1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Simple CPU accounting cgroup controller
4 */
5 #include "sched.h"
6
7 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
8
9 /*
10 * There are no locks covering percpu hardirq/softirq time.
11 * They are only modified in vtime_account, on corresponding CPU
12 * with interrupts disabled. So, writes are safe.
13 * They are read and saved off onto struct rq in update_rq_clock().
14 * This may result in other CPU reading this CPU's irq time and can
15 * race with irq/vtime_account on this CPU. We would either get old
16 * or new value with a side effect of accounting a slice of irq time to wrong
17 * task when irq is in progress while we read rq->clock. That is a worthy
18 * compromise in place of having locks on each irq in account_system_time.
19 */
20 DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
21
22 static int sched_clock_irqtime;
23
enable_sched_clock_irqtime(void)24 void enable_sched_clock_irqtime(void)
25 {
26 sched_clock_irqtime = 1;
27 }
28
disable_sched_clock_irqtime(void)29 void disable_sched_clock_irqtime(void)
30 {
31 sched_clock_irqtime = 0;
32 }
33
irqtime_account_delta(struct irqtime * irqtime,u64 delta,enum cpu_usage_stat idx)34 static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
35 enum cpu_usage_stat idx)
36 {
37 u64 *cpustat = kcpustat_this_cpu->cpustat;
38
39 u64_stats_update_begin(&irqtime->sync);
40 cpustat[idx] += delta;
41 irqtime->total += delta;
42 irqtime->tick_delta += delta;
43 u64_stats_update_end(&irqtime->sync);
44 }
45
46 /*
47 * Called after incrementing preempt_count on {soft,}irq_enter
48 * and before decrementing preempt_count on {soft,}irq_exit.
49 */
irqtime_account_irq(struct task_struct * curr,unsigned int offset)50 void irqtime_account_irq(struct task_struct *curr, unsigned int offset)
51 {
52 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
53 unsigned int pc;
54 s64 delta;
55 int cpu;
56
57 if (!sched_clock_irqtime)
58 return;
59
60 cpu = smp_processor_id();
61 delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
62 irqtime->irq_start_time += delta;
63 pc = irq_count() - offset;
64
65 /*
66 * We do not account for softirq time from ksoftirqd here.
67 * We want to continue accounting softirq time to ksoftirqd thread
68 * in that case, so as not to confuse scheduler with a special task
69 * that do not consume any time, but still wants to run.
70 */
71 if (pc & HARDIRQ_MASK)
72 irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
73 else if ((pc & SOFTIRQ_OFFSET) && curr != this_cpu_ksoftirqd())
74 irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
75 }
76
irqtime_tick_accounted(u64 maxtime)77 static u64 irqtime_tick_accounted(u64 maxtime)
78 {
79 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
80 u64 delta;
81
82 delta = min(irqtime->tick_delta, maxtime);
83 irqtime->tick_delta -= delta;
84
85 return delta;
86 }
87
88 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
89
90 #define sched_clock_irqtime (0)
91
irqtime_tick_accounted(u64 dummy)92 static u64 irqtime_tick_accounted(u64 dummy)
93 {
94 return 0;
95 }
96
97 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
98
task_group_account_field(struct task_struct * p,int index,u64 tmp)99 static inline void task_group_account_field(struct task_struct *p, int index,
100 u64 tmp)
101 {
102 /*
103 * Since all updates are sure to touch the root cgroup, we
104 * get ourselves ahead and touch it first. If the root cgroup
105 * is the only cgroup, then nothing else should be necessary.
106 *
107 */
108 __this_cpu_add(kernel_cpustat.cpustat[index], tmp);
109
110 cgroup_account_cputime_field(p, index, tmp);
111 }
112
113 /*
114 * Account user CPU time to a process.
115 * @p: the process that the CPU time gets accounted to
116 * @cputime: the CPU time spent in user space since the last update
117 */
account_user_time(struct task_struct * p,u64 cputime)118 void account_user_time(struct task_struct *p, u64 cputime)
119 {
120 int index;
121
122 /* Add user time to process. */
123 p->utime += cputime;
124 account_group_user_time(p, cputime);
125
126 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
127
128 /* Add user time to cpustat. */
129 task_group_account_field(p, index, cputime);
130
131 /* Account for user time used */
132 acct_account_cputime(p);
133 }
134
135 /*
136 * Account guest CPU time to a process.
