1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/kernel/acct.c
4 *
5 * BSD Process Accounting for Linux
6 *
7 * Author: Marco van Wieringen <mvw@planets.elm.net>
8 *
9 * Some code based on ideas and code from:
10 * Thomas K. Dyas <tdyas@eden.rutgers.edu>
11 *
12 * This file implements BSD-style process accounting. Whenever any
13 * process exits, an accounting record of type "struct acct" is
14 * written to the file specified with the acct() system call. It is
15 * up to user-level programs to do useful things with the accounting
16 * log. The kernel just provides the raw accounting information.
17 *
18 * (C) Copyright 1995 - 1997 Marco van Wieringen - ELM Consultancy B.V.
19 *
20 * Plugged two leaks. 1) It didn't return acct_file into the free_filps if
21 * the file happened to be read-only. 2) If the accounting was suspended
22 * due to the lack of space it happily allowed to reopen it and completely
23 * lost the old acct_file. 3/10/98, Al Viro.
24 *
25 * Now we silently close acct_file on attempt to reopen. Cleaned sys_acct().
26 * XTerms and EMACS are manifestations of pure evil. 21/10/98, AV.
27 *
28 * Fixed a nasty interaction with sys_umount(). If the accounting
29 * was suspeneded we failed to stop it on umount(). Messy.
30 * Another one: remount to readonly didn't stop accounting.
31 * Question: what should we do if we have CAP_SYS_ADMIN but not
32 * CAP_SYS_PACCT? Current code does the following: umount returns -EBUSY
33 * unless we are messing with the root. In that case we are getting a
34 * real mess with do_remount_sb(). 9/11/98, AV.
35 *
36 * Fixed a bunch of races (and pair of leaks). Probably not the best way,
37 * but this one obviously doesn't introduce deadlocks. Later. BTW, found
38 * one race (and leak) in BSD implementation.
39 * OK, that's better. ANOTHER race and leak in BSD variant. There always
40 * is one more bug... 10/11/98, AV.
41 *
42 * Oh, fsck... Oopsable SMP race in do_process_acct() - we must hold
43 * ->mmap_lock to walk the vma list of current->mm. Nasty, since it leaks
44 * a struct file opened for write. Fixed. 2/6/2000, AV.
45 */
46
47 #include <linux/mm.h>
48 #include <linux/slab.h>
49 #include <linux/acct.h>
50 #include <linux/capability.h>
51 #include <linux/file.h>
52 #include <linux/tty.h>
53 #include <linux/security.h>
54 #include <linux/vfs.h>
55 #include <linux/jiffies.h>
56 #include <linux/times.h>
57 #include <linux/syscalls.h>
58 #include <linux/mount.h>
59 #include <linux/uaccess.h>
60 #include <linux/sched/cputime.h>
61
62 #include <asm/div64.h>
63 #include <linux/pid_namespace.h>
64 #include <linux/fs_pin.h>
65
66 /*
67 * These constants control the amount of freespace that suspend and
68 * resume the process accounting system, and the time delay between
69 * each check.
70 * Turned into sysctl-controllable parameters. AV, 12/11/98
71 */
72
73 int acct_parm[3] = {4, 2, 30};
74 #define RESUME (acct_parm[0]) /* >foo% free space - resume */
75 #define SUSPEND (acct_parm[1]) /* <foo% free space - suspend */
76 #define ACCT_TIMEOUT (acct_parm[2]) /* foo second timeout between checks */
77
78 /*
79 * External references and all of the globals.
80 */
81
82 struct bsd_acct_struct {
83 struct fs_pin pin;
84 atomic_long_t count;
85 struct rcu_head rcu;
86 struct mutex lock;
87 int active;
88 unsigned long needcheck;
89 struct file *file;
90 struct pid_namespace *ns;
91 struct work_struct work;
92 struct completion done;
93 };
94
95 static void do_acct_process(struct bsd_acct_struct *acct);
96
97 /*
98 * Check the amount of free space and suspend/resume accordingly.
