1  // SPDX-License-Identifier: GPL-2.0
2  //
3  // Register map access API - SPI AVMM support
4  //
5  // Copyright (C) 2018-2020 Intel Corporation. All rights reserved.
6  
7  #include <linux/module.h>
8  #include <linux/regmap.h>
9  #include <linux/spi/spi.h>
10  
11  /*
12   * This driver implements the regmap operations for a generic SPI
13   * master to access the registers of the spi slave chip which has an
14   * Avalone bus in it.
15   *
16   * The "SPI slave to Avalon Master Bridge" (spi-avmm) IP should be integrated
17   * in the spi slave chip. The IP acts as a bridge to convert encoded streams of
18   * bytes from the host to the internal register read/write on Avalon bus. In
19   * order to issue register access requests to the slave chip, the host should
20   * send formatted bytes that conform to the transfer protocol.
21   * The transfer protocol contains 3 layers: transaction layer, packet layer
22   * and physical layer.
23   *
24   * Reference Documents could be found at:
25   * https://www.intel.com/content/www/us/en/programmable/documentation/sfo1400787952932.html
26   *
27   * Chapter "SPI Slave/JTAG to Avalon Master Bridge Cores" is a general
28   * introduction to the protocol.
29   *
30   * Chapter "Avalon Packets to Transactions Converter Core" describes
31   * the transaction layer.
32   *
33   * Chapter "Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores"
34   * describes the packet layer.
35   *
36   * Chapter "Avalon-ST Serial Peripheral Interface Core" describes the
37   * physical layer.
38   *
39   *
40   * When host issues a regmap read/write, the driver will transform the request
41   * to byte stream layer by layer. It formats the register addr, value and
42   * length to the transaction layer request, then converts the request to packet
43   * layer bytes stream and then to physical layer bytes stream. Finally the
44   * driver sends the formatted byte stream over SPI bus to the slave chip.
45   *
46   * The spi-avmm IP on the slave chip decodes the byte stream and initiates
47   * register read/write on its internal Avalon bus, and then encodes the
48   * response to byte stream and sends back to host.
49   *
50   * The driver receives the byte stream, reverses the 3 layers transformation,
51   * and finally gets the response value (read out data for register read,
52   * successful written size for register write).
53   */
54  
55  #define PKT_SOP			0x7a
56  #define PKT_EOP			0x7b
57  #define PKT_CHANNEL		0x7c
58  #define PKT_ESC			0x7d
59  
60  #define PHY_IDLE		0x4a
61  #define PHY_ESC			0x4d
62  
63  #define TRANS_CODE_WRITE	0x0
64  #define TRANS_CODE_SEQ_WRITE	0x4
65  #define TRANS_CODE_READ		0x10
66  #define TRANS_CODE_SEQ_READ	0x14
67  #define TRANS_CODE_NO_TRANS	0x7f
68  
69  #define SPI_AVMM_XFER_TIMEOUT	(msecs_to_jiffies(200))
70  
71  /* slave's register addr is 32 bits */
72  #define SPI_AVMM_REG_SIZE		4UL
73  /* slave's register value is 32 bits */
74  #define SPI_AVMM_VAL_SIZE		4UL
75  
76  /*
77   * max rx size could be larger. But considering the buffer consuming,
78   * it is proper that we limit 1KB xfer at max.