137 * @p: the process that the CPU time gets accounted to
138 * @cputime: the CPU time spent in virtual machine since the last update
139 */
account_guest_time(struct task_struct * p,u64 cputime)140 void account_guest_time(struct task_struct *p, u64 cputime)
141 {
142 u64 *cpustat = kcpustat_this_cpu->cpustat;
143
144 /* Add guest time to process. */
145 p->utime += cputime;
146 account_group_user_time(p, cputime);
147 p->gtime += cputime;
148
149 /* Add guest time to cpustat. */
150 if (task_nice(p) > 0) {
151 cpustat[CPUTIME_NICE] += cputime;
152 cpustat[CPUTIME_GUEST_NICE] += cputime;
153 } else {
154 cpustat[CPUTIME_USER] += cputime;
155 cpustat[CPUTIME_GUEST] += cputime;
156 }
157 }
158
159 /*
160 * Account system CPU time to a process and desired cpustat field
161 * @p: the process that the CPU time gets accounted to
162 * @cputime: the CPU time spent in kernel space since the last update
163 * @index: pointer to cpustat field that has to be updated
164 */
account_system_index_time(struct task_struct * p,u64 cputime,enum cpu_usage_stat index)165 void account_system_index_time(struct task_struct *p,
166 u64 cputime, enum cpu_usage_stat index)
167 {
168 /* Add system time to process. */
169 p->stime += cputime;
170 account_group_system_time(p, cputime);
171
172 /* Add system time to cpustat. */
173 task_group_account_field(p, index, cputime);
174
175 /* Account for system time used */
176 acct_account_cputime(p);
177 }
178
179 /*
180 * Account system CPU time to a process.
181 * @p: the process that the CPU time gets accounted to
182 * @hardirq_offset: the offset to subtract from hardirq_count()
183 * @cputime: the CPU time spent in kernel space since the last update
184 */
account_system_time(struct task_struct * p,int hardirq_offset,u64 cputime)185 void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
186 {
187 int index;
188
189 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
190 account_guest_time(p, cputime);
191 return;
192 }
193
194 if (hardirq_count() - hardirq_offset)
195 index = CPUTIME_IRQ;
196 else if (in_serving_softirq())
197 index = CPUTIME_SOFTIRQ;
198 else
199 index = CPUTIME_SYSTEM;
200
201 account_system_index_time(p, cputime, index);
202 }
203
204 /*
205 * Account for involuntary wait time.
206 * @cputime: the CPU time spent in involuntary wait
207 */
account_steal_time(u64 cputime)208 void account_steal_time(u64 cputime)
209 {
210 u64 *cpustat = kcpustat_this_cpu->cpustat;
211
212 cpustat[CPUTIME_STEAL] += cputime;
213 }
214
215 /*
216 * Account for idle time.
217 * @cputime: the CPU time spent in idle wait
218 */
account_idle_time(u64 cputime)219 void account_idle_time(u64 cputime)
220 {
221 u64 *cpustat = kcpustat_this_cpu->cpustat;
222 struct rq *rq = this_rq();
223
224 if (atomic_read(&rq->nr_iowait) > 0)
225 cpustat[CPUTIME_IOWAIT] += cputime;
226 else
227 cpustat[CPUTIME_IDLE] += cputime;
228 }
229
230 /*
231 * When a guest is interrupted for a longer amount of time, missed clock
232 * ticks are not redelivered later. Due to that, this function may on
233 * occasion account more time than the calling functions think elapsed.
234 */
steal_account_process_time(u64 maxtime)235 static __always_inline u64 steal_account_process_time(u64 maxtime)
236 {
237 #ifdef CONFIG_PARAVIRT
238 if (static_key_false(¶virt_steal_enabled)) {
239 u64 steal;
240
241 steal = paravirt_steal_clock(smp_processor_id());
242 steal -= this_rq()->prev_steal_time;
243 steal = min(steal, maxtime);
244 account_steal_time(steal);
245 this_rq()->prev_steal_time += steal;
246
247 return steal;
248 }
249 #endif
250 return 0;
251 }
252
253 /*
254 * Account how much elapsed time was spent in steal, irq, or softirq time.
255 */
account_other_time(u64 max)256 static inline u64 account_other_time(u64 max)
257 {
258 u64 accounted;
259
260 lockdep_assert_irqs_disabled();
261
262 accounted = steal_account_process_time(max);
263
264 if (accounted < max)
265 accounted += irqtime_tick_accounted(max - accounted);
266
267 return accounted;
268 }
269
270 #ifdef CONFIG_64BIT
read_sum_exec_runtime(struct task_struct * t)271 static inline u64 read_sum_exec_runtime(struct task_struct *t)
272 {
273 return t->se.sum_exec_runtime;
274 }
275 #else
read_sum_exec_runtime(struct task_struct * t)276 static u64 read_sum_exec_runtime(struct task_struct *t)
277 {
278 u64 ns;
279 struct rq_flags rf;
280 struct rq *rq;
281
282 rq = task_rq_lock(t, &rf);
283 ns = t->se.sum_exec_runtime;
284 task_rq_unlock(rq, t, &rf);
285
286 return ns;
287 }
288 #endif
289
290 /*
291 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
292 * tasks (sum on group iteration) belonging to @tsk's group.
