAN FAE <wlanfae@realtek.com>
13 * Larry Finger <Larry.Finger@lwfinger.net>
14 *
15 ******************************************************************************/
16
17 #define _RTL871X_SECURITY_C_
18
19 #include <linux/compiler.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/slab.h>
23 #include <linux/module.h>
24 #include <linux/kref.h>
25 #include <linux/netdevice.h>
26 #include <linux/skbuff.h>
27 #include <linux/circ_buf.h>
28 #include <linux/uaccess.h>
29 #include <asm/byteorder.h>
30 #include <linux/atomic.h>
31 #include <linux/crc32poly.h>
32 #include <linux/semaphore.h>
33 #include <linux/ieee80211.h>
34
35 #include "osdep_service.h"
36 #include "drv_types.h"
37 #include "osdep_intf.h"
38
39 /* =====WEP related===== */
40
41 struct arc4context {
42 u32 x;
43 u32 y;
44 u8 state[256];
45 };
46
arcfour_init(struct arc4context * parc4ctx,u8 * key,u32 key_len)47 static void arcfour_init(struct arc4context *parc4ctx, u8 *key, u32 key_len)
48 {
49 u32 t, u;
50 u32 keyindex;
51 u32 stateindex;
52 u8 *state;
53 u32 counter;
54
55 state = parc4ctx->state;
56 parc4ctx->x = 0;
57 parc4ctx->y = 0;
58 for (counter = 0; counter < 256; counter++)
59 state[counter] = (u8)counter;
60 keyindex = 0;
61 stateindex = 0;
62 for (counter = 0; counter < 256; counter++) {
63 t = state[counter];
64 stateindex = (stateindex + key[keyindex] + t) & 0xff;
65 u = state[stateindex];
66 state[stateindex] = (u8)t;
67 state[counter] = (u8)u;
68 if (++keyindex >= key_len)
69 keyindex = 0;
70 }
71 }
72
arcfour_byte(struct arc4context * parc4ctx)73 static u32 arcfour_byte(struct arc4context *parc4ctx)
74 {
75 u32 x;
76 u32 y;
77 u32 sx, sy;
78 u8 *state;
79
80 state = parc4ctx->state;
81 x = (parc4ctx->x + 1) & 0xff;
82 sx = state[x];
83 y = (sx + parc4ctx->y) & 0xff;
84 sy = state[y];
85 parc4ctx->x = x;
86 parc4ctx->y = y;
87 state[y] = (u8)sx;
88 state[x] = (u8)sy;
89 return state[(sx + sy) & 0xff];
90 }
91
arcfour_encrypt(struct arc4context * parc4ctx,u8 * dest,u8 * src,u32 len)92 static void arcfour_encrypt(struct arc4context *parc4ctx,
93 u8 *dest, u8 *src, u32 len)
94 {
95 u32 i;
96
97 for (i = 0; i < len; i++)
98 dest[i] = src[i] ^ (unsigned char)arcfour_byte(parc4ctx);
99 }
100
101 static sint bcrc32initialized;
102 static u32 crc32_table[256];
103
crc32_reverseBit(u8 data)104 static u8 crc32_reverseBit(u8 data)
105 {
106 return ((u8)(data << 7) & 0x80) | ((data << 5) & 0x40) | ((data << 3)
107 & 0x20) | ((data << 1) & 0x10) | ((data >> 1) & 0x08) |
108 ((data >> 3) & 0x04) | ((data >> 5) & 0x02) | ((data >> 7) &
109 0x01);
110 }
111
crc32_init(void)112 static void crc32_init(void)
113 {
114 sint i, j;
115 u32 c;
116 u8 *p = (u8 *)&c, *p1;
117 u8 k;
118
119 if (bcrc32initialized == 1)
120 return;
121
122 for (i = 0; i < 256; ++i) {
123 k = crc32_reverseBit((u8)i);
124 for (c = ((u32)k) << 24, j = 8; j > 0; --j)
125 c = c & 0x80000000 ? (c << 1) ^ CRC32_POLY_BE : (c << 1);
126 p1 = (u8 *)&crc32_table[i];
127 p1[0] = crc32_reverseBit(p[3]);
128 p1[1] = crc32_reverseBit(p[2]);
129 p1[2] = crc32_reverseBit(p[1]);
130 p1[3] = crc32_reverseBit(p[0]);
131 }
132 bcrc32initialized = 1;
133 }
134
getcrc32(u8 * buf,u32 len)135 static u32 getcrc32(u8 *buf, u32 len)
136 {
137 u8 *p;
138 u32 crc;
139
140 if (!bcrc32initialized)
141 crc32_init();
142 crc = 0xffffffff; /* preload shift register, per CRC-32 spec */
143 for (p = buf; len > 0; ++p, --len)
144 crc = crc32_table[(crc ^ *p) & 0xff] ^ (crc >> 8);
145 return ~crc; /* transmit complement, per CRC-32 spec */
146 }
147
148 /*
149 * Need to consider the fragment situation
150 */
r8712_wep_encrypt(struct _adapter * padapter,u8 * pxmitframe)151 void r8712_wep_encrypt(struct _adapter *padapter, u8 *pxmitframe)
152 { /* exclude ICV */
153 unsigned char crc[4];
154 struct arc4context mycontext;
155 u32 curfragnum, length, keylength, pki;
156 u8 *pframe, *payload, *iv; /*,*wepkey*/
157 u8 wepkey[16];
158 struct pkt_attrib *pattrib = &((struct xmit_frame *)
159 pxmitframe)->attrib;
160 struct security_priv *psecuritypriv = &padapter->securitypriv;
161 struct xmit_priv *pxmitpriv = &padapter->xmitpriv;
162
163 if (((struct xmit_frame *)pxmitframe)->buf_addr == NULL)
164 return;
165 pframe = ((struct xmit_frame *)pxmitframe)->buf_addr + TXDESC_OFFSET;
166 /*start to encrypt each fragment*/
167 if ((pattrib->encrypt == _WEP40_) || (pattrib->encrypt == _WEP104_)) {
168 pki = psecuritypriv->PrivacyKeyIndex;
169 keylength = psecuritypriv->DefKeylen[pki];
170 for (curfragnum = 0; curfragnum < pattrib->nr_frags;
171 curfragnum++) {
172 iv = pframe + pattrib->hdrlen;
173 memcpy(&wepkey[0], iv, 3);
174 memcpy(&wepkey[3], &psecuritypriv->DefKey[
175 psecuritypriv->PrivacyKeyIndex].skey[0],
176 keylength);
177 payload = pframe + pattrib->iv_len + pattrib->hdrlen;
178 if ((curfragnum + 1) == pattrib->nr_frags) {
179 length = pattrib->last_txcmdsz -
180 pattrib->hdrlen -
181 pattrib->iv_len -
182 pattrib->icv_len;
183 *((__le32 *)crc) = cpu_to_le32(getcrc32(
184 payload, length));
185 arcfour_init(&mycontext, wepkey, 3 + keylength);
186 arcfour_encrypt(&mycontext, payload, payload,
187 length);
188 arcfour_encrypt(&mycontext, payload + length,
189 crc, 4);
190 } else {
191 length = pxmitpriv->frag_len -
192 pattrib->hdrlen - pattrib->iv_len -
193 pattrib->icv_len;
194 *((__le32 *)crc) = cpu_to_le32(getcrc32(
195 payload, length));
196 arcfour_init(&mycontext, wepkey, 3 + keylength);
197 arcfour_encrypt(&mycontext, payload, payload,
198 length);
199 arcfour_encrypt(&mycontext, payload + length,
200 crc, 4);
201 pframe += pxmitpriv->frag_len;
202 pframe = (u8 *)RND4((addr_t)(pframe));
203 }
204 }
205 }
206 }
207
r8712_wep_decrypt(struct _adapter * padapter,u8 * precvframe)208 void r8712_wep_decrypt(struct _adapter *padapter, u8 *precvframe)
209 {
210 /* exclude ICV */
211 u8 crc[4];
212 struct arc4context mycontext;
213 u32 length, keylength;
214 u8 *pframe, *payload, *iv, wepkey[16];
215 u8 keyindex;
216 struct rx_pkt_attrib *prxattrib = &(((union recv_frame *)
217 precvframe)->u.hdr.attrib);
218 struct security_priv *psecuritypriv = &padapter->securitypriv;
219
220 pframe = (unsigned char *)((union recv_frame *)precvframe)->