79   */
80  #define MAX_READ_CNT		256UL
81  #define MAX_WRITE_CNT		1UL
82  
83  struct trans_req_header {
84  	u8 code;
85  	u8 rsvd;
86  	__be16 size;
87  	__be32 addr;
88  } __packed;
89  
90  struct trans_resp_header {
91  	u8 r_code;
92  	u8 rsvd;
93  	__be16 size;
94  } __packed;
95  
96  #define TRANS_REQ_HD_SIZE	(sizeof(struct trans_req_header))
97  #define TRANS_RESP_HD_SIZE	(sizeof(struct trans_resp_header))
98  
99  /*
100   * In transaction layer,
101   * the write request format is: Transaction request header + data
102   * the read request format is: Transaction request header
103   * the write response format is: Transaction response header
104   * the read response format is: pure data, no Transaction response header
105   */
106  #define TRANS_WR_TX_SIZE(n)	(TRANS_REQ_HD_SIZE + SPI_AVMM_VAL_SIZE * (n))
107  #define TRANS_RD_TX_SIZE	TRANS_REQ_HD_SIZE
108  #define TRANS_TX_MAX		TRANS_WR_TX_SIZE(MAX_WRITE_CNT)
109  
110  #define TRANS_RD_RX_SIZE(n)	(SPI_AVMM_VAL_SIZE * (n))
111  #define TRANS_WR_RX_SIZE	TRANS_RESP_HD_SIZE
112  #define TRANS_RX_MAX		TRANS_RD_RX_SIZE(MAX_READ_CNT)
113  
114  /* tx & rx share one transaction layer buffer */
115  #define TRANS_BUF_SIZE		((TRANS_TX_MAX > TRANS_RX_MAX) ?	\
116  				 TRANS_TX_MAX : TRANS_RX_MAX)
117  
118  /*
119   * In tx phase, the host prepares all the phy layer bytes of a request in the
120   * phy buffer and sends them in a batch.
121   *
122   * The packet layer and physical layer defines several special chars for
123   * various purpose, when a transaction layer byte hits one of these special
124   * chars, it should be escaped. The escape rule is, "Escape char first,
125   * following the byte XOR'ed with 0x20".
126   *
127   * This macro defines the max possible length of the phy data. In the worst
128   * case, all transaction layer bytes need to be escaped (so the data length
129   * doubles), plus 4 special chars (SOP, CHANNEL, CHANNEL_NUM, EOP). Finally
130   * we should make sure the length is aligned to SPI BPW.
131   */
132  #define PHY_TX_MAX		ALIGN(2 * TRANS_TX_MAX + 4, 4)
133  
134  /*
135   * Unlike tx, phy rx is affected by possible PHY_IDLE bytes from slave, the max
136   * length of the rx bit stream is unpredictable. So the driver reads the words
137   * one by one, and parses each word immediately into transaction layer buffer.
138   * Only one word length of phy buffer is used for rx.
139   */
140  #define PHY_BUF_SIZE		PHY_TX_MAX
141  
142  /**
143   * struct spi_avmm_bridge - SPI slave to AVMM bus master bridge
144   *
145   * @spi: spi slave associated with this bridge.
146   * @word_len: bytes of word for spi transfer.
147   * @trans_len: length of valid data in trans_buf.
148   * @phy_len: length of valid data in phy_buf.
149   * @trans_buf: the bridge buffer for transaction layer data.
150   * @phy_buf: the bridge buffer for physical layer data.
151   * @swap_words: the word swapping cb for phy data. NULL if not needed.
152   *
153   * As a device's registers are implemented on the AVMM bus address space, it
154   * requires the driver to issue formatted requests to spi slave to AVMM bus
155   * master bridge to perform register access.
156   */
157  struct spi_avmm_bridge {
158  	struct spi_device *spi;
159  	unsigned char word_len;
160  	unsigned int trans_len;
161  	unsigned int phy_len;
162  	/* bridge buffer used in translation between protocol layers */
163  	char trans_buf[TRANS_BUF_SIZE];
164  	char phy_buf[PHY_BUF_SIZE];
165  	void (*swap_words)(char *buf, unsigned int len);
166  };
167  
br_swap_words_32(char * buf,unsigned int len)168  static void br_swap_words_32(char *buf, unsigned int len)
169  {
170  	u32 *p = (u32 *)buf;
171  	unsigned int count;
172  
173  	count = len / 4;
174  	while (count--) {
175  		*p = swab32p(p);
176  		p++;
177  	}
178  }
179  
180  /*
181   * Format transaction layer data in br->trans_buf according to the register
182   * access request, Store valid transaction layer data length in br->trans_len.