99 */
check_free_space(struct bsd_acct_struct * acct)100 static int check_free_space(struct bsd_acct_struct *acct)
101 {
102 struct kstatfs sbuf;
103
104 if (time_is_after_jiffies(acct->needcheck))
105 goto out;
106
107 /* May block */
108 if (vfs_statfs(&acct->file->f_path, &sbuf))
109 goto out;
110
111 if (acct->active) {
112 u64 suspend = sbuf.f_blocks * SUSPEND;
113 do_div(suspend, 100);
114 if (sbuf.f_bavail <= suspend) {
115 acct->active = 0;
116 pr_info("Process accounting paused\n");
117 }
118 } else {
119 u64 resume = sbuf.f_blocks * RESUME;
120 do_div(resume, 100);
121 if (sbuf.f_bavail >= resume) {
122 acct->active = 1;
123 pr_info("Process accounting resumed\n");
124 }
125 }
126
127 acct->needcheck = jiffies + ACCT_TIMEOUT*HZ;
128 out:
129 return acct->active;
130 }
131
acct_put(struct bsd_acct_struct * p)132 static void acct_put(struct bsd_acct_struct *p)
133 {
134 if (atomic_long_dec_and_test(&p->count))
135 kfree_rcu(p, rcu);
136 }
137
to_acct(struct fs_pin * p)138 static inline struct bsd_acct_struct *to_acct(struct fs_pin *p)
139 {
140 return p ? container_of(p, struct bsd_acct_struct, pin) : NULL;
141 }
142
acct_get(struct pid_namespace * ns)143 static struct bsd_acct_struct *acct_get(struct pid_namespace *ns)
144 {
145 struct bsd_acct_struct *res;
146 again:
147 smp_rmb();
148 rcu_read_lock();
149 res = to_acct(READ_ONCE(ns->bacct));
150 if (!res) {
151 rcu_read_unlock();
152 return NULL;
153 }
154 if (!atomic_long_inc_not_zero(&res->count)) {
155 rcu_read_unlock();
156 cpu_relax();
157 goto again;
158 }
159 rcu_read_unlock();
160 mutex_lock(&res->lock);
161 if (res != to_acct(READ_ONCE(ns->bacct))) {
162 mutex_unlock(&res->lock);
163 acct_put(res);
164 goto again;
165 }
166 return res;
167 }
168
acct_pin_kill(struct fs_pin * pin)169 static void acct_pin_kill(struct fs_pin *pin)
170 {
171 struct bsd_acct_struct *acct = to_acct(pin);
172 mutex_lock(&acct->lock);
173 do_acct_process(acct);
174 schedule_work(&acct->work);
175 wait_for_completion(&acct->done);
176 cmpxchg(&acct->ns->bacct, pin, NULL);
177 mutex_unlock(&acct->lock);
178 pin_remove(pin);
179 acct_put(acct);
180 }
181
close_work(struct work_struct * work)182 static void close_work(struct work_struct *work)
183 {
184 struct bsd_acct_struct *acct = container_of(work, struct bsd_acct_struct, work);
185 struct file *file = acct->file;
186 if (file->f_op->flush)
187 file->f_op->flush(file, NULL);
188 __fput_sync(file);
189 complete(&acct->done);
190 }
191
acct_on(struct filename * pathname)192 static int acct_on(struct filename *pathname)
193 {
194 struct file *file;
195 struct vfsmount *mnt, *internal;
196 struct pid_namespace *ns = task_active_pid_ns(current);
197 struct bsd_acct_struct *acct;
198 struct fs_pin *old;
199 int err;
200
201 acct = kzalloc(sizeof(struct bsd_acct_struct), GFP_KERNEL);
202 if (!acct)
203 return -ENOMEM;
204
205 /* Difference from BSD - they don't do O_APPEND */
206 file = file_open_name(pathname, O_WRONLY|O_APPEND|O_LARGEFILE, 0);
207 if (IS_ERR(file)) {
208 kfree(acct);
209 return PTR_ERR(file);
210 }
211
212 if (!S_ISREG(file_inode(file)->i_mode)) {
213 kfree(acct);
214 filp_close(file, NULL);
215 return -EACCES;
216 }
217
218 if (!(file->f_mode & FMODE_CAN_WRITE)) {
219 kfree(acct);
220 filp_close(file, NULL);
221 return -EIO;
222 }
223 internal = mnt_clone_internal(&file->f_path);
224 if (IS_ERR(internal)) {
225 kfree(acct);
226 filp_close(file, NULL);
227 return PTR_ERR(internal);
228 }
229 err = __mnt_want_write(internal);
230 if (err) {
231 mntput(internal);
232 kfree(acct);
233 filp_close(file, NULL);
234 return err;
235 }
236 mnt = file->f_path.mnt;
237 file->f_path.mnt = internal;
238
239 atomic_long_set(&acct->count, 1);
240 init_fs_pin(&acct->pin, acct_pin_kill);
241 acct->file = file;
242 acct->needcheck = jiffies;
243 acct->ns = ns;
244 mutex_init(&acct->lock);
245 INIT_WORK(&acct->work, close_work);
246 init_completion(&acct->done);
247 mutex_lock_nested(&acct->lock, 1); /* nobody has seen it yet */
248 pin_insert(&acct->pin, mnt);
249
250 rcu_read_lock();
251 old = xchg(&ns->bacct, &acct->pin);
252 mutex_unlock(&acct->lock);
253 pin_kill(old);
254 __mnt_drop_write(mnt);
255 mntput(mnt);
256 return 0;
257 }
258
259 static DEFINE_MUTEX(acct_on_mutex);
260
261 /**
262 * sys_acct - enable/disable process accounting
263 * @name: file name for accounting records or NULL to shutdown accounting
264 *
265 * sys_acct() is the only system call needed to implement process
266 * accounting. It takes the name of the file where accounting records
267 * should be written. If the filename is NULL, accounting will be
268 * shutdown.