221 u.hdr.rx_data;
222 /* start to decrypt recvframe */
223 if ((prxattrib->encrypt == _WEP40_) || (prxattrib->encrypt ==
224 _WEP104_)) {
225 iv = pframe + prxattrib->hdrlen;
226 keyindex = (iv[3] & 0x3);
227 keylength = psecuritypriv->DefKeylen[keyindex];
228 memcpy(&wepkey[0], iv, 3);
229 memcpy(&wepkey[3], &psecuritypriv->DefKey[
230 psecuritypriv->PrivacyKeyIndex].skey[0],
231 keylength);
232 length = ((union recv_frame *)precvframe)->
233 u.hdr.len - prxattrib->hdrlen - prxattrib->iv_len;
234 payload = pframe + prxattrib->iv_len + prxattrib->hdrlen;
235 /* decrypt payload include icv */
236 arcfour_init(&mycontext, wepkey, 3 + keylength);
237 arcfour_encrypt(&mycontext, payload, payload, length);
238 /* calculate icv and compare the icv */
239 *((__le32 *)crc) = cpu_to_le32(getcrc32(payload, length - 4));
240 }
241 }
242
243 /* 3 =====TKIP related===== */
244
secmicgetuint32(u8 * p)245 static u32 secmicgetuint32(u8 *p)
246 /* Convert from Byte[] to Us4Byte32 in a portable way */
247 {
248 s32 i;
249 u32 res = 0;
250
251 for (i = 0; i < 4; i++)
252 res |= ((u32)(*p++)) << (8 * i);
253 return res;
254 }
255
secmicputuint32(u8 * p,u32 val)256 static void secmicputuint32(u8 *p, u32 val)
257 /* Convert from Us4Byte32 to Byte[] in a portable way */
258 {
259 long i;
260
261 for (i = 0; i < 4; i++) {
262 *p++ = (u8)(val & 0xff);
263 val >>= 8;
264 }
265 }
266
secmicclear(struct mic_data * pmicdata)267 static void secmicclear(struct mic_data *pmicdata)
268 {
269 /* Reset the state to the empty message. */
270 pmicdata->L = pmicdata->K0;
271 pmicdata->R = pmicdata->K1;
272 pmicdata->nBytesInM = 0;
273 pmicdata->M = 0;
274 }
275
r8712_secmicsetkey(struct mic_data * pmicdata,u8 * key)276 void r8712_secmicsetkey(struct mic_data *pmicdata, u8 *key)
277 {
278 /* Set the key */
279 pmicdata->K0 = secmicgetuint32(key);
280 pmicdata->K1 = secmicgetuint32(key + 4);
281 /* and reset the message */
282 secmicclear(pmicdata);
283 }
284
secmicappendbyte(struct mic_data * pmicdata,u8 b)285 static void secmicappendbyte(struct mic_data *pmicdata, u8 b)
286 {
287 /* Append the byte to our word-sized buffer */
288 pmicdata->M |= ((u32)b) << (8 * pmicdata->nBytesInM);
289 pmicdata->nBytesInM++;
290 /* Process the word if it is full. */
291 if (pmicdata->nBytesInM >= 4) {
292 pmicdata->L ^= pmicdata->M;
293 pmicdata->R ^= ROL32(pmicdata->L, 17);
294 pmicdata->L += pmicdata->R;
295 pmicdata->R ^= ((pmicdata->L & 0xff00ff00) >> 8) |
296 ((pmicdata->L & 0x00ff00ff) << 8);
297 pmicdata->L += pmicdata->R;
298 pmicdata->R ^= ROL32(pmicdata->L, 3);
299 pmicdata->L += pmicdata->R;
300 pmicdata->R ^= ROR32(pmicdata->L, 2);
301 pmicdata->L += pmicdata->R;
302 /* Clear the buffer */
303 pmicdata->M = 0;
304 pmicdata->nBytesInM = 0;
305 }
306 }
307
r8712_secmicappend(struct mic_data * pmicdata,u8 * src,u32 nbytes)308 void r8712_secmicappend(struct mic_data *pmicdata, u8 *src, u32 nbytes)
309 {
310 /* This is simple */
311 while (nbytes > 0) {
312 secmicappendbyte(pmicdata, *src++);
313 nbytes--;
314 }
315 }
316
r8712_secgetmic(struct mic_data * pmicdata,u8 * dst)317 void r8712_secgetmic(struct mic_data *pmicdata, u8 *dst)
318 {
319 /* Append the minimum padding */
320 secmicappendbyte(pmicdata, 0x5a);
321 secmicappendbyte(pmicdata, 0);
322 secmicappendbyte(pmicdata, 0);
323 secmicappendbyte(pmicdata, 0);
324 secmicappendbyte(pmicdata, 0);
325 /* and then zeroes until the length is a multiple of 4 */
326 while (pmicdata->nBytesInM != 0)
327 secmicappendbyte(pmicdata, 0);
328 /* The appendByte function has already computed the result. */
329 secmicputuint32(dst, pmicdata->L);
330 secmicputuint32(dst + 4, pmicdata->R);
331 /* Reset to the empty message. */
332 secmicclear(pmicdata);
333 }
334
seccalctkipmic(u8 * key,u8 * header,u8 * data,u32 data_len,u8 * mic_code,u8 pri)335 void seccalctkipmic(u8 *key, u8 *header, u8 *data, u32 data_len, u8 *mic_code,
336 u8 pri)
337 {
338
339 struct mic_data micdata;
340 u8 priority[4] = {0x0, 0x0, 0x0, 0x0};
341
342 r8712_secmicsetkey(&micdata, key);
343 priority[0] = pri;
344 /* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
345 if (header[1] & 1) { /* ToDS==1 */
346 r8712_secmicappend(&micdata, &header[16], 6); /* DA */
347 if (header[1] & 2) /* From Ds==1 */
348 r8712_secmicappend(&micdata, &header[24], 6);
349 else
350 r8712_secmicappend(&micdata, &header[10], 6);
351 } else { /* ToDS==0 */
352 r8712_secmicappend(&micdata, &header[4], 6); /* DA */
353 if (header[1] & 2) /* From Ds==1 */
354 r8712_secmicappend(&micdata, &header[16], 6);
355 else
356 r8712_secmicappend(&micdata, &header[10], 6);
357 }
358 r8712_secmicappend(&micdata, &priority[0], 4);
359 r8712_secmicappend(&micdata, data, data_len);
360 r8712_secgetmic(&micdata, mic_code);
361 }
362
363 /* macros for extraction/creation of unsigned char/unsigned short values */
364 #define RotR1(v16) ((((v16) >> 1) & 0x7FFF) ^ (((v16) & 1) << 15))
365 #define Lo8(v16) ((u8)((v16) & 0x00FF))
366 #define Hi8(v16) ((u8)(((v16) >> 8) & 0x00FF))
367 #define Lo16(v32) ((u16)((v32) & 0xFFFF))
368 #define Hi16(v32) ((u16)(((v32) >> 16) & 0xFFFF))
369 #define Mk16(hi, lo) ((lo) ^ (((u16)(hi)) << 8))
370
371 /* select the Nth 16-bit word of the temporal key unsigned char array TK[] */
372 #define TK16(N) Mk16(tk[2 * (N) + 1], tk[2 * (N)])
373
374 /* S-box lookup: 16 bits --> 16 bits */
375 #define _S_(v16) (Sbox1[0][Lo8(v16)] ^ Sbox1[1][Hi8(v16)])
376
377 /* fixed algorithm "parameters" */
378 #define PHASE1_LOOP_CNT 8 /* this needs to be "big enough" */
379 #define TA_SIZE 6 /* 48-bit transmitter address */
380 #define TK_SIZE 16 /* 128-bit temporal key */
381 #define P1K_SIZE 10 /* 80-bit Phase1 key */
382 #define RC4_KEY_SIZE 16 /* 128-bit RC4KEY (104 bits unknown) */
383
384
385 /* 2-unsigned char by 2-unsigned char subset of the full AES S-box table */
386 static const unsigned short Sbox1[2][256] = {/* Sbox for hash (can be in ROM) */
387 {
388 0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
389 0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
390 0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
