1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * scan.c - support for transforming the ACPI namespace into individual objects
4 */
5
6 #define pr_fmt(fmt) "ACPI: " fmt
7
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/acpi.h>
13 #include <linux/acpi_iort.h>
14 #include <linux/acpi_viot.h>
15 #include <linux/iommu.h>
16 #include <linux/signal.h>
17 #include <linux/kthread.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/platform_data/x86/apple.h>
21 #include <linux/pgtable.h>
22
23 #include "internal.h"
24
25 extern struct acpi_device *acpi_root;
26
27 #define ACPI_BUS_CLASS "system_bus"
28 #define ACPI_BUS_HID "LNXSYBUS"
29 #define ACPI_BUS_DEVICE_NAME "System Bus"
30
31 #define ACPI_IS_ROOT_DEVICE(device) (!(device)->parent)
32
33 #define INVALID_ACPI_HANDLE ((acpi_handle)empty_zero_page)
34
35 static const char *dummy_hid = "device";
36
37 static LIST_HEAD(acpi_dep_list);
38 static DEFINE_MUTEX(acpi_dep_list_lock);
39 LIST_HEAD(acpi_bus_id_list);
40 static DEFINE_MUTEX(acpi_scan_lock);
41 static LIST_HEAD(acpi_scan_handlers_list);
42 DEFINE_MUTEX(acpi_device_lock);
43 LIST_HEAD(acpi_wakeup_device_list);
44 static DEFINE_MUTEX(acpi_hp_context_lock);
45
46 /*
47 * The UART device described by the SPCR table is the only object which needs
48 * special-casing. Everything else is covered by ACPI namespace paths in STAO
49 * table.
50 */
51 static u64 spcr_uart_addr;
52
acpi_scan_lock_acquire(void)53 void acpi_scan_lock_acquire(void)
54 {
55 mutex_lock(&acpi_scan_lock);
56 }
57 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
58
acpi_scan_lock_release(void)59 void acpi_scan_lock_release(void)
60 {
61 mutex_unlock(&acpi_scan_lock);
62 }
63 EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
64
acpi_lock_hp_context(void)65 void acpi_lock_hp_context(void)
66 {
67 mutex_lock(&acpi_hp_context_lock);
68 }
69
acpi_unlock_hp_context(void)70 void acpi_unlock_hp_context(void)
71 {
72 mutex_unlock(&acpi_hp_context_lock);
73 }
74
acpi_initialize_hp_context(struct acpi_device * adev,struct acpi_hotplug_context * hp,int (* notify)(struct acpi_device *,u32),void (* uevent)(struct acpi_device *,u32))75 void acpi_initialize_hp_context(struct acpi_device *adev,
76 struct acpi_hotplug_context *hp,
77 int (*notify)(struct acpi_device *, u32),
78 void (*uevent)(struct acpi_device *, u32))
79 {
80 acpi_lock_hp_context();
81 hp->notify = notify;
82 hp->uevent = uevent;
83 acpi_set_hp_context(adev, hp);
84 acpi_unlock_hp_context();
85 }
86 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
87
acpi_scan_add_handler(struct acpi_scan_handler * handler)88 int acpi_scan_add_handler(struct acpi_scan_handler *handler)
89 {
90 if (!handler)
91 return -EINVAL;
92
93 list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
94 return 0;
95 }
96
acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler * handler,const char * hotplug_profile_name)97 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
98 const char *hotplug_profile_name)
99 {
100 int error;
101
102 error = acpi_scan_add_handler(handler);
103 if (error)
104 return error;
105
106 acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
107 return 0;
108 }
109
acpi_scan_is_offline(struct acpi_device * adev,bool uevent)110 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
111 {
112 struct acpi_device_physical_node *pn;
113 bool offline = true;
114 char *envp[] = { "EVENT=offline", NULL };
115
116 /*
117 * acpi_container_offline() calls this for all of the container's
118 * children under the container's physical_node_lock lock.
119 */
120 mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
121
122 list_for_each_entry(pn, &adev->physical_node_list, node)
123 if (device_supports_offline(pn->dev) && !pn->dev->offline) {
124 if (uevent)
125 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
126
127 offline = false;
128 break;
129 }
130
131 mutex_unlock(&adev->physical_node_lock);
132 return offline;
133 }
134
acpi_bus_offline(acpi_handle handle,u32 lvl,void * data,void ** ret_p)135 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
136 void **ret_p)
137 {
138 struct acpi_device *device = NULL;
139 struct acpi_device_physical_node *pn;
140 bool second_pass = (bool)data;
141 acpi_status status = AE_OK;
142
143 if (acpi_bus_get_device(handle, &device))
144 return AE_OK;
145
146 if (device->handler && !device->handler->hotplug.enabled) {
147 *ret_p = &device->dev;
148 return AE_SUPPORT;
149 }
150
151 mutex_lock(&device->physical_node_lock);
152
153 list_for_each_entry(pn, &device->physical_node_list, node) {
154 int ret;
155
156 if (second_pass) {
157 /* Skip devices offlined by the first pass. */
158 if (pn->put_online)
159 continue;
160 } else {
161 pn->put_online = false;
162 }
163 ret = device_offline(pn->dev);
164 if (ret >= 0) {
165 pn->put_online = !ret;
166 } else {
167 *ret_p = pn->dev;
168 if (second_pass) {
169 status = AE_ERROR;
170 break;
171 }
172 }
173 }
174
175 mutex_unlock(&device->physical_node_lock);
176
177 return status;
178 }
179
acpi_bus_online(acpi_handle handle,u32 lvl,void * data,void ** ret_p)180 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
181 void **ret_p)
182 {
183 struct acpi_device *device = NULL;
184 struct acpi_device_physical_node *pn;
185
186 if (acpi_bus_get_device(handle, &device))
187 return AE_OK;
188
189 mutex_lock(&device->physical_node_lock);
190
191 list_for_each_entry(pn, &device->physical_node_list, node)
192 if (pn->put_online) {
193 device_online(pn->dev);
194 pn->put_online = false;
195 }
196
197 mutex_unlock(&device->physical_node_lock);
198
199 return AE_OK;
200 }
201
acpi_scan_try_to_offline(struct acpi_device * device)202 static int acpi_scan_try_to_offline(struct acpi_device *device)
203 {
204 acpi_handle handle = device->handle;
205 struct device *errdev = NULL;
206 acpi_status status;
207
208 /*
209 * Carry out two passes here and ignore errors in the first pass,
210 * because if the devices in question are memory blocks and
211 * CONFIG_MEMCG is set, one of the blocks may hold data structures
212 * that the other blocks depend on, but it is not known in advance which
213 * block holds them.
214 *
215 * If the first pass is successful, the second one isn't needed, though.
216 */
217 status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
218 NULL, acpi_bus_offline, (void *)false,
219 (void **)&errdev);
220 if (status == AE_SUPPORT) {
221 dev_warn(errdev, "Offline disabled.\n");
222 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
223 acpi_bus_online, NULL, NULL, NULL);
224 return -EPERM;
225 }
226 acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
227 if (errdev) {
228 errdev = NULL;
229 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
230 NULL, acpi_bus_offline, (void *)true,
231 (void **)&errdev);
232 if (!errdev)
233 acpi_bus_offline(handle, 0, (void *)true,
234 (void **)&errdev);
235
236 if (errdev) {
237 dev_warn(errdev, "Offline failed.\n");
238 acpi_bus_online(handle, 0, NULL, NULL);
239 acpi_walk_namespace(ACPI_TYPE_ANY, handle,
240 ACPI_UINT32_MAX, acpi_bus_online,
241 NULL, NULL, NULL);
242 return -EBUSY;
243 }
244 }
245 return 0;
246 }
247
acpi_scan_hot_remove(struct acpi_device * device)248 static int acpi_scan_hot_remove(struct acpi_device *device)
249 {
250 acpi_handle handle = device->handle;
251 unsigned long long sta;
252 acpi_status status;
253
254 if (device->handler && device->handler->hotplug.demand_offline) {
255 if (!acpi_scan_is_offline(device, true))
256 return -EBUSY;
257 } else {
258 int error = acpi_scan_try_to_offline(device);
259 if (error)
260 return error;
261 }
262
263 acpi_handle_debug(handle, "Ejecting\n");
264
265 acpi_bus_trim(device);
266
267 acpi_evaluate_lck(handle, 0);
268 /*
269 * TBD: _EJD support.