269 *
270 * Returns: 0 for success or negative errno values for failure.
271 */
SYSCALL_DEFINE1(acct,const char __user *,name)272 SYSCALL_DEFINE1(acct, const char __user *, name)
273 {
274 int error = 0;
275
276 if (!capable(CAP_SYS_PACCT))
277 return -EPERM;
278
279 if (name) {
280 struct filename *tmp = getname(name);
281
282 if (IS_ERR(tmp))
283 return PTR_ERR(tmp);
284 mutex_lock(&acct_on_mutex);
285 error = acct_on(tmp);
286 mutex_unlock(&acct_on_mutex);
287 putname(tmp);
288 } else {
289 rcu_read_lock();
290 pin_kill(task_active_pid_ns(current)->bacct);
291 }
292
293 return error;
294 }
295
acct_exit_ns(struct pid_namespace * ns)296 void acct_exit_ns(struct pid_namespace *ns)
297 {
298 rcu_read_lock();
299 pin_kill(ns->bacct);
300 }
301
302 /*
303 * encode an unsigned long into a comp_t
304 *
305 * This routine has been adopted from the encode_comp_t() function in
306 * the kern_acct.c file of the FreeBSD operating system. The encoding
307 * is a 13-bit fraction with a 3-bit (base 8) exponent.
308 */
309
310 #define MANTSIZE 13 /* 13 bit mantissa. */
311 #define EXPSIZE 3 /* Base 8 (3 bit) exponent. */
312 #define MAXFRACT ((1 << MANTSIZE) - 1) /* Maximum fractional value. */
313
encode_comp_t(unsigned long value)314 static comp_t encode_comp_t(unsigned long value)
315 {
316 int exp, rnd;
317
318 exp = rnd = 0;
319 while (value > MAXFRACT) {
320 rnd = value & (1 << (EXPSIZE - 1)); /* Round up? */
321 value >>= EXPSIZE; /* Base 8 exponent == 3 bit shift. */
322 exp++;
323 }
324
325 /*
326 * If we need to round up, do it (and handle overflow correctly).
327 */
328 if (rnd && (++value > MAXFRACT)) {
329 value >>= EXPSIZE;
330 exp++;
331 }
332
333 /*
334 * Clean it up and polish it off.
335 */
336 exp <<= MANTSIZE; /* Shift the exponent into place */
337 exp += value; /* and add on the mantissa. */
338 return exp;
339 }
340
341 #if ACCT_VERSION == 1 || ACCT_VERSION == 2
342 /*
343 * encode an u64 into a comp2_t (24 bits)
344 *
345 * Format: 5 bit base 2 exponent, 20 bits mantissa.
346 * The leading bit of the mantissa is not stored, but implied for
347 * non-zero exponents.
348 * Largest encodable value is 50 bits.
349 */
350
351 #define MANTSIZE2 20 /* 20 bit mantissa. */
352 #define EXPSIZE2 5 /* 5 bit base 2 exponent. */
353 #define MAXFRACT2 ((1ul << MANTSIZE2) - 1) /* Maximum fractional value. */
354 #define MAXEXP2 ((1 << EXPSIZE2) - 1) /* Maximum exponent. */
355
encode_comp2_t(u64 value)356 static comp2_t encode_comp2_t(u64 value)
357 {
358 int exp, rnd;
359
360 exp = (value > (MAXFRACT2>>1));
361 rnd = 0;
362 while (value > MAXFRACT2) {
363 rnd = value & 1;
364 value >>= 1;
365 exp++;
366 }
367
368 /*
369 * If we need to round up, do it (and handle overflow correctly).