391 0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
392 0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
393 0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
394 0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
395 0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
396 0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
397 0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
398 0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
399 0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
400 0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
401 0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
402 0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
403 0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
404 0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
405 0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
406 0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
407 0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
408 0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
409 0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
410 0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
411 0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
412 0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
413 0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
414 0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
415 0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
416 0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
417 0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
418 0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
419 0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
420 },
421 { /* second half is unsigned char-reversed version of first! */
422 0xA5C6, 0x84F8, 0x99EE, 0x8DF6, 0x0DFF, 0xBDD6, 0xB1DE, 0x5491,
423 0x5060, 0x0302, 0xA9CE, 0x7D56, 0x19E7, 0x62B5, 0xE64D, 0x9AEC,
424 0x458F, 0x9D1F, 0x4089, 0x87FA, 0x15EF, 0xEBB2, 0xC98E, 0x0BFB,
425 0xEC41, 0x67B3, 0xFD5F, 0xEA45, 0xBF23, 0xF753, 0x96E4, 0x5B9B,
426 0xC275, 0x1CE1, 0xAE3D, 0x6A4C, 0x5A6C, 0x417E, 0x02F5, 0x4F83,
427 0x5C68, 0xF451, 0x34D1, 0x08F9, 0x93E2, 0x73AB, 0x5362, 0x3F2A,
428 0x0C08, 0x5295, 0x6546, 0x5E9D, 0x2830, 0xA137, 0x0F0A, 0xB52F,
429 0x090E, 0x3624, 0x9B1B, 0x3DDF, 0x26CD, 0x694E, 0xCD7F, 0x9FEA,
430 0x1B12, 0x9E1D, 0x7458, 0x2E34, 0x2D36, 0xB2DC, 0xEEB4, 0xFB5B,
431 0xF6A4, 0x4D76, 0x61B7, 0xCE7D, 0x7B52, 0x3EDD, 0x715E, 0x9713,
432 0xF5A6, 0x68B9, 0x0000, 0x2CC1, 0x6040, 0x1FE3, 0xC879, 0xEDB6,
433 0xBED4, 0x468D, 0xD967, 0x4B72, 0xDE94, 0xD498, 0xE8B0, 0x4A85,
434 0x6BBB, 0x2AC5, 0xE54F, 0x16ED, 0xC586, 0xD79A, 0x5566, 0x9411,
435 0xCF8A, 0x10E9, 0x0604, 0x81FE, 0xF0A0, 0x4478, 0xBA25, 0xE34B,
436 0xF3A2, 0xFE5D, 0xC080, 0x8A05, 0xAD3F, 0xBC21, 0x4870, 0x04F1,
437 0xDF63, 0xC177, 0x75AF, 0x6342, 0x3020, 0x1AE5, 0x0EFD, 0x6DBF,
438 0x4C81, 0x1418, 0x3526, 0x2FC3, 0xE1BE, 0xA235, 0xCC88, 0x392E,
439 0x5793, 0xF255, 0x82FC, 0x477A, 0xACC8, 0xE7BA, 0x2B32, 0x95E6,
440 0xA0C0, 0x9819, 0xD19E, 0x7FA3, 0x6644, 0x7E54, 0xAB3B, 0x830B,
441 0xCA8C, 0x29C7, 0xD36B, 0x3C28, 0x79A7, 0xE2BC, 0x1D16, 0x76AD,
442 0x3BDB, 0x5664, 0x4E74, 0x1E14, 0xDB92, 0x0A0C, 0x6C48, 0xE4B8,
443 0x5D9F, 0x6EBD, 0xEF43, 0xA6C4, 0xA839, 0xA431, 0x37D3, 0x8BF2,
444 0x32D5, 0x438B, 0x596E, 0xB7DA, 0x8C01, 0x64B1, 0xD29C, 0xE049,
445 0xB4D8, 0xFAAC, 0x07F3, 0x25CF, 0xAFCA, 0x8EF4, 0xE947, 0x1810,
446 0xD56F, 0x88F0, 0x6F4A, 0x725C, 0x2438, 0xF157, 0xC773, 0x5197,
447 0x23CB, 0x7CA1, 0x9CE8, 0x213E, 0xDD96, 0xDC61, 0x860D, 0x850F,
448 0x90E0, 0x427C, 0xC471, 0xAACC, 0xD890, 0x0506, 0x01F7, 0x121C,
449 0xA3C2, 0x5F6A, 0xF9AE, 0xD069, 0x9117, 0x5899, 0x273A, 0xB927,
450 0x38D9, 0x13EB, 0xB32B, 0x3322, 0xBBD2, 0x70A9, 0x8907, 0xA733,
451 0xB62D, 0x223C, 0x9215, 0x20C9, 0x4987, 0xFFAA, 0x7850, 0x7AA5,
452 0x8F03, 0xF859, 0x8009, 0x171A, 0xDA65, 0x31D7, 0xC684, 0xB8D0,
453 0xC382, 0xB029, 0x775A, 0x111E, 0xCB7B, 0xFCA8, 0xD66D, 0x3A2C,
454 }
455 };
456
457 /*
458 **********************************************************************
459 * Routine: Phase 1 -- generate P1K, given TA, TK, IV32
460 *
461 * Inputs:
462 * tk[] = temporal key [128 bits]
463 * ta[] = transmitter's MAC address [ 48 bits]
464 * iv32 = upper 32 bits of IV [ 32 bits]
465 * Output:
466 * p1k[] = Phase 1 key [ 80 bits]
467 *
468 * Note:
469 * This function only needs to be called every 2**16 packets,
470 * although in theory it could be called every packet.
471 *
472 **********************************************************************
473 */
phase1(u16 * p1k,const u8 * tk,const u8 * ta,u32 iv32)474 static void phase1(u16 *p1k, const u8 *tk, const u8 *ta, u32 iv32)
475 {
476 sint i;
477
478 /* Initialize the 80 bits of P1K[] from IV32 and TA[0..5] */
479 p1k[0] = Lo16(iv32);
480 p1k[1] = Hi16(iv32);
481 p1k[2] = Mk16(ta[1], ta[0]); /* use TA[] as little-endian */
482 p1k[3] = Mk16(ta[3], ta[2]);
483 p1k[4] = Mk16(ta[5], ta[4]);
484 /* Now compute an unbalanced Feistel cipher with 80-bit block */
485 /* size on the 80-bit block P1K[], using the 128-bit key TK[] */
486 for (i = 0; i < PHASE1_LOOP_CNT; i++) { /* Each add is mod 2**16 */
487 p1k[0] += _S_(p1k[4] ^ TK16((i & 1) + 0));
488 p1k[1] += _S_(p1k[0] ^ TK16((i & 1) + 2));
489 p1k[2] += _S_(p1k[1] ^ TK16((i & 1) + 4));
490 p1k[3] += _S_(p1k[2] ^ TK16((i & 1) + 6));
491 p1k[4] += _S_(p1k[3] ^ TK16((i & 1) + 0));
492 p1k[4] += (unsigned short)i; /* avoid "slide attacks" */
493 }
494 }
495
496 /*
497 **********************************************************************
498 * Routine: Phase 2 -- generate RC4KEY, given TK, P1K, IV16
499 *
500 * Inputs:
501 * tk[] = Temporal key [128 bits]
502 * p1k[] = Phase 1 output key [ 80 bits]
503 * iv16 = low 16 bits of IV counter [ 16 bits]
504 * Output:
505 * rc4key[] = the key used to encrypt the packet [128 bits]
506 *
507 * Note:
508 * The value {TA,IV32,IV16} for Phase1/Phase2 must be unique
509 * across all packets using the same key TK value. Then, for a
510 * given value of TK[], this TKIP48 construction guarantees that
511 * the final RC4KEY value is unique across all packets.