270 */
271 status = acpi_evaluate_ej0(handle);
272 if (status == AE_NOT_FOUND)
273 return -ENODEV;
274 else if (ACPI_FAILURE(status))
275 return -EIO;
276
277 /*
278 * Verify if eject was indeed successful. If not, log an error
279 * message. No need to call _OST since _EJ0 call was made OK.
280 */
281 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
282 if (ACPI_FAILURE(status)) {
283 acpi_handle_warn(handle,
284 "Status check after eject failed (0x%x)\n", status);
285 } else if (sta & ACPI_STA_DEVICE_ENABLED) {
286 acpi_handle_warn(handle,
287 "Eject incomplete - status 0x%llx\n", sta);
288 }
289
290 return 0;
291 }
292
acpi_scan_device_not_present(struct acpi_device * adev)293 static int acpi_scan_device_not_present(struct acpi_device *adev)
294 {
295 if (!acpi_device_enumerated(adev)) {
296 dev_warn(&adev->dev, "Still not present\n");
297 return -EALREADY;
298 }
299 acpi_bus_trim(adev);
300 return 0;
301 }
302
acpi_scan_device_check(struct acpi_device * adev)303 static int acpi_scan_device_check(struct acpi_device *adev)
304 {
305 int error;
306
307 acpi_bus_get_status(adev);
308 if (adev->status.present || adev->status.functional) {
309 /*
310 * This function is only called for device objects for which
311 * matching scan handlers exist. The only situation in which
312 * the scan handler is not attached to this device object yet
313 * is when the device has just appeared (either it wasn't
314 * present at all before or it was removed and then added
315 * again).
316 */
317 if (adev->handler) {
318 dev_warn(&adev->dev, "Already enumerated\n");
319 return -EALREADY;
320 }
321 error = acpi_bus_scan(adev->handle);
322 if (error) {
323 dev_warn(&adev->dev, "Namespace scan failure\n");
324 return error;
325 }
326 if (!adev->handler) {
327 dev_warn(&adev->dev, "Enumeration failure\n");
328 error = -ENODEV;
329 }
330 } else {
331 error = acpi_scan_device_not_present(adev);
332 }
333 return error;
334 }
335
acpi_scan_bus_check(struct acpi_device * adev)336 static int acpi_scan_bus_check(struct acpi_device *adev)
337 {
338 struct acpi_scan_handler *handler = adev->handler;
339 struct acpi_device *child;
340 int error;
341
342 acpi_bus_get_status(adev);
343 if (!(adev->status.present || adev->status.functional)) {
344 acpi_scan_device_not_present(adev);
345 return 0;
346 }
347 if (handler && handler->hotplug.scan_dependent)
348 return handler->hotplug.scan_dependent(adev);
349
350 error = acpi_bus_scan(adev->handle);
351 if (error) {
352 dev_warn(&adev->dev, "Namespace scan failure\n");
353 return error;
354 }
355 list_for_each_entry(child, &adev->children, node) {
356 error = acpi_scan_bus_check(child);
357 if (error)
358 return error;
359 }
360 return 0;
361 }
362
acpi_generic_hotplug_event(struct acpi_device * adev,u32 type)363 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
364 {
365 switch (type) {
366 case ACPI_NOTIFY_BUS_CHECK:
367 return acpi_scan_bus_check(adev);
368 case ACPI_NOTIFY_DEVICE_CHECK:
369 return acpi_scan_device_check(adev);
370 case ACPI_NOTIFY_EJECT_REQUEST:
371 case ACPI_OST_EC_OSPM_EJECT:
372 if (adev->handler && !adev->handler->hotplug.enabled) {
373 dev_info(&adev->dev, "Eject disabled\n");
374 return -EPERM;
375 }
376 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
377 ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
378 return acpi_scan_hot_remove(adev);
379 }
380 return -EINVAL;
381 }
382
acpi_device_hotplug(struct acpi_device * adev,u32 src)383 void acpi_device_hotplug(struct acpi_device *adev, u32 src)
384 {
385 u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
386 int error = -ENODEV;
387
388 lock_device_hotplug();
389 mutex_lock(&acpi_scan_lock);
390
391 /*
392 * The device object's ACPI handle cannot become invalid as long as we
393 * are holding acpi_scan_lock, but it might have become invalid before
394 * that lock was acquired.
395 */
396 if (adev->handle == INVALID_ACPI_HANDLE)
397 goto err_out;
398
399 if (adev->flags.is_dock_station) {
400 error = dock_notify(adev, src);
401 } else if (adev->flags.hotplug_notify) {
402 error = acpi_generic_hotplug_event(adev, src);
403 } else {
404 int (*notify)(struct acpi_device *, u32);
405
406 acpi_lock_hp_context();
407 notify = adev->hp ? adev->hp->notify : NULL;
408 acpi_unlock_hp_context();
409 /*
410 * There may be additional notify handlers for device objects
411 * without the .event() callback, so ignore them here.
412 */
413 if (notify)
414 error = notify(adev, src);
415 else
416 goto out;
417 }
418 switch (error) {
419 case 0:
420 ost_code = ACPI_OST_SC_SUCCESS;
421 break;
422 case -EPERM:
423 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
424 break;
425 case -EBUSY:
426 ost_code = ACPI_OST_SC_DEVICE_BUSY;
427 break;
428 default:
429 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
430 break;
431 }
432
433 err_out:
434 acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
435
436 out:
437 acpi_bus_put_acpi_device(adev);
438 mutex_unlock(&acpi_scan_lock);
439 unlock_device_hotplug();
440 }
441
acpi_free_power_resources_lists(struct acpi_device * device)442 static void acpi_free_power_resources_lists(struct acpi_device *device)
443 {
444 int i;
445
446 if (device->wakeup.flags.valid)
447 acpi_power_resources_list_free(&device->wakeup.resources);
448
449 if (!device->power.flags.power_resources)
450 return;
451
452 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
453 struct acpi_device_power_state *ps = &device->power.states[i];
454 acpi_power_resources_list_free(&ps->resources);
455 }
456 }
457
acpi_device_release(struct device * dev)458 static void acpi_device_release(struct device *dev)
459 {
460 struct acpi_device *acpi_dev = to_acpi_device(dev);
461
462 acpi_free_properties(acpi_dev);
463 acpi_free_pnp_ids(&acpi_dev->pnp);
464 acpi_free_power_resources_lists(acpi_dev);
465 kfree(acpi_dev);
466 }
467
acpi_device_del(struct acpi_device * device)468 static void acpi_device_del(struct acpi_device *device)
469 {
470 struct acpi_device_bus_id *acpi_device_bus_id;
471
472 mutex_lock(&acpi_device_lock);
473 if (device->parent)
474 list_del(&device->node);
475
476 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
477 if (!strcmp(acpi_device_bus_id->bus_id,
478 acpi_device_hid(device))) {
479 ida_simple_remove(&acpi_device_bus_id->instance_ida, device->pnp.instance_no);
480 if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
481 list_del(&acpi_device_bus_id->node);
482 kfree_const(acpi_device_bus_id->bus_id);
483 kfree(acpi_device_bus_id);
484 }
485 break;
486 }
487
488 list_del(&device->wakeup_list);
489 mutex_unlock(&acpi_device_lock);
490
491 acpi_power_add_remove_device(device, false);
492 acpi_device_remove_files(device);
493 if (device->remove)
494 device->remove(device);
495
496 device_del(&device->dev);
497 }
498
499 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
500
501 static LIST_HEAD(acpi_device_del_list);
502 static DEFINE_MUTEX(acpi_device_del_lock);
503
acpi_device_del_work_fn(struct work_struct * work_not_used)504 static void acpi_device_del_work_fn(struct work_struct *work_not_used)
505 {
506 for (;;) {
507 struct acpi_device *adev;
508
509 mutex_lock(&acpi_device_del_lock);
510
511 if (list_empty(&acpi_device_del_list)) {
512 mutex_unlock(&acpi_device_del_lock);
513 break;
514 }
515 adev = list_first_entry(&acpi_device_del_list,
516 struct acpi_device, del_list);
517 list_del(&adev->del_list);
518
519 mutex_unlock(&acpi_device_del_lock);
520
521 blocking_notifier_call_chain(&acpi_reconfig_chain,
522 ACPI_RECONFIG_DEVICE_REMOVE, adev);
523
524 acpi_device_del(adev);
525 /*
526 * Drop references to all power resources that might have been
527 * used by the device.