183   */
br_trans_tx_prepare(struct spi_avmm_bridge * br,bool is_read,u32 reg,u32 * wr_val,u32 count)184  static int br_trans_tx_prepare(struct spi_avmm_bridge *br, bool is_read, u32 reg,
185  			       u32 *wr_val, u32 count)
186  {
187  	struct trans_req_header *header;
188  	unsigned int trans_len;
189  	u8 code;
190  	__le32 *data;
191  	int i;
192  
193  	if (is_read) {
194  		if (count == 1)
195  			code = TRANS_CODE_READ;
196  		else
197  			code = TRANS_CODE_SEQ_READ;
198  	} else {
199  		if (count == 1)
200  			code = TRANS_CODE_WRITE;
201  		else
202  			code = TRANS_CODE_SEQ_WRITE;
203  	}
204  
205  	header = (struct trans_req_header *)br->trans_buf;
206  	header->code = code;
207  	header->rsvd = 0;
208  	header->size = cpu_to_be16((u16)count * SPI_AVMM_VAL_SIZE);
209  	header->addr = cpu_to_be32(reg);
210  
211  	trans_len = TRANS_REQ_HD_SIZE;
212  
213  	if (!is_read) {
214  		trans_len += SPI_AVMM_VAL_SIZE * count;
215  		if (trans_len > sizeof(br->trans_buf))
216  			return -ENOMEM;
217  
218  		data = (__le32 *)(br->trans_buf + TRANS_REQ_HD_SIZE);
219  
220  		for (i = 0; i < count; i++)
221  			*data++ = cpu_to_le32(*wr_val++);
222  	}
223  
224  	/* Store valid trans data length for next layer */
225  	br->trans_len = trans_len;
226  
227  	return 0;
228  }
229  
230  /*
231   * Convert transaction layer data (in br->trans_buf) to phy layer data, store
232   * them in br->phy_buf. Pad the phy_buf aligned with SPI's BPW. Store valid phy
233   * layer data length in br->phy_len.
234   *
235   * phy_buf len should be aligned with SPI's BPW. Spare bytes should be padded
236   * with PHY_IDLE, then the slave will just drop them.
237   *
238   * The driver will not simply pad 4a at the tail. The concern is that driver
239   * will not store MISO data during tx phase, if the driver pads 4a at the tail,
240   * it is possible that if the slave is fast enough to response at the padding
241   * time. As a result these rx bytes are lost. In the following case, 7a,7c,00
242   * will lost.
243   * MOSI ...|7a|7c|00|10| |00|00|04|02| |4b|7d|5a|7b| |40|4a|4a|4a| |XX|XX|...
244   * MISO ...|4a|4a|4a|4a| |4a|4a|4a|4a| |4a|4a|4a|4a| |4a|7a|7c|00| |78|56|...
245   *
246   * So the driver moves EOP and bytes after EOP to the end of the aligned size,
247   * then fill the hole with PHY_IDLE. As following:
248   * before pad ...|7a|7c|00|10| |00|00|04|02| |4b|7d|5a|7b| |40|
249   * after pad  ...|7a|7c|00|10| |00|00|04|02| |4b|7d|5a|4a| |4a|4a|7b|40|
250   * Then if the slave will not get the entire packet before the tx phase is
251   * over, it can't responsed to anything either.
252   */
br_pkt_phy_tx_prepare(struct spi_avmm_bridge * br)253  static int br_pkt_phy_tx_prepare(struct spi_avmm_bridge *br)
254  {
255  	char *tb, *tb_end, *pb, *pb_limit, *pb_eop = NULL;
256  	unsigned int aligned_phy_len, move_size;
257  	bool need_esc = false;
258  
259  	tb = br->trans_buf;
260  	tb_end = tb + br->trans_len;
261  	pb = br->phy_buf;
262  	pb_limit = pb + ARRAY_SIZE(br->phy_buf);
263  
264  	*pb++ = PKT_SOP;
265  
266  	/*
267  	 * The driver doesn't support multiple channels so the channel number
268  	 * is always 0.
269  	 */
270  	*pb++ = PKT_CHANNEL;
271  	*pb++ = 0x0;
272  
273  	for (; pb < pb_limit && tb < tb_end; pb++) {
274  		if (need_esc) {
275  			*pb = *tb++ ^ 0x20;
276  			need_esc = false;
277  			continue;
278  		}
279  
280  		/* EOP should be inserted before the last valid char */
281  		if (tb == tb_end - 1 && !pb_eop) {
282  			*pb = PKT_EOP;
283  			pb_eop = pb;
284  			continue;
285  		}
286  
287  		/*
288  		 * insert an ESCAPE char if the data value equals any special
289  		 * char.