512 *
513 * Suggested implementation optimization: if PPK[] is "overlaid"
514 * appropriately on RC4KEY[], there is no need for the final
515 * for loop below that copies the PPK[] result into RC4KEY[].
516 *
517 **********************************************************************
518 */
phase2(u8 * rc4key,const u8 * tk,const u16 * p1k,u16 iv16)519 static void phase2(u8 *rc4key, const u8 *tk, const u16 *p1k, u16 iv16)
520 {
521 sint i;
522 u16 PPK[6]; /* temporary key for mixing */
523
524 /* Note: all adds in the PPK[] equations below are mod 2**16 */
525 for (i = 0; i < 5; i++)
526 PPK[i] = p1k[i]; /* first, copy P1K to PPK */
527 PPK[5] = p1k[4] + iv16; /* next, add in IV16 */
528 /* Bijective non-linear mixing of the 96 bits of PPK[0..5] */
529 PPK[0] += _S_(PPK[5] ^ TK16(0)); /* Mix key in each "round" */
530 PPK[1] += _S_(PPK[0] ^ TK16(1));
531 PPK[2] += _S_(PPK[1] ^ TK16(2));
532 PPK[3] += _S_(PPK[2] ^ TK16(3));
533 PPK[4] += _S_(PPK[3] ^ TK16(4));
534 PPK[5] += _S_(PPK[4] ^ TK16(5)); /* Total # S-box lookups == 6 */
535 /* Final sweep: bijective, "linear". Rotates kill LSB correlations */
536 PPK[0] += RotR1(PPK[5] ^ TK16(6));
537 PPK[1] += RotR1(PPK[0] ^ TK16(7)); /* Use all of TK[] in Phase2 */
538 PPK[2] += RotR1(PPK[1]);
539 PPK[3] += RotR1(PPK[2]);
540 PPK[4] += RotR1(PPK[3]);
541 PPK[5] += RotR1(PPK[4]);
542 /* Note: At this point, for a given key TK[0..15], the 96-bit output */
543 /* value PPK[0..5] is guaranteed to be unique, as a function */
544 /* of the 96-bit "input" value {TA,IV32,IV16}. That is, P1K */
545 /* is now a keyed permutation of {TA,IV32,IV16}. */
546 /* Set RC4KEY[0..3], which includes "cleartext" portion of RC4 key */
547 rc4key[0] = Hi8(iv16); /* RC4KEY[0..2] is the WEP IV */
548 rc4key[1] = (Hi8(iv16) | 0x20) & 0x7F; /* Help avoid weak (FMS) keys */
549 rc4key[2] = Lo8(iv16);
550 rc4key[3] = Lo8((PPK[5] ^ TK16(0)) >> 1);
551 /* Copy 96 bits of PPK[0..5] to RC4KEY[4..15] (little-endian) */
552 for (i = 0; i < 6; i++) {
553 rc4key[4 + 2 * i] = Lo8(PPK[i]);
554 rc4key[5 + 2 * i] = Hi8(PPK[i]);
555 }
556 }
557
558 /*The hlen isn't include the IV*/
r8712_tkip_encrypt(struct _adapter * padapter,u8 * pxmitframe)559 u32 r8712_tkip_encrypt(struct _adapter *padapter, u8 *pxmitframe)
560 { /* exclude ICV */
561 u16 pnl;
562 u32 pnh;
563 u8 rc4key[16];
564 u8 ttkey[16];
565 u8 crc[4];
566 struct arc4context mycontext;
567 u32 curfragnum, length;
568
569 u8 *pframe, *payload, *iv, *prwskey;
570 union pn48 txpn;
571 struct sta_info *stainfo;
572 struct pkt_attrib *pattrib = &((struct xmit_frame *)pxmitframe)->attrib;
573 struct xmit_priv *pxmitpriv = &padapter->xmitpriv;
574 u32 res = _SUCCESS;
575
576 if (((struct xmit_frame *)pxmitframe)->buf_addr == NULL)
577 return _FAIL;
578
579 pframe = ((struct xmit_frame *)pxmitframe)->buf_addr + TXDESC_OFFSET;
580 /* 4 start to encrypt each fragment */
581 if (pattrib->encrypt == _TKIP_) {
582 if (pattrib->psta)
583 stainfo = pattrib->psta;
584 else
585 stainfo = r8712_get_stainfo(&padapter->stapriv,
586 &pattrib->ra[0]);
587 if (stainfo) {
588 prwskey = &stainfo->x_UncstKey.skey[0];
589 for (curfragnum = 0; curfragnum < pattrib->nr_frags;
590 curfragnum++) {
591 iv = pframe + pattrib->hdrlen;
592 payload = pframe + pattrib->iv_len +
593 pattrib->hdrlen;
594 GET_TKIP_PN(iv, txpn);
595 pnl = (u16)(txpn.val);
596 pnh = (u32)(txpn.val >> 16);
597 phase1((u16 *)&ttkey[0], prwskey,
598 &pattrib->ta[0], pnh);
599 phase2(&rc4key[0], prwskey, (u16 *)&ttkey[0],
600 pnl);
601 if ((curfragnum + 1) == pattrib->nr_frags) {
602 /* 4 the last fragment */
603 length = pattrib->last_txcmdsz -
604 pattrib->hdrlen -
605 pattrib->iv_len -
606 pattrib->icv_len;
607 *((__le32 *)crc) = cpu_to_le32(
608 getcrc32(payload, length));
609 arcfour_init(&mycontext, rc4key, 16);
610 arcfour_encrypt(&mycontext, payload,
611 payload, length);
612 arcfour_encrypt(&mycontext, payload +
613 length, crc, 4);
614 } else {
615 length = pxmitpriv->frag_len -
616 pattrib->hdrlen -
617 pattrib->iv_len -
618 pattrib->icv_len;
619 *((__le32 *)crc) = cpu_to_le32(getcrc32(
620 payload, length));
621 arcfour_init(&mycontext, rc4key, 16);
622 arcfour_encrypt(&mycontext, payload,
623 payload, length);
624 arcfour_encrypt(&mycontext,
625 payload + length, crc,
626 4);
627 pframe += pxmitpriv->frag_len;
628 pframe = (u8 *)RND4((addr_t)(pframe));
629 }
630 }
631 } else {
632 res = _FAIL;
633 }
634 }
635 return res;
636 }
637
638 /* The hlen doesn't include the IV */
r8712_tkip_decrypt(struct _adapter * padapter,u8 * precvframe)639 void r8712_tkip_decrypt(struct _adapter *padapter, u8 *precvframe)
640 { /* exclude ICV */
641 u16 pnl;
642 u32 pnh;
643 u8 rc4key[16];
644 u8 ttkey[16];
645 u8 crc[4];
646 struct arc4context mycontext;
647 u32 length;
648 u8 *pframe, *payload, *iv, *prwskey, idx = 0;
649 union pn48 txpn;
650 struct sta_info *stainfo;
651 struct rx_pkt_attrib *prxattrib = &((union recv_frame *)
652 precvframe)->u.hdr.attrib;
653 struct security_priv *psecuritypriv = &padapter->securitypriv;
654
655 pframe = (unsigned char *)((union recv_frame *)
656 precvframe)->u.hdr.rx_data;
657 /* 4 start to decrypt recvframe */
658 if (prxattrib->encrypt == _TKIP_) {
659 stainfo = r8712_get_stainfo(&padapter->stapriv,
660 &prxattrib->ta[0]);
661 if (stainfo) {
662 iv = pframe + prxattrib->hdrlen;
663 payload = pframe + prxattrib->iv_len +
664 prxattrib->hdrlen;
665 length = ((union recv_frame *)precvframe)->
666 u.hdr.len - prxattrib->hdrlen -
667 prxattrib->iv_len;
668 if (is_multicast_ether_addr(prxattrib->ra)) {
669 idx = iv[3];
670 prwskey = &psecuritypriv->XGrpKey[
671 ((idx >> 6) & 0x3) - 1].skey[0];
672 if (!psecuritypriv->binstallGrpkey)
673 return;
674 } else {
675 prwskey = &stainfo->x_UncstKey.skey[0];
676 }
677 GET_TKIP_PN(iv, txpn);
678 pnl = (u16)(txpn.val);
679 pnh = (u32)(txpn.val >> 16);
680 phase1((u16 *)&ttkey[0], prwskey, &prxattrib->ta[0],
681 pnh);
682 phase2(&rc4key[0], prwskey, (unsigned short *)
683 &ttkey[0], pnl);
684 /* 4 decrypt payload include icv */
685 arcfour_init(&mycontext, rc4key, 16);
686 arcfour_encrypt(&mycontext, payload, payload, length);