528 */
529 acpi_power_transition(adev, ACPI_STATE_D3_COLD);
530 acpi_dev_put(adev);
531 }
532 }
533
534 /**
535 * acpi_scan_drop_device - Drop an ACPI device object.
536 * @handle: Handle of an ACPI namespace node, not used.
537 * @context: Address of the ACPI device object to drop.
538 *
539 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
540 * namespace node the device object pointed to by @context is attached to.
541 *
542 * The unregistration is carried out asynchronously to avoid running
543 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
544 * ensure the correct ordering (the device objects must be unregistered in the
545 * same order in which the corresponding namespace nodes are deleted).
546 */
acpi_scan_drop_device(acpi_handle handle,void * context)547 static void acpi_scan_drop_device(acpi_handle handle, void *context)
548 {
549 static DECLARE_WORK(work, acpi_device_del_work_fn);
550 struct acpi_device *adev = context;
551
552 mutex_lock(&acpi_device_del_lock);
553
554 /*
555 * Use the ACPI hotplug workqueue which is ordered, so this work item
556 * won't run after any hotplug work items submitted subsequently. That
557 * prevents attempts to register device objects identical to those being
558 * deleted from happening concurrently (such attempts result from
559 * hotplug events handled via the ACPI hotplug workqueue). It also will
560 * run after all of the work items submitted previously, which helps
561 * those work items to ensure that they are not accessing stale device
562 * objects.
563 */
564 if (list_empty(&acpi_device_del_list))
565 acpi_queue_hotplug_work(&work);
566
567 list_add_tail(&adev->del_list, &acpi_device_del_list);
568 /* Make acpi_ns_validate_handle() return NULL for this handle. */
569 adev->handle = INVALID_ACPI_HANDLE;
570
571 mutex_unlock(&acpi_device_del_lock);
572 }
573
handle_to_device(acpi_handle handle,void (* callback)(void *))574 static struct acpi_device *handle_to_device(acpi_handle handle,
575 void (*callback)(void *))
576 {
577 struct acpi_device *adev = NULL;
578 acpi_status status;
579
580 status = acpi_get_data_full(handle, acpi_scan_drop_device,
581 (void **)&adev, callback);
582 if (ACPI_FAILURE(status) || !adev) {
583 acpi_handle_debug(handle, "No context!\n");
584 return NULL;
585 }
586 return adev;
587 }
588
acpi_bus_get_device(acpi_handle handle,struct acpi_device ** device)589 int acpi_bus_get_device(acpi_handle handle, struct acpi_device **device)
590 {
591 if (!device)
592 return -EINVAL;
593
594 *device = handle_to_device(handle, NULL);
595 if (!*device)
596 return -ENODEV;
597
598 return 0;
599 }
600 EXPORT_SYMBOL(acpi_bus_get_device);
601
get_acpi_device(void * dev)602 static void get_acpi_device(void *dev)
603 {
604 acpi_dev_get(dev);
605 }
606
acpi_bus_get_acpi_device(acpi_handle handle)607 struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle)
608 {
609 return handle_to_device(handle, get_acpi_device);
610 }
611 EXPORT_SYMBOL_GPL(acpi_bus_get_acpi_device);
612
acpi_device_bus_id_match(const char * dev_id)613 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
614 {
615 struct acpi_device_bus_id *acpi_device_bus_id;
616
617 /* Find suitable bus_id and instance number in acpi_bus_id_list. */
618 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
619 if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
620 return acpi_device_bus_id;
621 }
622 return NULL;
623 }
624
acpi_device_set_name(struct acpi_device * device,struct acpi_device_bus_id * acpi_device_bus_id)625 static int acpi_device_set_name(struct acpi_device *device,
626 struct acpi_device_bus_id *acpi_device_bus_id)
627 {
628 struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
629 int result;
630
631 result = ida_simple_get(instance_ida, 0, ACPI_MAX_DEVICE_INSTANCES, GFP_KERNEL);
632 if (result < 0)
633 return result;
634
635 device->pnp.instance_no = result;
636 dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
637 return 0;
638 }
639
acpi_tie_acpi_dev(struct acpi_device * adev)640 static int acpi_tie_acpi_dev(struct acpi_device *adev)
641 {
642 acpi_handle handle = adev->handle;
643 acpi_status status;
644
645 if (!handle)
646 return 0;
647
648 status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
649 if (ACPI_FAILURE(status)) {
650 acpi_handle_err(handle, "Unable to attach device data\n");
651 return -ENODEV;
652 }
653
654 return 0;
655 }
656
__acpi_device_add(struct acpi_device * device,void (* release)(struct device *))657 static int __acpi_device_add(struct acpi_device *device,
658 void (*release)(struct device *))
659 {
660 struct acpi_device_bus_id *acpi_device_bus_id;
661 int result;
662
663 /*
664 * Linkage
665 * -------
666 * Link this device to its parent and siblings.