370 */
371 if (rnd && (++value > MAXFRACT2)) {
372 value >>= 1;
373 exp++;
374 }
375
376 if (exp > MAXEXP2) {
377 /* Overflow. Return largest representable number instead. */
378 return (1ul << (MANTSIZE2+EXPSIZE2-1)) - 1;
379 } else {
380 return (value & (MAXFRACT2>>1)) | (exp << (MANTSIZE2-1));
381 }
382 }
383 #elif ACCT_VERSION == 3
384 /*
385 * encode an u64 into a 32 bit IEEE float
386 */
encode_float(u64 value)387 static u32 encode_float(u64 value)
388 {
389 unsigned exp = 190;
390 unsigned u;
391
392 if (value == 0)
393 return 0;
394 while ((s64)value > 0) {
395 value <<= 1;
396 exp--;
397 }
398 u = (u32)(value >> 40) & 0x7fffffu;
399 return u | (exp << 23);
400 }
401 #endif
402
403 /*
404 * Write an accounting entry for an exiting process
405 *
406 * The acct_process() call is the workhorse of the process
407 * accounting system. The struct acct is built here and then written
408 * into the accounting file. This function should only be called from
409 * do_exit() or when switching to a different output file.
410 */
411
fill_ac(acct_t * ac)412 static void fill_ac(acct_t *ac)
413 {
414 struct pacct_struct *pacct = ¤t->signal->pacct;
415 u64 elapsed, run_time;
416 time64_t btime;
417 struct tty_struct *tty;
418
419 /*
420 * Fill the accounting struct with the needed info as recorded
421 * by the different kernel functions.
422 */
423 memset(ac, 0, sizeof(acct_t));
424
425 ac->ac_version = ACCT_VERSION | ACCT_BYTEORDER;
426 strlcpy(ac->ac_comm, current->comm, sizeof(ac->ac_comm));
427
428 /* calculate run_time in nsec*/
429 run_time = ktime_get_ns();
430 run_time -= current->group_leader->start_time;
431 /* convert nsec -> AHZ */
432 elapsed = nsec_to_AHZ(run_time);
433 #if ACCT_VERSION == 3
434 ac->ac_etime = encode_float(elapsed);
435 #else
436 ac->ac_etime = encode_comp_t(elapsed < (unsigned long) -1l ?
437 (unsigned long) elapsed : (unsigned long) -1l);
438 #endif
439 #if ACCT_VERSION == 1 || ACCT_VERSION == 2
440 {
441 /* new enlarged etime field */
442 comp2_t etime = encode_comp2_t(elapsed);
443
444 ac->ac_etime_hi = etime >> 16;
445 ac->ac_etime_lo = (u16) etime;
446 }
447 #endif
448 do_div(elapsed, AHZ);
449 btime = ktime_get_real_seconds() - elapsed;
450 ac->ac_btime = clamp_t(time64_t, btime, 0, U32_MAX);
451 #if ACCT_VERSION==2
452 ac->ac_ahz = AHZ;
453 #endif
454
455 spin_lock_irq(¤t->sighand->siglock);
456 tty = current->signal->tty; /* Safe as we hold the siglock */
457 ac->ac_tty = tty ? old_encode_dev(tty_devnum(tty)) : 0;
458 ac->ac_utime = encode_comp_t(nsec_to_AHZ(pacct->ac_utime));
459 ac->ac_stime = encode_comp_t(nsec_to_AHZ(pacct->ac_stime));
460 ac->ac_flag = pacct->ac_flag;
461 ac->ac_mem = encode_comp_t(pacct->ac_mem);
462 ac->ac_minflt = encode_comp_t(pacct->ac_minflt);
463 ac->ac_majflt = encode_comp_t(pacct->ac_majflt);
464 ac->ac_exitcode = pacct->ac_exitcode;
465 spin_unlock_irq(¤t->sighand->siglock);
466 }
467 /*
468 * do_acct_process does all actual work. Caller holds the reference to file.
469 */
do_acct_process(struct bsd_acct_struct * acct)470 static void do_acct_process(struct bsd_acct_struct *acct)
471 {
472 acct_t ac;
473 unsigned long flim;
474 const struct cred *orig_cred;
475 struct file *file = acct->file;
476
477 /*
478 * Accounting records are not subject to resource limits.