687 *((__le32 *)crc) = cpu_to_le32(getcrc32(payload,
688 length - 4));
689 }
690 }
691 }
692
693 /* 3 =====AES related===== */
694
695 #define MAX_MSG_SIZE 2048
696 /*****************************/
697 /******** SBOX Table *********/
698 /*****************************/
699
700 static const u8 sbox_table[256] = {
701 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5,
702 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
703 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
704 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
705 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc,
706 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
707 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a,
708 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
709 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
710 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
711 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
712 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
713 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85,
714 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
715 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
716 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
717 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17,
718 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
719 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88,
720 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
721 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
722 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
723 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9,
724 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
725 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6,
726 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
727 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
728 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
729 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94,
730 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
731 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68,
732 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
733 };
734
735 /****************************************/
736 /* aes128k128d() */
737 /* Performs a 128 bit AES encrypt with */
738 /* 128 bit data. */
739 /****************************************/
xor_128(u8 * a,u8 * b,u8 * out)740 static void xor_128(u8 *a, u8 *b, u8 *out)
741 {
742 sint i;
743
744 for (i = 0; i < 16; i++)
745 out[i] = a[i] ^ b[i];
746 }
747
xor_32(u8 * a,u8 * b,u8 * out)748 static void xor_32(u8 *a, u8 *b, u8 *out)
749 {
750 sint i;
751
752 for (i = 0; i < 4; i++)
753 out[i] = a[i] ^ b[i];
754 }
755
sbox(u8 a)756 static u8 sbox(u8 a)
757 {
758 return sbox_table[(sint)a];
759 }
760
next_key(u8 * key,sint round)761 static void next_key(u8 *key, sint round)
762 {
763 u8 rcon;
764 u8 sbox_key[4];
765 static const u8 rcon_table[12] = {
766 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
767 0x1b, 0x36, 0x36, 0x36
768 };
769
770 sbox_key[0] = sbox(key[13]);
771 sbox_key[1] = sbox(key[14]);
772 sbox_key[2] = sbox(key[15]);
773 sbox_key[3] = sbox(key[12]);
774 rcon = rcon_table[round];
775 xor_32(&key[0], sbox_key, &key[0]);
776 key[0] = key[0] ^ rcon;
777 xor_32(&key[4], &key[0], &key[4]);
778 xor_32(&key[8], &key[4], &key[8]);
779 xor_32(&key[12], &key[8], &key[12]);
780 }
781
byte_sub(u8 * in,u8 * out)782 static void byte_sub(u8 *in, u8 *out)
783 {
784 sint i;
785
786 for (i = 0; i < 16; i++)
787 out[i] = sbox(in[i]);
788 }
789
shift_row(u8 * in,u8 * out)790 static void shift_row(u8 *in, u8 *out)
791 {
792 out[0] = in[0];
793 out[1] = in[5];
794 out[2] = in[10];
795 out[3] = in[15];
796 out[4] = in[4];
797 out[5] = in[9];
798 out[6] = in[14];
799 out[7] = in[3];
800 out[8] = in[8];
801 out[9] = in[13];
802 out[10] = in[2];
803 out[11] = in[7];
804 out[12] = in[12];
805 out[13] = in[1];
806 out[14] = in[6];
807 out[15] = in[11];
808 }
809
mix_column(u8 * in,u8 * out)810 static void mix_column(u8 *in, u8 *out)
811 {
812 sint i;
813 u8 add1b[4];
814 u8 add1bf7[4];
815 u8 rotl[4];
816 u8 swap_halves[4];
817 u8 andf7[4];
818 u8 rotr[4];
819 u8 temp[4];
820 u8 tempb[4];
821
822 for (i = 0; i < 4; i++) {
823 if ((in[i] & 0x80) == 0x80)
824 add1b[i] = 0x1b;
825 else
826 add1b[i] = 0x00;
827 }
828 swap_halves[0] = in[2]; /* Swap halves */
829 swap_halves[1] = in[3];
830 swap_halves[2] = in[0];
831 swap_halves[3] = in[1];
832 rotl[0] = in[3]; /* Rotate left 8 bits */
833 rotl[1] = in[0];
834 rotl[2] = in[1];
835 rotl[3] = in[2];
836 andf7[0] = in[0] & 0x7f;
837 andf7[1] = in[1] & 0x7f;
838 andf7[2] = in[2] & 0x7f;
839 andf7[3] = in[3] & 0x7f;
840 for (i = 3; i > 0; i--) { /* logical shift left 1 bit */
841 andf7[i] = andf7[i] << 1;
842 if ((andf7[i - 1] & 0x80) == 0x80)
843 andf7[i] = (andf7[i] | 0x01);
844 }
845 andf7[0] = andf7[0] << 1;
846 andf7[0] = andf7[0] & 0xfe;
847 xor_32(add1b, andf7, add1bf7);
848 xor_32(in, add1bf7, rotr);
849 temp[0] = rotr[0]; /* Rotate right 8 bits */
850 rotr[0] = rotr[1];
851 rotr[1] = rotr[2];
852 rotr[2] = rotr[3];
853 rotr[3] = temp[0];
854 xor_32(add1bf7, rotr, temp);
855 xor_32(swap_halves, rotl, tempb);
856 xor_32(temp, tempb, out);
857 }
858
aes128k128d(u8 * key,u8 * data,u8 * ciphertext)859 static void aes128k128d(u8 *key, u8 *data, u8 *ciphertext)
860 {
861 sint round;
862 sint i;
863 u8 intermediatea[16];
864 u8 intermediateb[16];
865 u8 round_key[16];
866
867 for (i = 0; i < 16; i++)
868 round_key[i] = key[i];
869 for (round = 0; round < 11; round++) {
870 if (round == 0) {
871 xor_128(round_key, data, ciphertext);
872 next_key(round_key, round);
873 } else if (round == 10) {
874 byte_sub(ciphertext, intermediatea);
875 shift_row(intermediatea, intermediateb);
876 xor_128(intermediateb, round_key, ciphertext);
877 } else { /* 1 - 9 */
878 byte_sub(ciphertext, intermediatea);
879 shift_row(intermediatea, intermediateb);
880 mix_column(&intermediateb[0], &intermediatea[0]);
881 mix_column(&intermediateb[4], &intermediatea[4]);
882 mix_column(&intermediateb[8], &intermediatea[8]);