667 */
668 INIT_LIST_HEAD(&device->children);
669 INIT_LIST_HEAD(&device->node);
670 INIT_LIST_HEAD(&device->wakeup_list);
671 INIT_LIST_HEAD(&device->physical_node_list);
672 INIT_LIST_HEAD(&device->del_list);
673 mutex_init(&device->physical_node_lock);
674
675 mutex_lock(&acpi_device_lock);
676
677 acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
678 if (acpi_device_bus_id) {
679 result = acpi_device_set_name(device, acpi_device_bus_id);
680 if (result)
681 goto err_unlock;
682 } else {
683 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
684 GFP_KERNEL);
685 if (!acpi_device_bus_id) {
686 result = -ENOMEM;
687 goto err_unlock;
688 }
689 acpi_device_bus_id->bus_id =
690 kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
691 if (!acpi_device_bus_id->bus_id) {
692 kfree(acpi_device_bus_id);
693 result = -ENOMEM;
694 goto err_unlock;
695 }
696
697 ida_init(&acpi_device_bus_id->instance_ida);
698
699 result = acpi_device_set_name(device, acpi_device_bus_id);
700 if (result) {
701 kfree_const(acpi_device_bus_id->bus_id);
702 kfree(acpi_device_bus_id);
703 goto err_unlock;
704 }
705
706 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
707 }
708
709 if (device->parent)
710 list_add_tail(&device->node, &device->parent->children);
711
712 if (device->wakeup.flags.valid)
713 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
714
715 mutex_unlock(&acpi_device_lock);
716
717 if (device->parent)
718 device->dev.parent = &device->parent->dev;
719
720 device->dev.bus = &acpi_bus_type;
721 device->dev.release = release;
722 result = device_add(&device->dev);
723 if (result) {
724 dev_err(&device->dev, "Error registering device\n");
725 goto err;
726 }
727
728 result = acpi_device_setup_files(device);
729 if (result)
730 pr_err("Error creating sysfs interface for device %s\n",
731 dev_name(&device->dev));
732
733 return 0;
734
735 err:
736 mutex_lock(&acpi_device_lock);
737
738 if (device->parent)
739 list_del(&device->node);
740
741 list_del(&device->wakeup_list);
742
743 err_unlock:
744 mutex_unlock(&acpi_device_lock);
745
746 acpi_detach_data(device->handle, acpi_scan_drop_device);
747
748 return result;
749 }
750
acpi_device_add(struct acpi_device * adev,void (* release)(struct device *))751 int acpi_device_add(struct acpi_device *adev, void (*release)(struct device *))
752 {
753 int ret;
754
755 ret = acpi_tie_acpi_dev(adev);
756 if (ret)
757 return ret;
758
759 return __acpi_device_add(adev, release);
760 }
761
762 /* --------------------------------------------------------------------------
763 Device Enumeration
764 -------------------------------------------------------------------------- */
acpi_info_matches_ids(struct acpi_device_info * info,const char * const ids[])765 static bool acpi_info_matches_ids(struct acpi_device_info *info,
766 const char * const ids[])
767 {
768 struct acpi_pnp_device_id_list *cid_list = NULL;
769 int i, index;
770
771 if (!(info->valid & ACPI_VALID_HID))
772 return false;
773
774 index = match_string(ids, -1, info->hardware_id.string);
775 if (index >= 0)
776 return true;
777
778 if (info->valid & ACPI_VALID_CID)
779 cid_list = &info->compatible_id_list;
780
781 if (!cid_list)
782 return false;
783
784 for (i = 0; i < cid_list->count; i++) {
785 index = match_string(ids, -1, cid_list->ids[i].string);
786 if (index >= 0)
787 return true;
788 }
789
790 return false;
791 }
792
793 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
794 static const char * const acpi_ignore_dep_ids[] = {
795 "PNP0D80", /* Windows-compatible System Power Management Controller */
796 "INT33BD", /* Intel Baytrail Mailbox Device */
797 NULL
798 };
799
acpi_bus_get_parent(acpi_handle handle)800 static struct acpi_device *acpi_bus_get_parent(acpi_handle handle)
801 {
802 struct acpi_device *device = NULL;
803 acpi_status status;
804
805 /*
806 * Fixed hardware devices do not appear in the namespace and do not
807 * have handles, but we fabricate acpi_devices for them, so we have
808 * to deal with them specially.
809 */
810 if (!handle)
811 return acpi_root;
812
813 do {
814 status = acpi_get_parent(handle, &handle);
815 if (ACPI_FAILURE(status))
816 return status == AE_NULL_ENTRY ? NULL : acpi_root;
817 } while (acpi_bus_get_device(handle, &device));
818 return device;
819 }
820
821 acpi_status
acpi_bus_get_ejd(acpi_handle handle,acpi_handle * ejd)822 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
823 {
824 acpi_status status;
825 acpi_handle tmp;
826 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
827 union acpi_object *obj;
828
829 status = acpi_get_handle(handle, "_EJD", &tmp);
830 if (ACPI_FAILURE(status))
831 return status;
832
833 status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
834 if (ACPI_SUCCESS(status)) {
835 obj = buffer.pointer;
836 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
837 ejd);
838 kfree(buffer.pointer);
839 }
840 return status;
841 }
842 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
843
acpi_bus_extract_wakeup_device_power_package(struct acpi_device * dev)844 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
845 {
846 acpi_handle handle = dev->handle;
847 struct acpi_device_wakeup *wakeup = &dev->wakeup;
848 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
849 union acpi_object *package = NULL;
850 union acpi_object *element = NULL;
851 acpi_status status;
852 int err = -ENODATA;
853
854 INIT_LIST_HEAD(&wakeup->resources);
855
856 /* _PRW */
857 status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
858 if (ACPI_FAILURE(status)) {
859 acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
860 acpi_format_exception(status));
861 return err;
862 }
863
864 package = (union acpi_object *)buffer.pointer;
865
866 if (!package || package->package.count < 2)
867 goto out;
868
869 element = &(package->package.elements[0]);
870 if (!element)
871 goto out;
872
873 if (element->type == ACPI_TYPE_PACKAGE) {
874 if ((element->package.count < 2) ||
875 (element->package.elements[0].type !=
876 ACPI_TYPE_LOCAL_REFERENCE)
877 || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
878 goto out;
879
880 wakeup->gpe_device =
881 element->package.elements[0].reference.handle;
882 wakeup->gpe_number =
883 (u32) element->package.elements[1].integer.value;
884 } else if (element->type == ACPI_TYPE_INTEGER) {
885 wakeup->gpe_device = NULL;
886 wakeup->gpe_number = element->integer.value;
887 } else {
888 goto out;
889 }
890
891 element = &(package->package.elements[1]);
892 if (element->type != ACPI_TYPE_INTEGER)
893 goto out;
894
895 wakeup->sleep_state = element->integer.value;
896
897 err = acpi_extract_power_resources(package, 2, &wakeup->resources);
898 if (err)
899 goto out;
900
901 if (!list_empty(&wakeup->resources)) {
902 int sleep_state;
903
904 err = acpi_power_wakeup_list_init(&wakeup->resources,
905 &sleep_state);
906 if (err) {
907 acpi_handle_warn(handle, "Retrieving current states "
908 "of wakeup power resources failed\n");
909 acpi_power_resources_list_free(&wakeup->resources);
910 goto out;
911 }
912 if (sleep_state < wakeup->sleep_state) {
913 acpi_handle_warn(handle, "Overriding _PRW sleep state "
914 "(S%d) by S%d from power resources\n",
915 (int)wakeup->sleep_state, sleep_state);
916 wakeup->sleep_state = sleep_state;
917 }
918 }
919
920 out:
921 kfree(buffer.pointer);
922 return err;
923 }
924
acpi_wakeup_gpe_init(struct acpi_device * device)925 static bool acpi_wakeup_gpe_init(struct acpi_device *device)
926 {
927 static const struct acpi_device_id button_device_ids[] = {
928 {"PNP0C0C", 0}, /* Power button */
929 {"PNP0C0D", 0}, /* Lid */
930 {"PNP0C0E", 0}, /* Sleep button */
931 {"", 0},
932 };
933 struct acpi_device_wakeup *wakeup = &device->wakeup;
934 acpi_status status;
935
936 wakeup->flags.notifier_present = 0;
937
938 /* Power button, Lid switch always enable wakeup */
939 if (!acpi_match_device_ids(device, button_device_ids)) {
940 if (!acpi_match_device_ids(device, &button_device_ids[1])) {
941 /* Do not use Lid/sleep button for S5 wakeup */
942 if (wakeup->sleep_state == ACPI_STATE_S5)
943 wakeup->sleep_state = ACPI_STATE_S4;
944 }
945 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
946 device_set_wakeup_capable(&device->dev, true);
947 return true;
948 }
949
950 status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
951 wakeup->gpe_number);
952 return ACPI_SUCCESS(status);
953 }
954
acpi_bus_get_wakeup_device_flags(struct acpi_device * device)955 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
956 {
957 int err;
958
959 /* Presence of _PRW indicates wake capable */
960 if (!acpi_has_method(device->handle, "_PRW"))
961 return;
962
963 err = acpi_bus_extract_wakeup_device_power_package(device);
964 if (err) {
965 dev_err(&device->dev, "Unable to extract wakeup power resources");
966 return;
967 }
968
969 device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
970 device->wakeup.prepare_count = 0;
971 /*
972 * Call _PSW/_DSW object to disable its ability to wake the sleeping
973 * system for the ACPI device with the _PRW object.
974 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
975 * So it is necessary to call _DSW object first. Only when it is not
976 * present will the _PSW object used.