293 */
thread_group_cputime(struct task_struct * tsk,struct task_cputime * times)294 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
295 {
296 struct signal_struct *sig = tsk->signal;
297 u64 utime, stime;
298 struct task_struct *t;
299 unsigned int seq, nextseq;
300 unsigned long flags;
301
302 /*
303 * Update current task runtime to account pending time since last
304 * scheduler action or thread_group_cputime() call. This thread group
305 * might have other running tasks on different CPUs, but updating
306 * their runtime can affect syscall performance, so we skip account
307 * those pending times and rely only on values updated on tick or
308 * other scheduler action.
309 */
310 if (same_thread_group(current, tsk))
311 (void) task_sched_runtime(current);
312
313 rcu_read_lock();
314 /* Attempt a lockless read on the first round. */
315 nextseq = 0;
316 do {
317 seq = nextseq;
318 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
319 times->utime = sig->utime;
320 times->stime = sig->stime;
321 times->sum_exec_runtime = sig->sum_sched_runtime;
322
323 for_each_thread(tsk, t) {
324 task_cputime(t, &utime, &stime);
325 times->utime += utime;
326 times->stime += stime;
327 times->sum_exec_runtime += read_sum_exec_runtime(t);
328 }
329 /* If lockless access failed, take the lock. */
330 nextseq = 1;
331 } while (need_seqretry(&sig->stats_lock, seq));
332 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
333 rcu_read_unlock();
334 }
335
336 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
337 /*
338 * Account a tick to a process and cpustat
339 * @p: the process that the CPU time gets accounted to
340 * @user_tick: is the tick from userspace
341 * @rq: the pointer to rq
342 *
343 * Tick demultiplexing follows the order
344 * - pending hardirq update
345 * - pending softirq update
346 * - user_time
347 * - idle_time
348 * - system time
349 * - check for guest_time
350 * - else account as system_time
351 *
352 * Check for hardirq is done both for system and user time as there is
353 * no timer going off while we are on hardirq and hence we may never get an
354 * opportunity to update it solely in system time.
355 * p->stime and friends are only updated on system time and not on irq
356 * softirq as those do not count in task exec_runtime any more.
357 */
irqtime_account_process_tick(struct task_struct * p,int user_tick,int ticks)358 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
359 int ticks)
360 {
361 u64 other, cputime = TICK_NSEC * ticks;
362
363 /*
364 * When returning from idle, many ticks can get accounted at
365 * once, including some ticks of steal, irq, and softirq time.
366 * Subtract those ticks from the amount of time accounted to
367 * idle, or potentially user or system time. Due to rounding,
368 * other time can exceed ticks occasionally.
369 */
370 other = account_other_time(ULONG_MAX);
371 if (other >= cputime)
372 return;
373
374 cputime -= other;
375
376 if (this_cpu_ksoftirqd() == p) {
377 /*
378 * ksoftirqd time do not get accounted in cpu_softirq_time.
379 * So, we have to handle it separately here.
380 * Also, p->stime needs to be updated for ksoftirqd.