883 mix_column(&intermediateb[12], &intermediatea[12]);
884 xor_128(intermediatea, round_key, ciphertext);
885 next_key(round_key, round);
886 }
887 }
888 }
889
890 /************************************************/
891 /* construct_mic_iv() */
892 /* Builds the MIC IV from header fields and PN */
893 /************************************************/
construct_mic_iv(u8 * mic_iv,sint qc_exists,sint a4_exists,u8 * mpdu,uint payload_length,u8 * pn_vector)894 static void construct_mic_iv(u8 *mic_iv, sint qc_exists, sint a4_exists,
895 u8 *mpdu, uint payload_length, u8 *pn_vector)
896 {
897 sint i;
898
899 mic_iv[0] = 0x59;
900 if (qc_exists && a4_exists)
901 mic_iv[1] = mpdu[30] & 0x0f; /* QoS_TC */
902 if (qc_exists && !a4_exists)
903 mic_iv[1] = mpdu[24] & 0x0f; /* mute bits 7-4 */
904 if (!qc_exists)
905 mic_iv[1] = 0x00;
906 for (i = 2; i < 8; i++)
907 mic_iv[i] = mpdu[i + 8];
908 for (i = 8; i < 14; i++)
909 mic_iv[i] = pn_vector[13 - i]; /* mic_iv[8:13] = PN[5:0] */
910 mic_iv[14] = (unsigned char)(payload_length / 256);
911 mic_iv[15] = (unsigned char)(payload_length % 256);
912 }
913
914 /************************************************/
915 /* construct_mic_header1() */
916 /* Builds the first MIC header block from */
917 /* header fields. */
918 /************************************************/
construct_mic_header1(u8 * mic_header1,sint header_length,u8 * mpdu)919 static void construct_mic_header1(u8 *mic_header1, sint header_length, u8 *mpdu)
920 {
921 mic_header1[0] = (u8)((header_length - 2) / 256);
922 mic_header1[1] = (u8)((header_length - 2) % 256);
923 mic_header1[2] = mpdu[0] & 0xcf; /* Mute CF poll & CF ack bits */
924 /* Mute retry, more data and pwr mgt bits */
925 mic_header1[3] = mpdu[1] & 0xc7;
926 mic_header1[4] = mpdu[4]; /* A1 */
927 mic_header1[5] = mpdu[5];
928 mic_header1[6] = mpdu[6];
929 mic_header1[7] = mpdu[7];
930 mic_header1[8] = mpdu[8];
931 mic_header1[9] = mpdu[9];
932 mic_header1[10] = mpdu[10]; /* A2 */
933 mic_header1[11] = mpdu[11];
934 mic_header1[12] = mpdu[12];
935 mic_header1[13] = mpdu[13];
936 mic_header1[14] = mpdu[14];
937 mic_header1[15] = mpdu[15];
938 }
939
940 /************************************************/
941 /* construct_mic_header2() */
942 /* Builds the last MIC header block from */
943 /* header fields. */
944 /************************************************/
construct_mic_header2(u8 * mic_header2,u8 * mpdu,sint a4_exists,sint qc_exists)945 static void construct_mic_header2(u8 *mic_header2, u8 *mpdu, sint a4_exists,
946 sint qc_exists)
947 {
948 sint i;
949
950 for (i = 0; i < 16; i++)
951 mic_header2[i] = 0x00;
952 mic_header2[0] = mpdu[16]; /* A3 */
953 mic_header2[1] = mpdu[17];
954 mic_header2[2] = mpdu[18];
955 mic_header2[3] = mpdu[19];
956 mic_header2[4] = mpdu[20];
957 mic_header2[5] = mpdu[21];
958 mic_header2[6] = 0x00;
959 mic_header2[7] = 0x00; /* mpdu[23]; */
960 if (!qc_exists && a4_exists)
961 for (i = 0; i < 6; i++)
962 mic_header2[8 + i] = mpdu[24 + i]; /* A4 */
963 if (qc_exists && !a4_exists) {
964 mic_header2[8] = mpdu[24] & 0x0f; /* mute bits 15 - 4 */
965 mic_header2[9] = mpdu[25] & 0x00;
966 }
967 if (qc_exists && a4_exists) {
968 for (i = 0; i < 6; i++)
969 mic_header2[8 + i] = mpdu[24 + i]; /* A4 */
970 mic_header2[14] = mpdu[30] & 0x0f;
971 mic_header2[15] = mpdu[31] & 0x00;
972 }
973 }
974
975 /************************************************/
976 /* construct_mic_header2() */
977 /* Builds the last MIC header block from */
978 /* header fields. */
979 /************************************************/
construct_ctr_preload(u8 * ctr_preload,sint a4_exists,sint qc_exists,u8 * mpdu,u8 * pn_vector,sint c)980 static void construct_ctr_preload(u8 *ctr_preload,
981 sint a4_exists, sint qc_exists,
982 u8 *mpdu, u8 *pn_vector, sint c)
983 {
984 sint i;
985
986 for (i = 0; i < 16; i++)
987 ctr_preload[i] = 0x00;
988 i = 0;
989 ctr_preload[0] = 0x01; /* flag */
990 if (qc_exists && a4_exists)
991 ctr_preload[1] = mpdu[30] & 0x0f;
992 if (qc_exists && !a4_exists)
993 ctr_preload[1] = mpdu[24] & 0x0f;
994 for (i = 2; i < 8; i++)
995 ctr_preload[i] = mpdu[i + 8];
996 for (i = 8; i < 14; i++)
997 ctr_preload[i] = pn_vector[13 - i];
998 ctr_preload[14] = (unsigned char)(c / 256); /* Ctr */
999 ctr_preload[15] = (unsigned char)(c % 256);
1000 }
1001
1002 /************************************/
1003 /* bitwise_xor() */
1004 /* A 128 bit, bitwise exclusive or */
1005 /************************************/
bitwise_xor(u8 * ina,u8 * inb,u8 * out)1006 static void bitwise_xor(u8 *ina, u8 *inb, u8 *out)
1007 {
1008 sint i;
1009
1010 for (i = 0; i < 16; i++)
1011 out[i] = ina[i] ^ inb[i];
1012 }
1013
aes_cipher(u8 * key,uint hdrlen,u8 * pframe,uint plen)1014 static void aes_cipher(u8 *key, uint hdrlen,
1015 u8 *pframe, uint plen)
1016 {
1017 uint qc_exists, a4_exists, i, j, payload_remainder;
1018 uint num_blocks, payload_index;
1019
1020 u8 pn_vector[6];
1021 u8 mic_iv[16];
1022 u8 mic_header1[16];
1023 u8 mic_header2[16];
1024 u8 ctr_preload[16];
1025
1026 /* Intermediate Buffers */
1027 u8 chain_buffer[16];
1028 u8 aes_out[16];
1029 u8 padded_buffer[16];
1030 u8 mic[8];
1031 u16 frtype = GetFrameType(pframe);
1032 u16 frsubtype = GetFrameSubType(pframe);
1033
1034 frsubtype >>= 4;
1035 memset((void *)mic_iv, 0, 16);
1036 memset((void *)mic_header1, 0, 16);
1037 memset((void *)mic_header2, 0, 16);
1038 memset((void *)ctr_preload, 0, 16);
1039 memset((void *)chain_buffer, 0, 16);
1040 memset((void *)aes_out, 0, 16);
1041 memset((void *)padded_buffer, 0, 16);
1042
1043 if ((hdrlen == WLAN_HDR_A3_LEN) || (hdrlen == WLAN_HDR_A3_QOS_LEN))
1044 a4_exists = 0;
1045 else
1046 a4_exists = 1;
1047
1048 if ((frtype == (IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA_CFACK)) ||
1049 (frtype == (IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA_CFPOLL)) ||
1050 (frtype == (IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA_CFACKPOLL))) {
1051 qc_exists = 1;
1052 if (hdrlen != WLAN_HDR_A3_QOS_LEN)
1053 hdrlen += 2;
1054 } else if ((frsubtype == 0x08) ||
1055 (frsubtype == 0x09) ||
1056 (frsubtype == 0x0a) ||
1057 (frsubtype == 0x0b)) {