977 */
978 err = acpi_device_sleep_wake(device, 0, 0, 0);
979 if (err)
980 pr_debug("error in _DSW or _PSW evaluation\n");
981 }
982
acpi_bus_init_power_state(struct acpi_device * device,int state)983 static void acpi_bus_init_power_state(struct acpi_device *device, int state)
984 {
985 struct acpi_device_power_state *ps = &device->power.states[state];
986 char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
987 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
988 acpi_status status;
989
990 INIT_LIST_HEAD(&ps->resources);
991
992 /* Evaluate "_PRx" to get referenced power resources */
993 status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
994 if (ACPI_SUCCESS(status)) {
995 union acpi_object *package = buffer.pointer;
996
997 if (buffer.length && package
998 && package->type == ACPI_TYPE_PACKAGE
999 && package->package.count)
1000 acpi_extract_power_resources(package, 0, &ps->resources);
1001
1002 ACPI_FREE(buffer.pointer);
1003 }
1004
1005 /* Evaluate "_PSx" to see if we can do explicit sets */
1006 pathname[2] = 'S';
1007 if (acpi_has_method(device->handle, pathname))
1008 ps->flags.explicit_set = 1;
1009
1010 /* State is valid if there are means to put the device into it. */
1011 if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1012 ps->flags.valid = 1;
1013
1014 ps->power = -1; /* Unknown - driver assigned */
1015 ps->latency = -1; /* Unknown - driver assigned */
1016 }
1017
acpi_bus_get_power_flags(struct acpi_device * device)1018 static void acpi_bus_get_power_flags(struct acpi_device *device)
1019 {
1020 unsigned long long dsc = ACPI_STATE_D0;
1021 u32 i;
1022
1023 /* Presence of _PS0|_PR0 indicates 'power manageable' */
1024 if (!acpi_has_method(device->handle, "_PS0") &&
1025 !acpi_has_method(device->handle, "_PR0"))
1026 return;
1027
1028 device->flags.power_manageable = 1;
1029
1030 /*
1031 * Power Management Flags
1032 */
1033 if (acpi_has_method(device->handle, "_PSC"))
1034 device->power.flags.explicit_get = 1;
1035
1036 if (acpi_has_method(device->handle, "_IRC"))
1037 device->power.flags.inrush_current = 1;
1038
1039 if (acpi_has_method(device->handle, "_DSW"))
1040 device->power.flags.dsw_present = 1;
1041
1042 acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc);
1043 device->power.state_for_enumeration = dsc;
1044
1045 /*
1046 * Enumerate supported power management states
1047 */
1048 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1049 acpi_bus_init_power_state(device, i);
1050
1051 INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1052
1053 /* Set the defaults for D0 and D3hot (always supported). */
1054 device->power.states[ACPI_STATE_D0].flags.valid = 1;
1055 device->power.states[ACPI_STATE_D0].power = 100;
1056 device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1057
1058 /*
1059 * Use power resources only if the D0 list of them is populated, because
1060 * some platforms may provide _PR3 only to indicate D3cold support and
1061 * in those cases the power resources list returned by it may be bogus.
1062 */
1063 if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1064 device->power.flags.power_resources = 1;
1065 /*
1066 * D3cold is supported if the D3hot list of power resources is
1067 * not empty.
1068 */
1069 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1070 device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1071 }
1072
1073 if (acpi_bus_init_power(device))
1074 device->flags.power_manageable = 0;
1075 }
1076
acpi_bus_get_flags(struct acpi_device * device)1077 static void acpi_bus_get_flags(struct acpi_device *device)
1078 {
1079 /* Presence of _STA indicates 'dynamic_status' */
1080 if (acpi_has_method(device->handle, "_STA"))
1081 device->flags.dynamic_status = 1;
1082
1083 /* Presence of _RMV indicates 'removable' */
1084 if (acpi_has_method(device->handle, "_RMV"))
1085 device->flags.removable = 1;
1086
1087 /* Presence of _EJD|_EJ0 indicates 'ejectable' */
1088 if (acpi_has_method(device->handle, "_EJD") ||
1089 acpi_has_method(device->handle, "_EJ0"))
1090 device->flags.ejectable = 1;
1091 }
1092
acpi_device_get_busid(struct acpi_device * device)1093 static void acpi_device_get_busid(struct acpi_device *device)
1094 {
1095 char bus_id[5] = { '?', 0 };
1096 struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1097 int i = 0;
1098
1099 /*
1100 * Bus ID
1101 * ------
1102 * The device's Bus ID is simply the object name.
1103 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1104 */
1105 if (ACPI_IS_ROOT_DEVICE(device)) {
1106 strcpy(device->pnp.bus_id, "ACPI");
1107 return;
1108 }
1109
1110 switch (device->device_type) {
1111 case ACPI_BUS_TYPE_POWER_BUTTON:
1112 strcpy(device->pnp.bus_id, "PWRF");
1113 break;
1114 case ACPI_BUS_TYPE_SLEEP_BUTTON:
1115 strcpy(device->pnp.bus_id, "SLPF");
1116 break;
1117 case ACPI_BUS_TYPE_ECDT_EC:
1118 strcpy(device->pnp.bus_id, "ECDT");
1119 break;
1120 default:
1121 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1122 /* Clean up trailing underscores (if any) */
1123 for (i = 3; i > 1; i--) {
1124 if (bus_id[i] == '_')
1125 bus_id[i] = '\0';
1126 else
1127 break;
1128 }
1129 strcpy(device->pnp.bus_id, bus_id);
1130 break;
1131 }
1132 }
1133
1134 /*
1135 * acpi_ata_match - see if an acpi object is an ATA device
1136 *
1137 * If an acpi object has one of the ACPI ATA methods defined,
1138 * then we can safely call it an ATA device.
1139 */
acpi_ata_match(acpi_handle handle)1140 bool acpi_ata_match(acpi_handle handle)
1141 {
1142 return acpi_has_method(handle, "_GTF") ||
1143 acpi_has_method(handle, "_GTM") ||
1144 acpi_has_method(handle, "_STM") ||
1145 acpi_has_method(handle, "_SDD");
1146 }
1147
1148 /*
1149 * acpi_bay_match - see if an acpi object is an ejectable driver bay
1150 *
1151 * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1152 * then we can safely call it an ejectable drive bay
1153 */
acpi_bay_match(acpi_handle handle)1154 bool acpi_bay_match(acpi_handle handle)
1155 {
1156 acpi_handle phandle;
1157
1158 if (!acpi_has_method(handle, "_EJ0"))
1159 return false;
1160 if (acpi_ata_match(handle))
1161 return true;
1162 if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1163 return false;
1164
1165 return acpi_ata_match(phandle);
1166 }
1167
acpi_device_is_battery(struct acpi_device * adev)1168 bool acpi_device_is_battery(struct acpi_device *adev)
1169 {
1170 struct acpi_hardware_id *hwid;
1171
1172 list_for_each_entry(hwid, &adev->pnp.ids, list)
1173 if (!strcmp("PNP0C0A", hwid->id))
1174 return true;
1175
1176 return false;
1177 }
1178
is_ejectable_bay(struct acpi_device * adev)1179 static bool is_ejectable_bay(struct acpi_device *adev)
1180 {
1181 acpi_handle handle = adev->handle;
1182
1183 if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1184 return true;
1185
1186 return acpi_bay_match(handle);
1187 }
1188
1189 /*
1190 * acpi_dock_match - see if an acpi object has a _DCK method
1191 */
acpi_dock_match(acpi_handle handle)1192 bool acpi_dock_match(acpi_handle handle)
1193 {
1194 return acpi_has_method(handle, "_DCK");
1195 }
1196
1197 static acpi_status
acpi_backlight_cap_match(acpi_handle handle,u32 level,void * context,void ** return_value)1198 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1199 void **return_value)
1200 {
1201 long *cap = context;
1202
1203 if (acpi_has_method(handle, "_BCM") &&
1204 acpi_has_method(handle, "_BCL")) {
1205 acpi_handle_debug(handle, "Found generic backlight support\n");
1206 *cap |= ACPI_VIDEO_BACKLIGHT;
1207 /* We have backlight support, no need to scan further */
1208 return AE_CTRL_TERMINATE;
1209 }
1210 return 0;
1211 }
1212
1213 /* Returns true if the ACPI object is a video device which can be
1214 * handled by video.ko.