290  		 */
291  		switch (*tb) {
292  		case PKT_SOP:
293  		case PKT_EOP:
294  		case PKT_CHANNEL:
295  		case PKT_ESC:
296  			*pb = PKT_ESC;
297  			need_esc = true;
298  			break;
299  		case PHY_IDLE:
300  		case PHY_ESC:
301  			*pb = PHY_ESC;
302  			need_esc = true;
303  			break;
304  		default:
305  			*pb = *tb++;
306  			break;
307  		}
308  	}
309  
310  	/* The phy buffer is used out but transaction layer data remains */
311  	if (tb < tb_end)
312  		return -ENOMEM;
313  
314  	/* Store valid phy data length for spi transfer */
315  	br->phy_len = pb - br->phy_buf;
316  
317  	if (br->word_len == 1)
318  		return 0;
319  
320  	/* Do phy buf padding if word_len > 1 byte. */
321  	aligned_phy_len = ALIGN(br->phy_len, br->word_len);
322  	if (aligned_phy_len > sizeof(br->phy_buf))
323  		return -ENOMEM;
324  
325  	if (aligned_phy_len == br->phy_len)
326  		return 0;
327  
328  	/* move EOP and bytes after EOP to the end of aligned size */
329  	move_size = pb - pb_eop;
330  	memmove(&br->phy_buf[aligned_phy_len - move_size], pb_eop, move_size);
331  
332  	/* fill the hole with PHY_IDLEs */
333  	memset(pb_eop, PHY_IDLE, aligned_phy_len - br->phy_len);
334  
335  	/* update the phy data length */
336  	br->phy_len = aligned_phy_len;
337  
338  	return 0;
339  }
340  
341  /*
342   * In tx phase, the slave only returns PHY_IDLE (0x4a). So the driver will
343   * ignore rx in tx phase.
344   */
br_do_tx(struct spi_avmm_bridge * br)345  static int br_do_tx(struct spi_avmm_bridge *br)
346  {
347  	/* reorder words for spi transfer */
348  	if (br->swap_words)
349  		br->swap_words(br->phy_buf, br->phy_len);
350  
351  	/* send all data in phy_buf  */
352  	return spi_write(br->spi, br->phy_buf, br->phy_len);
353  }
354  
355  /*
356   * This function read the rx byte stream from SPI word by word and convert
357   * them to transaction layer data in br->trans_buf. It also stores the length
358   * of rx transaction layer data in br->trans_len
359   *
360   * The slave may send an unknown number of PHY_IDLEs in rx phase, so we cannot
361   * prepare a fixed length buffer to receive all of the rx data in a batch. We
362   * have to read word by word and convert them to transaction layer data at
363   * once.
364   */
br_do_rx_and_pkt_phy_parse(struct spi_avmm_bridge * br)365  static int br_do_rx_and_pkt_phy_parse(struct spi_avmm_bridge *br)
366  {
367  	bool eop_found = false, channel_found = false, esc_found = false;
368  	bool valid_word = false, last_try = false;
369  	struct device *dev = &br->spi->dev;
370  	char *pb, *tb_limit, *tb = NULL;
371  	unsigned long poll_timeout;
372  	int ret, i;
373  
374  	tb_limit = br->trans_buf + ARRAY_SIZE(br->trans_buf);
375  	pb = br->phy_buf;
376  	poll_timeout = jiffies + SPI_AVMM_XFER_TIMEOUT;
377  	while (tb < tb_limit) {
378  		ret = spi_read(br->spi, pb, br->word_len);
379  		if (ret)
380  			return ret;
381  
382  		/* reorder the word back */
383  		if (br->swap_words)
384  			br->swap_words(pb, br->word_len);
385  
386  		valid_word = false;
387  		for (i = 0; i < br->word_len; i++) {
388  			/* drop everything before first SOP */
389  			if (!tb && pb[i] != PKT_SOP)
390  				continue;
391  
392  			/* drop PHY_IDLE */
393  			if (pb[i] == PHY_IDLE)
394  				continue;
395  
396  			valid_word = true;
397  
398  			/*
399  			 * We don't support multiple channels, so error out if
400  			 * a non-zero channel number is found.