381 */
382 account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
383 } else if (user_tick) {
384 account_user_time(p, cputime);
385 } else if (p == this_rq()->idle) {
386 account_idle_time(cputime);
387 } else if (p->flags & PF_VCPU) { /* System time or guest time */
388 account_guest_time(p, cputime);
389 } else {
390 account_system_index_time(p, cputime, CPUTIME_SYSTEM);
391 }
392 }
393
irqtime_account_idle_ticks(int ticks)394 static void irqtime_account_idle_ticks(int ticks)
395 {
396 irqtime_account_process_tick(current, 0, ticks);
397 }
398 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
irqtime_account_idle_ticks(int ticks)399 static inline void irqtime_account_idle_ticks(int ticks) { }
irqtime_account_process_tick(struct task_struct * p,int user_tick,int nr_ticks)400 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
401 int nr_ticks) { }
402 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
403
404 /*
405 * Use precise platform statistics if available:
406 */
407 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
408
409 # ifndef __ARCH_HAS_VTIME_TASK_SWITCH
vtime_task_switch(struct task_struct * prev)410 void vtime_task_switch(struct task_struct *prev)
411 {
412 if (is_idle_task(prev))
413 vtime_account_idle(prev);
414 else
415 vtime_account_kernel(prev);
416
417 vtime_flush(prev);
418 arch_vtime_task_switch(prev);
419 }
420 # endif
421
vtime_account_irq(struct task_struct * tsk,unsigned int offset)422 void vtime_account_irq(struct task_struct *tsk, unsigned int offset)
423 {
424 unsigned int pc = irq_count() - offset;
425
426 if (pc & HARDIRQ_OFFSET) {
427 vtime_account_hardirq(tsk);
428 } else if (pc & SOFTIRQ_OFFSET) {
429 vtime_account_softirq(tsk);
430 } else if (!IS_ENABLED(CONFIG_HAVE_VIRT_CPU_ACCOUNTING_IDLE) &&
431 is_idle_task(tsk)) {
432 vtime_account_idle(tsk);
433 } else {
434 vtime_account_kernel(tsk);
435 }
436 }
437
cputime_adjust(struct task_cputime * curr,struct prev_cputime * prev,u64 * ut,u64 * st)438 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
439 u64 *ut, u64 *st)
440 {
441 *ut = curr->utime;
442 *st = curr->stime;
443 }
444
task_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)445 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
446 {
447 *ut = p->utime;
448 *st = p->stime;
449 }
450 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
451
thread_group_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)452 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
453 {
454 struct task_cputime cputime;
455
456 thread_group_cputime(p, &cputime);
457
458 *ut = cputime.utime;
459 *st = cputime.stime;
460 }
461
462 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
463
464 /*
465 * Account a single tick of CPU time.
466 * @p: the process that the CPU time gets accounted to
467 * @user_tick: indicates if the tick is a user or a system tick
468 */
account_process_tick(struct task_struct * p,int user_tick)469 void account_process_tick(struct task_struct *p, int user_tick)
470 {
471 u64 cputime, steal;
472
473 if (vtime_accounting_enabled_this_cpu())
474 return;
475
476 if (sched_clock_irqtime) {
477 irqtime_account_process_tick(p, user_tick, 1);
478 return;
479 }
480
481 cputime = TICK_NSEC;
482 steal = steal_account_process_time(ULONG_MAX);
483
484 if (steal >= cputime)
485 return;
486
487 cputime -= steal;
488
489 if (user_tick)
490 account_user_time(p, cputime);
491 else if ((p != this_rq()->idle) || (irq_count() != HARDIRQ_OFFSET))
492 account_system_time(p, HARDIRQ_OFFSET, cputime);
493 else
494 account_idle_time(cputime);
495 }
496
497 /*
498 * Account multiple ticks of idle time.
499 * @ticks: number of stolen ticks
500 */
account_idle_ticks(unsigned long ticks)501 void account_idle_ticks(unsigned long ticks)
502 {
503 u64 cputime, steal;
504
505 if (sched_clock_irqtime) {
506 irqtime_account_idle_ticks(ticks);
507 return;
508 }
509
510 cputime = ticks * TICK_NSEC;
511 steal = steal_account_process_time(ULONG_MAX);
512
513 if (steal >= cputime)
514 return;
515
516 cputime -= steal;
517 account_idle_time(cputime);
518 }
519
520 /*
521 * Adjust tick based cputime random precision against scheduler runtime
522 * accounting.
523 *
524 * Tick based cputime accounting depend on random scheduling timeslices of a
525 * task to be interrupted or not by the timer. Depending on these
526 * circumstances, the number of these interrupts may be over or
527 * under-optimistic, matching the real user and system cputime with a variable
528 * precision.
529 *
530 * Fix this by scaling these tick based values against the total runtime
531 * accounted by the CFS scheduler.
532 *
533 * This code provides the following guarantees:
534 *
535 * stime + utime == rtime
536 * stime_i+1 >= stime_i, utime_i+1 >= utime_i
537 *
538 * Assuming that rtime_i+1 >= rtime_i.
539 */
cputime_adjust(struct task_cputime * curr,struct prev_cputime * prev,u64 * ut,u64 * st)540 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
541 u64 *ut, u64 *st)
542 {
543 u64 rtime, stime, utime;
544 unsigned long flags;
545
546 /* Serialize concurrent callers such that we can honour our guarantees */
547 raw_spin_lock_irqsave(&prev->lock, flags);
548 rtime = curr->sum_exec_runtime;
549
550 /*
551 * This is possible under two circumstances:
552 * - rtime isn't monotonic after all (a bug);
553 * - we got reordered by the lock.