1215 * The device will get a Linux specific CID added in scan.c to
1216 * identify the device as an ACPI graphics device
1217 * Be aware that the graphics device may not be physically present
1218 * Use acpi_video_get_capabilities() to detect general ACPI video
1219 * capabilities of present cards
1220 */
acpi_is_video_device(acpi_handle handle)1221 long acpi_is_video_device(acpi_handle handle)
1222 {
1223 long video_caps = 0;
1224
1225 /* Is this device able to support video switching ? */
1226 if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1227 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1228
1229 /* Is this device able to retrieve a video ROM ? */
1230 if (acpi_has_method(handle, "_ROM"))
1231 video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1232
1233 /* Is this device able to configure which video head to be POSTed ? */
1234 if (acpi_has_method(handle, "_VPO") &&
1235 acpi_has_method(handle, "_GPD") &&
1236 acpi_has_method(handle, "_SPD"))
1237 video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1238
1239 /* Only check for backlight functionality if one of the above hit. */
1240 if (video_caps)
1241 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1242 ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1243 &video_caps, NULL);
1244
1245 return video_caps;
1246 }
1247 EXPORT_SYMBOL(acpi_is_video_device);
1248
acpi_device_hid(struct acpi_device * device)1249 const char *acpi_device_hid(struct acpi_device *device)
1250 {
1251 struct acpi_hardware_id *hid;
1252
1253 if (list_empty(&device->pnp.ids))
1254 return dummy_hid;
1255
1256 hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1257 return hid->id;
1258 }
1259 EXPORT_SYMBOL(acpi_device_hid);
1260
acpi_add_id(struct acpi_device_pnp * pnp,const char * dev_id)1261 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1262 {
1263 struct acpi_hardware_id *id;
1264
1265 id = kmalloc(sizeof(*id), GFP_KERNEL);
1266 if (!id)
1267 return;
1268
1269 id->id = kstrdup_const(dev_id, GFP_KERNEL);
1270 if (!id->id) {
1271 kfree(id);
1272 return;
1273 }
1274
1275 list_add_tail(&id->list, &pnp->ids);
1276 pnp->type.hardware_id = 1;
1277 }
1278
1279 /*
1280 * Old IBM workstations have a DSDT bug wherein the SMBus object
1281 * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1282 * prefix. Work around this.
1283 */
acpi_ibm_smbus_match(acpi_handle handle)1284 static bool acpi_ibm_smbus_match(acpi_handle handle)
1285 {
1286 char node_name[ACPI_PATH_SEGMENT_LENGTH];
1287 struct acpi_buffer path = { sizeof(node_name), node_name };
1288
1289 if (!dmi_name_in_vendors("IBM"))
1290 return false;
1291
1292 /* Look for SMBS object */
1293 if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1294 strcmp("SMBS", path.pointer))
1295 return false;
1296
1297 /* Does it have the necessary (but misnamed) methods? */
1298 if (acpi_has_method(handle, "SBI") &&
1299 acpi_has_method(handle, "SBR") &&
1300 acpi_has_method(handle, "SBW"))
1301 return true;
1302
1303 return false;
1304 }
1305
acpi_object_is_system_bus(acpi_handle handle)1306 static bool acpi_object_is_system_bus(acpi_handle handle)
1307 {
1308 acpi_handle tmp;
1309
1310 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1311 tmp == handle)
1312 return true;
1313 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1314 tmp == handle)
1315 return true;
1316
1317 return false;
1318 }
1319
acpi_set_pnp_ids(acpi_handle handle,struct acpi_device_pnp * pnp,int device_type)1320 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1321 int device_type)
1322 {
1323 struct acpi_device_info *info = NULL;
1324 struct acpi_pnp_device_id_list *cid_list;
1325 int i;
1326
1327 switch (device_type) {
1328 case ACPI_BUS_TYPE_DEVICE:
1329 if (handle == ACPI_ROOT_OBJECT) {
1330 acpi_add_id(pnp, ACPI_SYSTEM_HID);
1331 break;
1332 }
1333
1334 acpi_get_object_info(handle, &info);
1335 if (!info) {
1336 pr_err("%s: Error reading device info\n", __func__);
1337 return;
1338 }
1339
1340 if (info->valid & ACPI_VALID_HID) {
1341 acpi_add_id(pnp, info->hardware_id.string);
1342 pnp->type.platform_id = 1;
1343 }
1344 if (info->valid & ACPI_VALID_CID) {
1345 cid_list = &info->compatible_id_list;
1346 for (i = 0; i < cid_list->count; i++)
1347 acpi_add_id(pnp, cid_list->ids[i].string);
1348 }
1349 if (info->valid & ACPI_VALID_ADR) {
1350 pnp->bus_address = info->address;
1351 pnp->type.bus_address = 1;
1352 }
1353 if (info->valid & ACPI_VALID_UID)
1354 pnp->unique_id = kstrdup(info->unique_id.string,
1355 GFP_KERNEL);
1356 if (info->valid & ACPI_VALID_CLS)
1357 acpi_add_id(pnp, info->class_code.string);
1358
1359 kfree(info);
1360
1361 /*
1362 * Some devices don't reliably have _HIDs & _CIDs, so add
1363 * synthetic HIDs to make sure drivers can find them.
1364 */
1365 if (acpi_is_video_device(handle))
1366 acpi_add_id(pnp, ACPI_VIDEO_HID);
1367 else if (acpi_bay_match(handle))
1368 acpi_add_id(pnp, ACPI_BAY_HID);
1369 else if (acpi_dock_match(handle))
1370 acpi_add_id(pnp, ACPI_DOCK_HID);
1371 else if (acpi_ibm_smbus_match(handle))
1372 acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1373 else if (list_empty(&pnp->ids) &&
1374 acpi_object_is_system_bus(handle)) {
1375 /* \_SB, \_TZ, LNXSYBUS */
1376 acpi_add_id(pnp, ACPI_BUS_HID);
1377 strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1378 strcpy(pnp->device_class, ACPI_BUS_CLASS);
1379 }
1380
1381 break;
1382 case ACPI_BUS_TYPE_POWER:
1383 acpi_add_id(pnp, ACPI_POWER_HID);
1384 break;
1385 case ACPI_BUS_TYPE_PROCESSOR:
1386 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1387 break;
1388 case ACPI_BUS_TYPE_THERMAL:
1389 acpi_add_id(pnp, ACPI_THERMAL_HID);
1390 break;
1391 case ACPI_BUS_TYPE_POWER_BUTTON:
1392 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1393 break;
1394 case ACPI_BUS_TYPE_SLEEP_BUTTON:
1395 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1396 break;
1397 case ACPI_BUS_TYPE_ECDT_EC:
1398 acpi_add_id(pnp, ACPI_ECDT_HID);
1399 break;
1400 }
1401 }
1402
acpi_free_pnp_ids(struct acpi_device_pnp * pnp)1403 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1404 {
1405 struct acpi_hardware_id *id, *tmp;
1406
1407 list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1408 kfree_const(id->id);
1409 kfree(id);
1410 }
1411 kfree(pnp->unique_id);
1412 }
1413
1414 /**
1415 * acpi_dma_supported - Check DMA support for the specified device.
1416 * @adev: The pointer to acpi device
1417 *
1418 * Return false if DMA is not supported. Otherwise, return true
1419 */
acpi_dma_supported(const struct acpi_device * adev)1420 bool acpi_dma_supported(const struct acpi_device *adev)
1421 {
1422 if (!adev)
1423 return false;
1424
1425 if (adev->flags.cca_seen)
1426 return true;
1427
1428 /*
1429 * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1430 * DMA on "Intel platforms". Presumably that includes all x86 and
1431 * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1432 */
1433 if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1434 return true;
1435
1436 return false;
1437 }
1438
1439 /**
1440 * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1441 * @adev: The pointer to acpi device
1442 *
1443 * Return enum dev_dma_attr.