401  			 */
402  			if (channel_found) {
403  				if (pb[i] != 0) {
404  					dev_err(dev, "%s channel num != 0\n",
405  						__func__);
406  					return -EFAULT;
407  				}
408  
409  				channel_found = false;
410  				continue;
411  			}
412  
413  			switch (pb[i]) {
414  			case PKT_SOP:
415  				/*
416  				 * reset the parsing if a second SOP appears.
417  				 */
418  				tb = br->trans_buf;
419  				eop_found = false;
420  				channel_found = false;
421  				esc_found = false;
422  				break;
423  			case PKT_EOP:
424  				/*
425  				 * No special char is expected after ESC char.
426  				 * No special char (except ESC & PHY_IDLE) is
427  				 * expected after EOP char.
428  				 *
429  				 * The special chars are all dropped.
430  				 */
431  				if (esc_found || eop_found)
432  					return -EFAULT;
433  
434  				eop_found = true;
435  				break;
436  			case PKT_CHANNEL:
437  				if (esc_found || eop_found)
438  					return -EFAULT;
439  
440  				channel_found = true;
441  				break;
442  			case PKT_ESC:
443  			case PHY_ESC:
444  				if (esc_found)
445  					return -EFAULT;
446  
447  				esc_found = true;
448  				break;
449  			default:
450  				/* Record the normal byte in trans_buf. */
451  				if (esc_found) {
452  					*tb++ = pb[i] ^ 0x20;
453  					esc_found = false;
454  				} else {
455  					*tb++ = pb[i];
456  				}
457  
458  				/*
459  				 * We get the last normal byte after EOP, it is
460  				 * time we finish. Normally the function should
461  				 * return here.
462  				 */
463  				if (eop_found) {
464  					br->trans_len = tb - br->trans_buf;
465  					return 0;
466  				}
467  			}
468  		}
469  
470  		if (valid_word) {
471  			/* update poll timeout when we get valid word */
472  			poll_timeout = jiffies + SPI_AVMM_XFER_TIMEOUT;
473  			last_try = false;
474  		} else {
475  			/*
476  			 * We timeout when rx keeps invalid for some time. But
477  			 * it is possible we are scheduled out for long time
478  			 * after a spi_read. So when we are scheduled in, a SW
479  			 * timeout happens. But actually HW may have worked fine and
480  			 * has been ready long time ago. So we need to do an extra
481  			 * read, if we get a valid word then we could continue rx,
482  			 * otherwise real a HW issue happens.
483  			 */
484  			if (last_try)
485  				return -ETIMEDOUT;
486  
487  			if (time_after(jiffies, poll_timeout))
488  				last_try = true;
489  		}
490  	}
491  
492  	/*
493  	 * We have used out all transfer layer buffer but cannot find the end
494  	 * of the byte stream.
495  	 */
496  	dev_err(dev, "%s transfer buffer is full but rx doesn't end\n",
497  		__func__);
498  
499  	return -EFAULT;
500  }
501  
502  /*
503   * For read transactions, the avmm bus will directly return register values
504   * without transaction response header.
505   */
br_rd_trans_rx_parse(struct spi_avmm_bridge * br,u32 * val,unsigned int expected_count)506  static int br_rd_trans_rx_parse(struct spi_avmm_bridge *br,
507  				u32 *val, unsigned int expected_count)
508  {
509  	unsigned int i, trans_len = br->trans_len;
510  	__le32 *data;
511  
512  	if (expected_count * SPI_AVMM_VAL_SIZE != trans_len)
513  		return -EFAULT;
514  
515  	data = (__le32 *)br->trans_buf;
516  	for (i = 0; i < expected_count; i++)
517  		*val++ = le32_to_cpu(*data++);
518  
519  	return 0;
520  }
521  
522  /*
523   * For write transactions, the slave will return a transaction response
524   * header.