554 *
555 * In both cases this acts as a filter such that the rest of the code
556 * can assume it is monotonic regardless of anything else.
557 */
558 if (prev->stime + prev->utime >= rtime)
559 goto out;
560
561 stime = curr->stime;
562 utime = curr->utime;
563
564 /*
565 * If either stime or utime are 0, assume all runtime is userspace.
566 * Once a task gets some ticks, the monotonicity code at 'update:'
567 * will ensure things converge to the observed ratio.
568 */
569 if (stime == 0) {
570 utime = rtime;
571 goto update;
572 }
573
574 if (utime == 0) {
575 stime = rtime;
576 goto update;
577 }
578
579 stime = mul_u64_u64_div_u64(stime, rtime, stime + utime);
580
581 update:
582 /*
583 * Make sure stime doesn't go backwards; this preserves monotonicity
584 * for utime because rtime is monotonic.
585 *
586 * utime_i+1 = rtime_i+1 - stime_i
587 * = rtime_i+1 - (rtime_i - utime_i)
588 * = (rtime_i+1 - rtime_i) + utime_i
589 * >= utime_i
590 */
591 if (stime < prev->stime)
592 stime = prev->stime;
593 utime = rtime - stime;
594
595 /*
596 * Make sure utime doesn't go backwards; this still preserves
597 * monotonicity for stime, analogous argument to above.
598 */
599 if (utime < prev->utime) {
600 utime = prev->utime;
601 stime = rtime - utime;
602 }
603
604 prev->stime = stime;
605 prev->utime = utime;
606 out:
607 *ut = prev->utime;
608 *st = prev->stime;
609 raw_spin_unlock_irqrestore(&prev->lock, flags);
610 }
611
task_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)612 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
613 {
614 struct task_cputime cputime = {
615 .sum_exec_runtime = p->se.sum_exec_runtime,
616 };
617
618 if (task_cputime(p, &cputime.utime, &cputime.stime))
619 cputime.sum_exec_runtime = task_sched_runtime(p);
620 cputime_adjust(&cputime, &p->prev_cputime, ut, st);
621 }
622 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
623
thread_group_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)624 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
625 {
626 struct task_cputime cputime;
627
628 thread_group_cputime(p, &cputime);
629 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
630 }
631 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
632
633 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
vtime_delta(struct vtime * vtime)634 static u64 vtime_delta(struct vtime *vtime)
635 {
636 unsigned long long clock;
637
638 clock = sched_clock();
639 if (clock < vtime->starttime)
640 return 0;
641
642 return clock - vtime->starttime;
643 }
644
get_vtime_delta(struct vtime * vtime)645 static u64 get_vtime_delta(struct vtime *vtime)
646 {
647 u64 delta = vtime_delta(vtime);
648 u64 other;
649
650 /*
651 * Unlike tick based timing, vtime based timing never has lost
652 * ticks, and no need for steal time accounting to make up for
653 * lost ticks. Vtime accounts a rounded version of actual
654 * elapsed time. Limit account_other_time to prevent rounding
655 * errors from causing elapsed vtime to go negative.
656 */
657 other = account_other_time(delta);
658 WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
659 vtime->starttime += delta;
660
661 return delta - other;
662 }
663
vtime_account_system(struct task_struct * tsk,struct vtime * vtime)664 static void vtime_account_system(struct task_struct *tsk,
665 struct vtime *vtime)
666 {
667 vtime->stime += get_vtime_delta(vtime);
668 if (vtime->stime >= TICK_NSEC) {
669 account_system_time(tsk, irq_count(), vtime->stime);
670 vtime->stime = 0;
671 }
672 }
673
vtime_account_guest(struct task_struct * tsk,struct vtime * vtime)674 static void vtime_account_guest(struct task_struct *tsk,
675 struct vtime *vtime)
676 {
677 vtime->gtime += get_vtime_delta(vtime);
678 if (vtime->gtime >= TICK_NSEC) {
679 account_guest_time(tsk, vtime->gtime);
680 vtime->gtime = 0;
681 }
682 }
683
__vtime_account_kernel(struct task_struct * tsk,struct vtime * vtime)684 static void __vtime_account_kernel(struct task_struct *tsk,
685 struct vtime *vtime)
686 {
687 /* We might have scheduled out from guest path */
688 if (vtime->state == VTIME_GUEST)
689 vtime_account_guest(tsk, vtime);
690 else