1444 */
acpi_get_dma_attr(struct acpi_device * adev)1445 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1446 {
1447 if (!acpi_dma_supported(adev))
1448 return DEV_DMA_NOT_SUPPORTED;
1449
1450 if (adev->flags.coherent_dma)
1451 return DEV_DMA_COHERENT;
1452 else
1453 return DEV_DMA_NON_COHERENT;
1454 }
1455
1456 /**
1457 * acpi_dma_get_range() - Get device DMA parameters.
1458 *
1459 * @dev: device to configure
1460 * @dma_addr: pointer device DMA address result
1461 * @offset: pointer to the DMA offset result
1462 * @size: pointer to DMA range size result
1463 *
1464 * Evaluate DMA regions and return respectively DMA region start, offset
1465 * and size in dma_addr, offset and size on parsing success; it does not
1466 * update the passed in values on failure.
1467 *
1468 * Return 0 on success, < 0 on failure.
1469 */
acpi_dma_get_range(struct device * dev,u64 * dma_addr,u64 * offset,u64 * size)1470 int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset,
1471 u64 *size)
1472 {
1473 struct acpi_device *adev;
1474 LIST_HEAD(list);
1475 struct resource_entry *rentry;
1476 int ret;
1477 struct device *dma_dev = dev;
1478 u64 len, dma_start = U64_MAX, dma_end = 0, dma_offset = 0;
1479
1480 /*
1481 * Walk the device tree chasing an ACPI companion with a _DMA
1482 * object while we go. Stop if we find a device with an ACPI
1483 * companion containing a _DMA method.
1484 */
1485 do {
1486 adev = ACPI_COMPANION(dma_dev);
1487 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1488 break;
1489
1490 dma_dev = dma_dev->parent;
1491 } while (dma_dev);
1492
1493 if (!dma_dev)
1494 return -ENODEV;
1495
1496 if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1497 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1498 return -EINVAL;
1499 }
1500
1501 ret = acpi_dev_get_dma_resources(adev, &list);
1502 if (ret > 0) {
1503 list_for_each_entry(rentry, &list, node) {
1504 if (dma_offset && rentry->offset != dma_offset) {
1505 ret = -EINVAL;
1506 dev_warn(dma_dev, "Can't handle multiple windows with different offsets\n");
1507 goto out;
1508 }
1509 dma_offset = rentry->offset;
1510
1511 /* Take lower and upper limits */
1512 if (rentry->res->start < dma_start)
1513 dma_start = rentry->res->start;
1514 if (rentry->res->end > dma_end)
1515 dma_end = rentry->res->end;
1516 }
1517
1518 if (dma_start >= dma_end) {
1519 ret = -EINVAL;
1520 dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1521 goto out;
1522 }
1523
1524 *dma_addr = dma_start - dma_offset;
1525 len = dma_end - dma_start;
1526 *size = max(len, len + 1);
1527 *offset = dma_offset;
1528 }
1529 out:
1530 acpi_dev_free_resource_list(&list);
1531
1532 return ret >= 0 ? 0 : ret;
1533 }
1534
1535 #ifdef CONFIG_IOMMU_API
acpi_iommu_fwspec_init(struct device * dev,u32 id,struct fwnode_handle * fwnode,const struct iommu_ops * ops)1536 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1537 struct fwnode_handle *fwnode,
1538 const struct iommu_ops *ops)
1539 {
1540 int ret = iommu_fwspec_init(dev, fwnode, ops);
1541
1542 if (!ret)
1543 ret = iommu_fwspec_add_ids(dev, &id, 1);
1544
1545 return ret;
1546 }
1547
acpi_iommu_fwspec_ops(struct device * dev)1548 static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev)
1549 {
1550 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1551
1552 return fwspec ? fwspec->ops : NULL;
1553 }
1554
acpi_iommu_configure_id(struct device * dev,const u32 * id_in)1555 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1556 const u32 *id_in)
1557 {
1558 int err;
1559 const struct iommu_ops *ops;
1560
1561 /*
1562 * If we already translated the fwspec there is nothing left to do,
1563 * return the iommu_ops.
1564 */
1565 ops = acpi_iommu_fwspec_ops(dev);
1566 if (ops)
1567 return ops;
1568
1569 err = iort_iommu_configure_id(dev, id_in);
1570 if (err && err != -EPROBE_DEFER)
1571 err = viot_iommu_configure(dev);
1572
1573 /*
1574 * If we have reason to believe the IOMMU driver missed the initial
1575 * iommu_probe_device() call for dev, replay it to get things in order.
1576 */
1577 if (!err && dev->bus && !device_iommu_mapped(dev))
1578 err = iommu_probe_device(dev);
1579
1580 /* Ignore all other errors apart from EPROBE_DEFER */
1581 if (err == -EPROBE_DEFER) {
1582 return ERR_PTR(err);
1583 } else if (err) {
1584 dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1585 return NULL;
1586 }
1587 return acpi_iommu_fwspec_ops(dev);
1588 }
1589
1590 #else /* !CONFIG_IOMMU_API */
1591
acpi_iommu_fwspec_init(struct device * dev,u32 id,struct fwnode_handle * fwnode,const struct iommu_ops * ops)1592 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1593 struct fwnode_handle *fwnode,
1594 const struct iommu_ops *ops)
1595 {
1596 return -ENODEV;
1597 }
1598
acpi_iommu_configure_id(struct device * dev,const u32 * id_in)1599 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1600 const u32 *id_in)
1601 {
1602 return NULL;
1603 }
1604
1605 #endif /* !CONFIG_IOMMU_API */
1606
1607 /**
1608 * acpi_dma_configure_id - Set-up DMA configuration for the device.
1609 * @dev: The pointer to the device
1610 * @attr: device dma attributes
1611 * @input_id: input device id const value pointer
1612 */
acpi_dma_configure_id(struct device * dev,enum dev_dma_attr attr,const u32 * input_id)1613 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1614 const u32 *input_id)
1615 {
1616 const struct iommu_ops *iommu;
1617 u64 dma_addr = 0, size = 0;
1618
1619 if (attr == DEV_DMA_NOT_SUPPORTED) {
1620 set_dma_ops(dev, &dma_dummy_ops);
1621 return 0;
1622 }
1623
1624 acpi_arch_dma_setup(dev, &dma_addr, &size);
1625
1626 iommu = acpi_iommu_configure_id(dev, input_id);
1627 if (PTR_ERR(iommu) == -EPROBE_DEFER)
1628 return -EPROBE_DEFER;
1629
1630 arch_setup_dma_ops(dev, dma_addr, size,
1631 iommu, attr == DEV_DMA_COHERENT);
1632
1633 return 0;
1634 }
1635 EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1636
acpi_init_coherency(struct acpi_device * adev)1637 static void acpi_init_coherency(struct acpi_device *adev)
1638 {
1639 unsigned long long cca = 0;
1640 acpi_status status;
1641 struct acpi_device *parent = adev->parent;
1642
1643 if (parent && parent->flags.cca_seen) {
1644 /*
1645 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1646 * already saw one.
1647 */
1648 adev->flags.cca_seen = 1;
1649 cca = parent->flags.coherent_dma;
1650 } else {
1651 status = acpi_evaluate_integer(adev->handle, "_CCA",
1652 NULL, &cca);
1653 if (ACPI_SUCCESS(status))
1654 adev->flags.cca_seen = 1;
1655 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1656 /*
1657 * If architecture does not specify that _CCA is
1658 * required for DMA-able devices (e.g. x86),
1659 * we default to _CCA=1.