1058 if (hdrlen != WLAN_HDR_A3_QOS_LEN)
1059 hdrlen += 2;
1060 qc_exists = 1;
1061 } else {
1062 qc_exists = 0;
1063 }
1064 pn_vector[0] = pframe[hdrlen];
1065 pn_vector[1] = pframe[hdrlen + 1];
1066 pn_vector[2] = pframe[hdrlen + 4];
1067 pn_vector[3] = pframe[hdrlen + 5];
1068 pn_vector[4] = pframe[hdrlen + 6];
1069 pn_vector[5] = pframe[hdrlen + 7];
1070 construct_mic_iv(mic_iv, qc_exists, a4_exists, pframe, plen, pn_vector);
1071 construct_mic_header1(mic_header1, hdrlen, pframe);
1072 construct_mic_header2(mic_header2, pframe, a4_exists, qc_exists);
1073 payload_remainder = plen % 16;
1074 num_blocks = plen / 16;
1075 /* Find start of payload */
1076 payload_index = hdrlen + 8;
1077 /* Calculate MIC */
1078 aes128k128d(key, mic_iv, aes_out);
1079 bitwise_xor(aes_out, mic_header1, chain_buffer);
1080 aes128k128d(key, chain_buffer, aes_out);
1081 bitwise_xor(aes_out, mic_header2, chain_buffer);
1082 aes128k128d(key, chain_buffer, aes_out);
1083 for (i = 0; i < num_blocks; i++) {
1084 bitwise_xor(aes_out, &pframe[payload_index], chain_buffer);
1085 payload_index += 16;
1086 aes128k128d(key, chain_buffer, aes_out);
1087 }
1088 /* Add on the final payload block if it needs padding */
1089 if (payload_remainder > 0) {
1090 for (j = 0; j < 16; j++)
1091 padded_buffer[j] = 0x00;
1092 for (j = 0; j < payload_remainder; j++)
1093 padded_buffer[j] = pframe[payload_index++];
1094 bitwise_xor(aes_out, padded_buffer, chain_buffer);
1095 aes128k128d(key, chain_buffer, aes_out);
1096 }
1097 for (j = 0; j < 8; j++)
1098 mic[j] = aes_out[j];
1099 /* Insert MIC into payload */
1100 for (j = 0; j < 8; j++)
1101 pframe[payload_index + j] = mic[j];
1102 payload_index = hdrlen + 8;
1103 for (i = 0; i < num_blocks; i++) {
1104 construct_ctr_preload(ctr_preload, a4_exists, qc_exists,
1105 pframe, pn_vector, i + 1);
1106 aes128k128d(key, ctr_preload, aes_out);
1107 bitwise_xor(aes_out, &pframe[payload_index], chain_buffer);
1108 for (j = 0; j < 16; j++)
1109 pframe[payload_index++] = chain_buffer[j];
1110 }
1111 if (payload_remainder > 0) { /* If short final block, then pad it,*/
1112 /* encrypt and copy unpadded part back */
1113 construct_ctr_preload(ctr_preload, a4_exists, qc_exists,
1114 pframe, pn_vector, num_blocks + 1);
1115 for (j = 0; j < 16; j++)
1116 padded_buffer[j] = 0x00;
1117 for (j = 0; j < payload_remainder; j++)
1118 padded_buffer[j] = pframe[payload_index + j];
1119 aes128k128d(key, ctr_preload, aes_out);
1120 bitwise_xor(aes_out, padded_buffer, chain_buffer);
1121 for (j = 0; j < payload_remainder; j++)
1122 pframe[payload_index++] = chain_buffer[j];
1123 }
1124 /* Encrypt the MIC */
1125 construct_ctr_preload(ctr_preload, a4_exists, qc_exists,
1126 pframe, pn_vector, 0);
1127 for (j = 0; j < 16; j++)
1128 padded_buffer[j] = 0x00;
1129 for (j = 0; j < 8; j++)
1130 padded_buffer[j] = pframe[j + hdrlen + 8 + plen];
1131 aes128k128d(key, ctr_preload, aes_out);
1132 bitwise_xor(aes_out, padded_buffer, chain_buffer);
1133 for (j = 0; j < 8; j++)
1134 pframe[payload_index++] = chain_buffer[j];
1135 }
1136
r8712_aes_encrypt(struct _adapter * padapter,u8 * pxmitframe)1137 u32 r8712_aes_encrypt(struct _adapter *padapter, u8 *pxmitframe)
1138 { /* exclude ICV */
1139 /* Intermediate Buffers */
1140 sint curfragnum, length;
1141 u8 *pframe, *prwskey;
1142 struct sta_info *stainfo;
1143 struct pkt_attrib *pattrib = &((struct xmit_frame *)
1144 pxmitframe)->attrib;
1145 struct xmit_priv *pxmitpriv = &padapter->xmitpriv;
1146 u32 res = _SUCCESS;
1147
1148 if (((struct xmit_frame *)pxmitframe)->buf_addr == NULL)
1149 return _FAIL;
1150 pframe = ((struct xmit_frame *)pxmitframe)->buf_addr + TXDESC_OFFSET;
1151 /* 4 start to encrypt each fragment */
1152 if (pattrib->encrypt == _AES_) {
1153 if (pattrib->psta)
1154 stainfo = pattrib->psta;
1155 else
1156 stainfo = r8712_get_stainfo(&padapter->stapriv,
1157 &pattrib->ra[0]);
1158 if (stainfo) {
1159 prwskey = &stainfo->x_UncstKey.skey[0];
1160 for (curfragnum = 0; curfragnum < pattrib->nr_frags;
1161 curfragnum++) {
1162 if ((curfragnum + 1) == pattrib->nr_frags) {
1163 length = pattrib->last_txcmdsz -
1164 pattrib->hdrlen -
1165 pattrib->iv_len -
1166 pattrib->icv_len;
1167 aes_cipher(prwskey, pattrib->hdrlen,
1168 pframe, length);
1169 } else {
1170 length = pxmitpriv->frag_len -
1171 pattrib->hdrlen -
1172 pattrib->iv_len -
1173 pattrib->icv_len;
1174 aes_cipher(prwskey, pattrib->hdrlen,
1175 pframe, length);
1176 pframe += pxmitpriv->frag_len;
1177 pframe = (u8 *)RND4((addr_t)(pframe));
1178 }
1179 }
1180 } else {
1181 res = _FAIL;
1182 }
1183 }
1184 return res;
1185 }
1186
aes_decipher(u8 * key,uint hdrlen,u8 * pframe,uint plen)1187 static void aes_decipher(u8 *key, uint hdrlen,
1188 u8 *pframe, uint plen)
1189 {
1190 static u8 message[MAX_MSG_SIZE];
1191 uint qc_exists, a4_exists, i, j, payload_remainder;
1192 uint num_blocks, payload_index;
1193 u8 pn_vector[6];
1194 u8 mic_iv[16];
1195 u8 mic_header1[16];
1196 u8 mic_header2[16];
1197 u8 ctr_preload[16];
1198 /* Intermediate Buffers */
1199 u8 chain_buffer[16];
1200 u8 aes_out[16];
1201 u8 padded_buffer[16];
1202 u8 mic[8];
1203 uint frtype = GetFrameType(pframe);
1204 uint frsubtype = GetFrameSubType(pframe);
1205
1206 frsubtype >>= 4;
1207 memset((void *)mic_iv, 0, 16);
1208 memset((void *)mic_header1, 0, 16);
1209 memset((void *)mic_header2, 0, 16);
1210 memset((void *)ctr_preload, 0, 16);
1211 memset((void *)chain_buffer, 0, 16);
1212 memset((void *)aes_out, 0, 16);
1213 memset((void *)padded_buffer, 0, 16);
1214 /* start to decrypt the payload */
1215 /*(plen including llc, payload and mic) */
1216 num_blocks = (plen - 8) / 16;
1217 payload_remainder = (plen - 8) % 16;
1218 pn_vector[0] = pframe[hdrlen];
1219 pn_vector[1] = pframe[hdrlen + 1];
1220 pn_vector[2] = pframe[hdrlen + 4];
1221 pn_vector[3] = pframe[hdrlen + 5];
1222 pn_vector[4] = pframe[hdrlen + 6];
1223 pn_vector[5] = pframe[hdrlen + 7];
1224 if ((hdrlen == WLAN_HDR_A3_LEN) || (hdrlen == WLAN_HDR_A3_QOS_LEN))
1225 a4_exists = 0;
1226 else
1227 a4_exists = 1;
1228 if ((frtype == (IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA_CFACK)) ||