525   */
br_wr_trans_rx_parse(struct spi_avmm_bridge * br,unsigned int expected_count)526  static int br_wr_trans_rx_parse(struct spi_avmm_bridge *br,
527  				unsigned int expected_count)
528  {
529  	unsigned int trans_len = br->trans_len;
530  	struct trans_resp_header *resp;
531  	u8 code;
532  	u16 val_len;
533  
534  	if (trans_len != TRANS_RESP_HD_SIZE)
535  		return -EFAULT;
536  
537  	resp = (struct trans_resp_header *)br->trans_buf;
538  
539  	code = resp->r_code ^ 0x80;
540  	val_len = be16_to_cpu(resp->size);
541  	if (!val_len || val_len != expected_count * SPI_AVMM_VAL_SIZE)
542  		return -EFAULT;
543  
544  	/* error out if the trans code doesn't align with the val size */
545  	if ((val_len == SPI_AVMM_VAL_SIZE && code != TRANS_CODE_WRITE) ||
546  	    (val_len > SPI_AVMM_VAL_SIZE && code != TRANS_CODE_SEQ_WRITE))
547  		return -EFAULT;
548  
549  	return 0;
550  }
551  
do_reg_access(void * context,bool is_read,unsigned int reg,unsigned int * value,unsigned int count)552  static int do_reg_access(void *context, bool is_read, unsigned int reg,
553  			 unsigned int *value, unsigned int count)
554  {
555  	struct spi_avmm_bridge *br = context;
556  	int ret;
557  
558  	/* invalidate bridge buffers first */
559  	br->trans_len = 0;
560  	br->phy_len = 0;
561  
562  	ret = br_trans_tx_prepare(br, is_read, reg, value, count);
563  	if (ret)
564  		return ret;
565  
566  	ret = br_pkt_phy_tx_prepare(br);
567  	if (ret)
568  		return ret;
569  
570  	ret = br_do_tx(br);
571  	if (ret)
572  		return ret;
573  
574  	ret = br_do_rx_and_pkt_phy_parse(br);
575  	if (ret)
576  		return ret;
577  
578  	if (is_read)
579  		return br_rd_trans_rx_parse(br, value, count);
580  	else
581  		return br_wr_trans_rx_parse(br, count);
582  }
583  
regmap_spi_avmm_gather_write(void * context,const void * reg_buf,size_t reg_len,const void * val_buf,size_t val_len)584  static int regmap_spi_avmm_gather_write(void *context,
585  					const void *reg_buf, size_t reg_len,
586  					const void *val_buf, size_t val_len)
587  {
588  	if (reg_len != SPI_AVMM_REG_SIZE)
589  		return -EINVAL;
590  
591  	if (!IS_ALIGNED(val_len, SPI_AVMM_VAL_SIZE))
592  		return -EINVAL;
593  
594  	return do_reg_access(context, false, *(u32 *)reg_buf, (u32 *)val_buf,
595  			     val_len / SPI_AVMM_VAL_SIZE);
596  }
597  
regmap_spi_avmm_write(void * context,const void * data,size_t bytes)598  static int regmap_spi_avmm_write(void *context, const void *data, size_t bytes)
599  {
600  	if (bytes < SPI_AVMM_REG_SIZE + SPI_AVMM_VAL_SIZE)
601  		return -EINVAL;
602  
603  	return regmap_spi_avmm_gather_write(context, data, SPI_AVMM_REG_SIZE,
604  					    data + SPI_AVMM_REG_SIZE,
605  					    bytes - SPI_AVMM_REG_SIZE);
606  }
607  
regmap_spi_avmm_read(void * context,const void * reg_buf,size_t reg_len,void * val_buf,size_t val_len)608  static int regmap_spi_avmm_read(void *context,
609  				const void *reg_buf, size_t reg_len,
610  				void *val_buf, size_t val_len)
611  {
612  	if (reg_len != SPI_AVMM_REG_SIZE)
613  		return -EINVAL;
614  
615  	if (!IS_ALIGNED(val_len, SPI_AVMM_VAL_SIZE))
616  		return -EINVAL;
617  
618  	return do_reg_access(context, true, *(u32 *)reg_buf, val_buf,
619  			     (val_len / SPI_AVMM_VAL_SIZE));
620  }
621  
622  static struct spi_avmm_bridge *
spi_avmm_bridge_ctx_gen(struct spi_device * spi)623  spi_avmm_bridge_ctx_gen(struct spi_device *spi)
624  {
625  	struct spi_avmm_bridge *br;
626  
627  	if (!spi)
628  		return ERR_PTR(-ENODEV);
629  
630  	/* Only support BPW == 8 or 32 now. Try 32 BPW first. */
631  	spi->mode = SPI_MODE_1;
632  	spi->bits_per_word = 32;
633  	if (spi_setup(spi)) {
634  		spi->bits_per_word = 8;
635  		if (spi_setup(spi))
636  			return ERR_PTR(-EINVAL);
637  	}
638  
639  	br = kzalloc(sizeof(*br), GFP_KERNEL);
640  	if (!br)
641  		return ERR_PTR(-ENOMEM);
642  
643  	br->spi = spi;
644  	br->word_len = spi->bits_per_word / 8;
645  	if (br->word_len == 4) {
646  		/*
647  		 * The protocol requires little endian byte order but MSB
648  		 * first. So driver needs to swap the byte order word by word
649  		 * if word length > 1.