691 vtime_account_system(tsk, vtime);
692 }
693
vtime_account_kernel(struct task_struct * tsk)694 void vtime_account_kernel(struct task_struct *tsk)
695 {
696 struct vtime *vtime = &tsk->vtime;
697
698 if (!vtime_delta(vtime))
699 return;
700
701 write_seqcount_begin(&vtime->seqcount);
702 __vtime_account_kernel(tsk, vtime);
703 write_seqcount_end(&vtime->seqcount);
704 }
705
vtime_user_enter(struct task_struct * tsk)706 void vtime_user_enter(struct task_struct *tsk)
707 {
708 struct vtime *vtime = &tsk->vtime;
709
710 write_seqcount_begin(&vtime->seqcount);
711 vtime_account_system(tsk, vtime);
712 vtime->state = VTIME_USER;
713 write_seqcount_end(&vtime->seqcount);
714 }
715
vtime_user_exit(struct task_struct * tsk)716 void vtime_user_exit(struct task_struct *tsk)
717 {
718 struct vtime *vtime = &tsk->vtime;
719
720 write_seqcount_begin(&vtime->seqcount);
721 vtime->utime += get_vtime_delta(vtime);
722 if (vtime->utime >= TICK_NSEC) {
723 account_user_time(tsk, vtime->utime);
724 vtime->utime = 0;
725 }
726 vtime->state = VTIME_SYS;
727 write_seqcount_end(&vtime->seqcount);
728 }
729
vtime_guest_enter(struct task_struct * tsk)730 void vtime_guest_enter(struct task_struct *tsk)
731 {
732 struct vtime *vtime = &tsk->vtime;
733 /*
734 * The flags must be updated under the lock with
735 * the vtime_starttime flush and update.
736 * That enforces a right ordering and update sequence
737 * synchronization against the reader (task_gtime())
738 * that can thus safely catch up with a tickless delta.
739 */
740 write_seqcount_begin(&vtime->seqcount);
741 vtime_account_system(tsk, vtime);
742 tsk->flags |= PF_VCPU;
743 vtime->state = VTIME_GUEST;
744 write_seqcount_end(&vtime->seqcount);
745 }
746 EXPORT_SYMBOL_GPL(vtime_guest_enter);
747
vtime_guest_exit(struct task_struct * tsk)748 void vtime_guest_exit(struct task_struct *tsk)
749 {
750 struct vtime *vtime = &tsk->vtime;
751
752 write_seqcount_begin(&vtime->seqcount);
753 vtime_account_guest(tsk, vtime);
754 tsk->flags &= ~PF_VCPU;
755 vtime->state = VTIME_SYS;
756 write_seqcount_end(&vtime->seqcount);
757 }
758 EXPORT_SYMBOL_GPL(vtime_guest_exit);
759
vtime_account_idle(struct task_struct * tsk)760 void vtime_account_idle(struct task_struct *tsk)
761 {
762 account_idle_time(get_vtime_delta(&tsk->vtime));
763 }
764
vtime_task_switch_generic(struct task_struct * prev)765 void vtime_task_switch_generic(struct task_struct *prev)
766 {
767 struct vtime *vtime = &prev->vtime;
768
769 write_seqcount_begin(&vtime->seqcount);
770 if (vtime->state == VTIME_IDLE)
771 vtime_account_idle(prev);
772 else
773 __vtime_account_kernel(prev, vtime);
774 vtime->state = VTIME_INACTIVE;
775 vtime->cpu = -1;
776 write_seqcount_end(&vtime->seqcount);
777
778 vtime = ¤t->vtime;
779
780 write_seqcount_begin(&vtime->seqcount);
781 if (is_idle_task(current))
782 vtime->state = VTIME_IDLE;
783 else if (current->flags & PF_VCPU)
784 vtime->state = VTIME_GUEST;
785 else
786 vtime->state = VTIME_SYS;
787 vtime->starttime = sched_clock();
788 vtime->cpu = smp_processor_id();
789 write_seqcount_end(&vtime->seqcount);
790 }
791
vtime_init_idle(struct task_struct * t,int cpu)792 void vtime_init_idle(struct task_struct *t, int cpu)
793 {
794 struct vtime *vtime = &t->vtime;
795 unsigned long flags;
796
797 local_irq_save(flags);
798 write_seqcount_begin(&vtime->seqcount);
799 vtime->state = VTIME_IDLE;
800 vtime->starttime = sched_clock();
801 vtime->cpu = cpu;
802 write_seqcount_end(&vtime->seqcount);
803 local_irq_restore(flags);
804 }
805
task_gtime(struct task_struct * t)806 u64 task_gtime(struct task_struct *t)
807 {
808 struct vtime *vtime = &t->vtime;
809 unsigned int seq;
810 u64 gtime;
811
812 if (!vtime_accounting_enabled())
813 return t->gtime;
814
815 do {
816 seq = read_seqcount_begin(&vtime->seqcount);
817
818 gtime = t->gtime;
819 if (vtime->state == VTIME_GUEST)
820 gtime += vtime->gtime + vtime_delta(vtime);
821
822 } while (read_seqcount_retry(&vtime->seqcount, seq));
823
824 return gtime;
825 }
826
827 /*
828 * Fetch cputime raw values from fields of task_struct and
829 * add up the pending nohz execution time since the last
830 * cputime snapshot.