1229 (frtype == (IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA_CFPOLL)) ||
1230 (frtype == (IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA_CFACKPOLL))) {
1231 qc_exists = 1;
1232 if (hdrlen != WLAN_HDR_A3_QOS_LEN)
1233 hdrlen += 2;
1234 } else if ((frsubtype == 0x08) ||
1235 (frsubtype == 0x09) ||
1236 (frsubtype == 0x0a) ||
1237 (frsubtype == 0x0b)) {
1238 if (hdrlen != WLAN_HDR_A3_QOS_LEN)
1239 hdrlen += 2;
1240 qc_exists = 1;
1241 } else {
1242 qc_exists = 0;
1243 }
1244 /* now, decrypt pframe with hdrlen offset and plen long */
1245 payload_index = hdrlen + 8; /* 8 is for extiv */
1246 for (i = 0; i < num_blocks; i++) {
1247 construct_ctr_preload(ctr_preload, a4_exists, qc_exists,
1248 pframe, pn_vector, i + 1);
1249 aes128k128d(key, ctr_preload, aes_out);
1250 bitwise_xor(aes_out, &pframe[payload_index], chain_buffer);
1251 for (j = 0; j < 16; j++)
1252 pframe[payload_index++] = chain_buffer[j];
1253 }
1254 if (payload_remainder > 0) { /* If short final block, pad it,*/
1255 /* encrypt it and copy the unpadded part back */
1256 construct_ctr_preload(ctr_preload, a4_exists, qc_exists,
1257 pframe, pn_vector, num_blocks + 1);
1258 for (j = 0; j < 16; j++)
1259 padded_buffer[j] = 0x00;
1260 for (j = 0; j < payload_remainder; j++)
1261 padded_buffer[j] = pframe[payload_index + j];
1262 aes128k128d(key, ctr_preload, aes_out);
1263 bitwise_xor(aes_out, padded_buffer, chain_buffer);
1264 for (j = 0; j < payload_remainder; j++)
1265 pframe[payload_index++] = chain_buffer[j];
1266 }
1267 /* start to calculate the mic */
1268 memcpy((void *)message, pframe, (hdrlen + plen + 8));
1269 pn_vector[0] = pframe[hdrlen];
1270 pn_vector[1] = pframe[hdrlen + 1];
1271 pn_vector[2] = pframe[hdrlen + 4];
1272 pn_vector[3] = pframe[hdrlen + 5];
1273 pn_vector[4] = pframe[hdrlen + 6];
1274 pn_vector[5] = pframe[hdrlen + 7];
1275 construct_mic_iv(mic_iv, qc_exists, a4_exists, message, plen - 8,
1276 pn_vector);
1277 construct_mic_header1(mic_header1, hdrlen, message);
1278 construct_mic_header2(mic_header2, message, a4_exists, qc_exists);
1279 payload_remainder = (plen - 8) % 16;
1280 num_blocks = (plen - 8) / 16;
1281 /* Find start of payload */
1282 payload_index = hdrlen + 8;
1283 /* Calculate MIC */
1284 aes128k128d(key, mic_iv, aes_out);
1285 bitwise_xor(aes_out, mic_header1, chain_buffer);
1286 aes128k128d(key, chain_buffer, aes_out);
1287 bitwise_xor(aes_out, mic_header2, chain_buffer);
1288 aes128k128d(key, chain_buffer, aes_out);
1289 for (i = 0; i < num_blocks; i++) {
1290 bitwise_xor(aes_out, &message[payload_index], chain_buffer);
1291 payload_index += 16;
1292 aes128k128d(key, chain_buffer, aes_out);
1293 }
1294 /* Add on the final payload block if it needs padding */
1295 if (payload_remainder > 0) {
1296 for (j = 0; j < 16; j++)
1297 padded_buffer[j] = 0x00;
1298 for (j = 0; j < payload_remainder; j++)
1299 padded_buffer[j] = message[payload_index++];
1300 bitwise_xor(aes_out, padded_buffer, chain_buffer);
1301 aes128k128d(key, chain_buffer, aes_out);
1302 }
1303 for (j = 0; j < 8; j++)
1304 mic[j] = aes_out[j];
1305 /* Insert MIC into payload */
1306 for (j = 0; j < 8; j++)
1307 message[payload_index + j] = mic[j];
1308 payload_index = hdrlen + 8;
1309 for (i = 0; i < num_blocks; i++) {
1310 construct_ctr_preload(ctr_preload, a4_exists, qc_exists,
1311 message, pn_vector, i + 1);
1312 aes128k128d(key, ctr_preload, aes_out);
1313 bitwise_xor(aes_out, &message[payload_index], chain_buffer);
1314 for (j = 0; j < 16; j++)
1315 message[payload_index++] = chain_buffer[j];
1316 }
1317 if (payload_remainder > 0) { /* If short final block, pad it,*/
1318 /* encrypt and copy unpadded part back */
1319 construct_ctr_preload(ctr_preload, a4_exists, qc_exists,
1320 message, pn_vector, num_blocks + 1);
1321 for (j = 0; j < 16; j++)
1322 padded_buffer[j] = 0x00;
1323 for (j = 0; j < payload_remainder; j++)
1324 padded_buffer[j] = message[payload_index + j];
1325 aes128k128d(key, ctr_preload, aes_out);
1326 bitwise_xor(aes_out, padded_buffer, chain_buffer);
1327 for (j = 0; j < payload_remainder; j++)
1328 message[payload_index++] = chain_buffer[j];
1329 }
1330 /* Encrypt the MIC */
1331 construct_ctr_preload(ctr_preload, a4_exists, qc_exists, message,
1332 pn_vector, 0);
1333 for (j = 0; j < 16; j++)
1334 padded_buffer[j] = 0x00;
1335 for (j = 0; j < 8; j++)
1336 padded_buffer[j] = message[j + hdrlen + plen];
1337 aes128k128d(key, ctr_preload, aes_out);
1338 bitwise_xor(aes_out, padded_buffer, chain_buffer);
1339 for (j = 0; j < 8; j++)
1340 message[payload_index++] = chain_buffer[j];
1341 /* compare the mic */
1342 }
1343
r8712_aes_decrypt(struct _adapter * padapter,u8 * precvframe)1344 void r8712_aes_decrypt(struct _adapter *padapter, u8 *precvframe)
1345 { /* exclude ICV */
1346 /* Intermediate Buffers */
1347 sint length;
1348 u8 *pframe, *prwskey, *iv, idx;
1349 struct sta_info *stainfo;
1350 struct rx_pkt_attrib *prxattrib = &((union recv_frame *)
1351 precvframe)->u.hdr.attrib;
1352 struct security_priv *psecuritypriv = &padapter->securitypriv;
1353
1354 pframe = (unsigned char *)((union recv_frame *)precvframe)->
1355 u.hdr.rx_data;
1356 /* 4 start to encrypt each fragment */
1357 if (prxattrib->encrypt == _AES_) {
1358 stainfo = r8712_get_stainfo(&padapter->stapriv,
1359 &prxattrib->ta[0]);
1360 if (stainfo) {
1361 if (is_multicast_ether_addr(prxattrib->ra)) {
1362 iv = pframe + prxattrib->hdrlen;
1363 idx = iv[3];
1364 prwskey = &psecuritypriv->XGrpKey[
1365 ((idx >> 6) & 0x3) - 1].skey[0];
1366 if (!psecuritypriv->binstallGrpkey)
1367 return;
1368
1369 } else {
1370 prwskey = &stainfo->x_UncstKey.skey[0];
1371 }
1372 length = ((union recv_frame *)precvframe)->
1373 u.hdr.len - prxattrib->hdrlen -
1374 prxattrib->iv_len;
1375 aes_decipher(prwskey, prxattrib->hdrlen, pframe,
1376 length);
1377 }
1378 }
1379 }
1380
r8712_use_tkipkey_handler(struct timer_list * t)1381 void r8712_use_tkipkey_handler(struct timer_list *t)
1382 {
1383 struct _adapter *padapter =
1384 from_timer(padapter, t, securitypriv.tkip_timer);
1385
1386 padapter->securitypriv.busetkipkey = true;
1387 }
1388