650  		 */
651  		br->swap_words = br_swap_words_32;
652  	}
653  
654  	return br;
655  }
656  
spi_avmm_bridge_ctx_free(void * context)657  static void spi_avmm_bridge_ctx_free(void *context)
658  {
659  	kfree(context);
660  }
661  
662  static const struct regmap_bus regmap_spi_avmm_bus = {
663  	.write = regmap_spi_avmm_write,
664  	.gather_write = regmap_spi_avmm_gather_write,
665  	.read = regmap_spi_avmm_read,
666  	.reg_format_endian_default = REGMAP_ENDIAN_NATIVE,
667  	.val_format_endian_default = REGMAP_ENDIAN_NATIVE,
668  	.max_raw_read = SPI_AVMM_VAL_SIZE * MAX_READ_CNT,
669  	.max_raw_write = SPI_AVMM_VAL_SIZE * MAX_WRITE_CNT,
670  	.free_context = spi_avmm_bridge_ctx_free,
671  };
672  
__regmap_init_spi_avmm(struct spi_device * spi,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)673  struct regmap *__regmap_init_spi_avmm(struct spi_device *spi,
674  				      const struct regmap_config *config,
675  				      struct lock_class_key *lock_key,
676  				      const char *lock_name)
677  {
678  	struct spi_avmm_bridge *bridge;
679  	struct regmap *map;
680  
681  	bridge = spi_avmm_bridge_ctx_gen(spi);
682  	if (IS_ERR(bridge))
683  		return ERR_CAST(bridge);
684  
685  	map = __regmap_init(&spi->dev, &regmap_spi_avmm_bus,
686  			    bridge, config, lock_key, lock_name);
687  	if (IS_ERR(map)) {
688  		spi_avmm_bridge_ctx_free(bridge);
689  		return ERR_CAST(map);
690  	}
691  
692  	return map;
693  }
694  EXPORT_SYMBOL_GPL(__regmap_init_spi_avmm);
695  
__devm_regmap_init_spi_avmm(struct spi_device * spi,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)696  struct regmap *__devm_regmap_init_spi_avmm(struct spi_device *spi,
697  					   const struct regmap_config *config,
698  					   struct lock_class_key *lock_key,
699  					   const char *lock_name)
700  {
701  	struct spi_avmm_bridge *bridge;
702  	struct regmap *map;
703  
704  	bridge = spi_avmm_bridge_ctx_gen(spi);
705  	if (IS_ERR(bridge))
706  		return ERR_CAST(bridge);
707  
708  	map = __devm_regmap_init(&spi->dev, &regmap_spi_avmm_bus,
709  				 bridge, config, lock_key, lock_name);
710  	if (IS_ERR(map)) {
711  		spi_avmm_bridge_ctx_free(bridge);
712  		return ERR_CAST(map);
713  	}
714  
715  	return map;
716  }
717  EXPORT_SYMBOL_GPL(__devm_regmap_init_spi_avmm);
718  
719  MODULE_LICENSE("GPL v2");
720