831 */
task_cputime(struct task_struct * t,u64 * utime,u64 * stime)832 bool task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
833 {
834 struct vtime *vtime = &t->vtime;
835 unsigned int seq;
836 u64 delta;
837 int ret;
838
839 if (!vtime_accounting_enabled()) {
840 *utime = t->utime;
841 *stime = t->stime;
842 return false;
843 }
844
845 do {
846 ret = false;
847 seq = read_seqcount_begin(&vtime->seqcount);
848
849 *utime = t->utime;
850 *stime = t->stime;
851
852 /* Task is sleeping or idle, nothing to add */
853 if (vtime->state < VTIME_SYS)
854 continue;
855
856 ret = true;
857 delta = vtime_delta(vtime);
858
859 /*
860 * Task runs either in user (including guest) or kernel space,
861 * add pending nohz time to the right place.
862 */
863 if (vtime->state == VTIME_SYS)
864 *stime += vtime->stime + delta;
865 else
866 *utime += vtime->utime + delta;
867 } while (read_seqcount_retry(&vtime->seqcount, seq));
868
869 return ret;
870 }
871
vtime_state_fetch(struct vtime * vtime,int cpu)872 static int vtime_state_fetch(struct vtime *vtime, int cpu)
873 {
874 int state = READ_ONCE(vtime->state);
875
876 /*
877 * We raced against a context switch, fetch the
878 * kcpustat task again.
879 */
880 if (vtime->cpu != cpu && vtime->cpu != -1)
881 return -EAGAIN;
882
883 /*
884 * Two possible things here:
885 * 1) We are seeing the scheduling out task (prev) or any past one.
886 * 2) We are seeing the scheduling in task (next) but it hasn't
887 * passed though vtime_task_switch() yet so the pending
888 * cputime of the prev task may not be flushed yet.
889 *
890 * Case 1) is ok but 2) is not. So wait for a safe VTIME state.
891 */
892 if (state == VTIME_INACTIVE)
893 return -EAGAIN;
894
895 return state;
896 }
897
kcpustat_user_vtime(struct vtime * vtime)898 static u64 kcpustat_user_vtime(struct vtime *vtime)
899 {
900 if (vtime->state == VTIME_USER)
901 return vtime->utime + vtime_delta(vtime);
902 else if (vtime->state == VTIME_GUEST)
903 return vtime->gtime + vtime_delta(vtime);
904 return 0;
905 }
906
kcpustat_field_vtime(u64 * cpustat,struct task_struct * tsk,enum cpu_usage_stat usage,int cpu,u64 * val)907 static int kcpustat_field_vtime(u64 *cpustat,
908 struct task_struct *tsk,
909 enum cpu_usage_stat usage,
910 int cpu, u64 *val)
911 {
912 struct vtime *vtime = &tsk->vtime;
913 unsigned int seq;
914
915 do {
916 int state;
917
918 seq = read_seqcount_begin(&vtime->seqcount);
919
920 state = vtime_state_fetch(vtime, cpu);
921 if (state < 0)
922 return state;
923
924 *val = cpustat[usage];
925
926 /*
927 * Nice VS unnice cputime accounting may be inaccurate if
928 * the nice value has changed since the last vtime update.
929 * But proper fix would involve interrupting target on nice
930 * updates which is a no go on nohz_full (although the scheduler
931 * may still interrupt the target if rescheduling is needed...)