479 */
480 flim = rlimit(RLIMIT_FSIZE);
481 current->signal->rlim[RLIMIT_FSIZE].rlim_cur = RLIM_INFINITY;
482 /* Perform file operations on behalf of whoever enabled accounting */
483 orig_cred = override_creds(file->f_cred);
484
485 /*
486 * First check to see if there is enough free_space to continue
487 * the process accounting system.
488 */
489 if (!check_free_space(acct))
490 goto out;
491
492 fill_ac(&ac);
493 /* we really need to bite the bullet and change layout */
494 ac.ac_uid = from_kuid_munged(file->f_cred->user_ns, orig_cred->uid);
495 ac.ac_gid = from_kgid_munged(file->f_cred->user_ns, orig_cred->gid);
496 #if ACCT_VERSION == 1 || ACCT_VERSION == 2
497 /* backward-compatible 16 bit fields */
498 ac.ac_uid16 = ac.ac_uid;
499 ac.ac_gid16 = ac.ac_gid;
500 #elif ACCT_VERSION == 3
501 {
502 struct pid_namespace *ns = acct->ns;
503
504 ac.ac_pid = task_tgid_nr_ns(current, ns);
505 rcu_read_lock();
506 ac.ac_ppid = task_tgid_nr_ns(rcu_dereference(current->real_parent),
507 ns);
508 rcu_read_unlock();
509 }
510 #endif
511 /*
512 * Get freeze protection. If the fs is frozen, just skip the write
513 * as we could deadlock the system otherwise.
514 */
515 if (file_start_write_trylock(file)) {
516 /* it's been opened O_APPEND, so position is irrelevant */
517 loff_t pos = 0;
518 __kernel_write(file, &ac, sizeof(acct_t), &pos);
519 file_end_write(file);
520 }
521 out:
522 current->signal->rlim[RLIMIT_FSIZE].rlim_cur = flim;
523 revert_creds(orig_cred);
524 }
525
526 /**
527 * acct_collect - collect accounting information into pacct_struct
528 * @exitcode: task exit code
529 * @group_dead: not 0, if this thread is the last one in the process.
530 */
acct_collect(long exitcode,int group_dead)531 void acct_collect(long exitcode, int group_dead)
532 {
533 struct pacct_struct *pacct = ¤t->signal->pacct;
534 u64 utime, stime;
535 unsigned long vsize = 0;
536
537 if (group_dead && current->mm) {
538 struct vm_area_struct *vma;
539
540 mmap_read_lock(current->mm);
541 vma = current->mm->mmap;
542 while (vma) {
543 vsize += vma->vm_end - vma->vm_start;
544 vma = vma->vm_next;
545 }
546 mmap_read_unlock(current->mm);
547 }
548
549 spin_lock_irq(¤t->sighand->siglock);
550 if (group_dead)
551 pacct->ac_mem = vsize / 1024;
552 if (thread_group_leader(current)) {
553 pacct->ac_exitcode = exitcode;
554 if (current->flags & PF_FORKNOEXEC)
555 pacct->ac_flag |= AFORK;
556 }
557 if (current->flags & PF_SUPERPRIV)
558 pacct->ac_flag |= ASU;
559 if (current->flags & PF_DUMPCORE)
560 pacct->ac_flag |= ACORE;
561 if (current->flags & PF_SIGNALED)
562 pacct->ac_flag |= AXSIG;
563
564 task_cputime(current, &utime, &stime);
565 pacct->ac_utime += utime;
566 pacct->ac_stime += stime;
567 pacct->ac_minflt += current->min_flt;
568 pacct->ac_majflt += current->maj_flt;
569 spin_unlock_irq(¤t->sighand->siglock);
570 }
571
slow_acct_process(struct pid_namespace * ns)572 static void slow_acct_process(struct pid_namespace *ns)
573 {
574 for ( ; ns; ns = ns->parent) {
575 struct bsd_acct_struct *acct = acct_get(ns);
576 if (acct) {
577 do_acct_process(acct);
578 mutex_unlock(&acct->lock);
579 acct_put(acct);
580 }
581 }
582 }
583
584 /**
585 * acct_process - handles process accounting for an exiting task
586 */
acct_process(void)587 void acct_process(void)
588 {
589 struct pid_namespace *ns;
590
591 /*
592 * This loop is safe lockless, since current is still
593 * alive and holds its namespace, which in turn holds
594 * its parent.
595 */
596 for (ns = task_active_pid_ns(current); ns != NULL; ns = ns->parent) {
597 if (ns->bacct)
598 break;
599 }
600 if (unlikely(ns))
601 slow_acct_process(ns);
602 }
603