932 */
933 switch (usage) {
934 case CPUTIME_SYSTEM:
935 if (state == VTIME_SYS)
936 *val += vtime->stime + vtime_delta(vtime);
937 break;
938 case CPUTIME_USER:
939 if (task_nice(tsk) <= 0)
940 *val += kcpustat_user_vtime(vtime);
941 break;
942 case CPUTIME_NICE:
943 if (task_nice(tsk) > 0)
944 *val += kcpustat_user_vtime(vtime);
945 break;
946 case CPUTIME_GUEST:
947 if (state == VTIME_GUEST && task_nice(tsk) <= 0)
948 *val += vtime->gtime + vtime_delta(vtime);
949 break;
950 case CPUTIME_GUEST_NICE:
951 if (state == VTIME_GUEST && task_nice(tsk) > 0)
952 *val += vtime->gtime + vtime_delta(vtime);
953 break;
954 default:
955 break;
956 }
957 } while (read_seqcount_retry(&vtime->seqcount, seq));
958
959 return 0;
960 }
961
kcpustat_field(struct kernel_cpustat * kcpustat,enum cpu_usage_stat usage,int cpu)962 u64 kcpustat_field(struct kernel_cpustat *kcpustat,
963 enum cpu_usage_stat usage, int cpu)
964 {
965 u64 *cpustat = kcpustat->cpustat;
966 u64 val = cpustat[usage];
967 struct rq *rq;
968 int err;
969
970 if (!vtime_accounting_enabled_cpu(cpu))
971 return val;
972
973 rq = cpu_rq(cpu);
974
975 for (;;) {
976 struct task_struct *curr;
977
978 rcu_read_lock();
979 curr = rcu_dereference(rq->curr);
980 if (WARN_ON_ONCE(!curr)) {
981 rcu_read_unlock();
982 return cpustat[usage];
983 }
984
985 err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val);
986 rcu_read_unlock();
987
988 if (!err)
989 return val;
990
991 cpu_relax();
992 }
993 }
994 EXPORT_SYMBOL_GPL(kcpustat_field);
995
kcpustat_cpu_fetch_vtime(struct kernel_cpustat * dst,const struct kernel_cpustat * src,struct task_struct * tsk,int cpu)996 static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst,
997 const struct kernel_cpustat *src,
998 struct task_struct *tsk, int cpu)
999 {
1000 struct vtime *vtime = &tsk->vtime;
1001 unsigned int seq;
1002
1003 do {
1004 u64 *cpustat;
1005 u64 delta;
1006 int state;
1007
1008 seq = read_seqcount_begin(&vtime->seqcount);
1009
1010 state = vtime_state_fetch(vtime, cpu);
1011 if (state < 0)
1012 return state;
1013
1014 *dst = *src;
1015 cpustat = dst->cpustat;
1016
1017 /* Task is sleeping, dead or idle, nothing to add */
1018 if (state < VTIME_SYS)
1019 continue;
1020
1021 delta = vtime_delta(vtime);
1022
1023 /*
1024 * Task runs either in user (including guest) or kernel space,
1025 * add pending nohz time to the right place.
1026 */
1027 if (state == VTIME_SYS) {
1028 cpustat[CPUTIME_SYSTEM] += vtime->stime + delta;
1029 } else if (state == VTIME_USER) {
1030 if (task_nice(tsk) > 0)
1031 cpustat[CPUTIME_NICE] += vtime->utime + delta;
1032 else
1033 cpustat[CPUTIME_USER] += vtime->utime + delta;
1034 } else {
1035 WARN_ON_ONCE(state != VTIME_GUEST);
1036 if (task_nice(tsk) > 0) {
1037 cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta;
1038 cpustat[CPUTIME_NICE] += vtime->gtime + delta;
1039 } else {
1040 cpustat[CPUTIME_GUEST] += vtime->gtime + delta;
1041 cpustat[CPUTIME_USER] += vtime->gtime + delta;
1042 }
1043 }
1044 } while (read_seqcount_retry(&vtime->seqcount, seq));
1045
1046 return 0;
1047 }
1048
kcpustat_cpu_fetch(struct kernel_cpustat * dst,int cpu)1049 void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu)
1050 {
1051 const struct kernel_cpustat *src = &kcpustat_cpu(cpu);
1052 struct rq *rq;
1053 int err;
1054
1055 if (!vtime_accounting_enabled_cpu(cpu)) {
1056 *dst = *src;
1057 return;
1058 }
1059
1060 rq = cpu_rq(cpu);
1061
1062 for (;;) {
1063 struct task_struct *curr;
1064
1065 rcu_read_lock();
1066 curr = rcu_dereference(rq->curr);
1067 if (WARN_ON_ONCE(!curr)) {
1068 rcu_read_unlock();
1069 *dst = *src;
1070 return;
1071 }
1072
1073 err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu);
1074 rcu_read_unlock();
1075
1076 if (!err)
1077 return;
1078
1079 cpu_relax();
1080 }
1081 }
1082 EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch);
1083
1084 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
1085