1660 */
1661 cca = 1;
1662 else
1663 acpi_handle_debug(adev->handle,
1664 "ACPI device is missing _CCA.\n");
1665 }
1666
1667 adev->flags.coherent_dma = cca;
1668 }
1669
acpi_check_serial_bus_slave(struct acpi_resource * ares,void * data)1670 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1671 {
1672 bool *is_serial_bus_slave_p = data;
1673
1674 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1675 return 1;
1676
1677 *is_serial_bus_slave_p = true;
1678
1679 /* no need to do more checking */
1680 return -1;
1681 }
1682
acpi_is_indirect_io_slave(struct acpi_device * device)1683 static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1684 {
1685 struct acpi_device *parent = device->parent;
1686 static const struct acpi_device_id indirect_io_hosts[] = {
1687 {"HISI0191", 0},
1688 {}
1689 };
1690
1691 return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1692 }
1693
acpi_device_enumeration_by_parent(struct acpi_device * device)1694 static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1695 {
1696 struct list_head resource_list;
1697 bool is_serial_bus_slave = false;
1698 /*
1699 * These devices have multiple I2cSerialBus resources and an i2c-client
1700 * must be instantiated for each, each with its own i2c_device_id.
1701 * Normally we only instantiate an i2c-client for the first resource,
1702 * using the ACPI HID as id. These special cases are handled by the
1703 * drivers/platform/x86/i2c-multi-instantiate.c driver, which knows
1704 * which i2c_device_id to use for each resource.
1705 */
1706 static const struct acpi_device_id i2c_multi_instantiate_ids[] = {
1707 {"BSG1160", },
1708 {"BSG2150", },
1709 {"INT33FE", },
1710 {"INT3515", },
1711 {}
1712 };
1713
1714 if (acpi_is_indirect_io_slave(device))
1715 return true;
1716
1717 /* Macs use device properties in lieu of _CRS resources */
1718 if (x86_apple_machine &&
1719 (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1720 fwnode_property_present(&device->fwnode, "i2cAddress") ||
1721 fwnode_property_present(&device->fwnode, "baud")))
1722 return true;
1723
1724 /* Instantiate a pdev for the i2c-multi-instantiate drv to bind to */
1725 if (!acpi_match_device_ids(device, i2c_multi_instantiate_ids))
1726 return false;
1727
1728 INIT_LIST_HEAD(&resource_list);
1729 acpi_dev_get_resources(device, &resource_list,
1730 acpi_check_serial_bus_slave,
1731 &is_serial_bus_slave);
1732 acpi_dev_free_resource_list(&resource_list);
1733
1734 return is_serial_bus_slave;
1735 }
1736
acpi_init_device_object(struct acpi_device * device,acpi_handle handle,int type)1737 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1738 int type)
1739 {
1740 INIT_LIST_HEAD(&device->pnp.ids);
1741 device->device_type = type;
1742 device->handle = handle;
1743 device->parent = acpi_bus_get_parent(handle);
1744 fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1745 acpi_set_device_status(device, ACPI_STA_DEFAULT);
1746 acpi_device_get_busid(device);
1747 acpi_set_pnp_ids(handle, &device->pnp, type);
1748 acpi_init_properties(device);
1749 acpi_bus_get_flags(device);
1750 device->flags.match_driver = false;
1751 device->flags.initialized = true;
1752 device->flags.enumeration_by_parent =
1753 acpi_device_enumeration_by_parent(device);
1754 acpi_device_clear_enumerated(device);
1755 device_initialize(&device->dev);
1756 dev_set_uevent_suppress(&device->dev, true);
1757 acpi_init_coherency(device);
1758 }
1759
acpi_scan_dep_init(struct acpi_device * adev)1760 static void acpi_scan_dep_init(struct acpi_device *adev)
1761 {
1762 struct acpi_dep_data *dep;
1763
1764 list_for_each_entry(dep, &acpi_dep_list, node) {
1765 if (dep->consumer == adev->handle)
1766 adev->dep_unmet++;
1767 }
1768 }
1769
acpi_device_add_finalize(struct acpi_device * device)1770 void acpi_device_add_finalize(struct acpi_device *device)
1771 {
1772 dev_set_uevent_suppress(&device->dev, false);
1773 kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1774 }
1775
acpi_scan_init_status(struct acpi_device * adev)1776 static void acpi_scan_init_status(struct acpi_device *adev)
1777 {
1778 if (acpi_bus_get_status(adev))
1779 acpi_set_device_status(adev, 0);
1780 }
1781
acpi_add_single_object(struct acpi_device ** child,acpi_handle handle,int type,bool dep_init)1782 static int acpi_add_single_object(struct acpi_device **child,
1783 acpi_handle handle, int type, bool dep_init)
1784 {
1785 struct acpi_device *device;
1786 bool release_dep_lock = false;
1787 int result;
1788
1789 device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1790 if (!device)
1791 return -ENOMEM;
1792
1793 acpi_init_device_object(device, handle, type);
1794 /*
1795 * Getting the status is delayed till here so that we can call
1796 * acpi_bus_get_status() and use its quirk handling. Note that
1797 * this must be done before the get power-/wakeup_dev-flags calls.
1798 */
1799 if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1800 if (dep_init) {
1801 mutex_lock(&acpi_dep_list_lock);
1802 /*
1803 * Hold the lock until the acpi_tie_acpi_dev() call
1804 * below to prevent concurrent acpi_scan_clear_dep()
1805 * from deleting a dependency list entry without
1806 * updating dep_unmet for the device.
1807 */
1808 release_dep_lock = true;
1809 acpi_scan_dep_init(device);
1810 }
1811 acpi_scan_init_status(device);
1812 }
1813
1814 acpi_bus_get_power_flags(device);
1815 acpi_bus_get_wakeup_device_flags(device);
1816
1817 result = acpi_tie_acpi_dev(device);
1818
1819 if (release_dep_lock)
1820 mutex_unlock(&acpi_dep_list_lock);
1821
1822 if (!result)
1823 result = __acpi_device_add(device, acpi_device_release);
1824
1825 if (result) {
1826 acpi_device_release(&device->dev);
1827 return result;
1828 }
1829
1830 acpi_power_add_remove_device(device, true);
1831 acpi_device_add_finalize(device);
1832
1833 acpi_handle_debug(handle, "Added as %s, parent %s\n",
1834 dev_name(&device->dev), device->parent ?
1835 dev_name(&device->parent->dev) : "(null)");
1836
1837 *child = device;
1838 return 0;
1839 }
1840
acpi_get_resource_memory(struct acpi_resource * ares,void * context)1841 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1842 void *context)
1843 {
1844 struct resource *res = context;
1845
1846 if (acpi_dev_resource_memory(ares, res))
1847 return AE_CTRL_TERMINATE;
1848
1849 return AE_OK;
1850 }
1851
acpi_device_should_be_hidden(acpi_handle handle)1852 static bool acpi_device_should_be_hidden(acpi_handle handle)
1853 {
1854 acpi_status status;
1855 struct resource res;
1856
1857 /* Check if it should ignore the UART device */
1858 if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1859 return false;
1860
1861 /*
1862 * The UART device described in SPCR table is assumed to have only one
1863 * memory resource present. So we only look for the first one here.
1864 */
1865 status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1866 acpi_get_resource_memory, &res);
1867 if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1868 return false;
1869
1870 acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1871 &res.start);
1872
1873 return true;
1874 }
1875
acpi_device_is_present(const struct acpi_device * adev)1876 bool acpi_device_is_present(const struct acpi_device *adev)
1877 {
1878 return adev->status.present || adev->status.functional;
1879 }
1880
acpi_scan_handler_matching(struct acpi_scan_handler * handler,const char * idstr,const struct acpi_device_id ** matchid)1881 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1882 const char *idstr,
1883 const struct acpi_device_id **matchid)
1884 {
1885 const struct acpi_device_id *devid;
1886
1887 if (handler->match)
1888 return handler->match(idstr, matchid);
1889
1890 for (devid = handler->ids; devid->id[0]; devid++)
1891 if (!strcmp((char *)devid->id, idstr)) {
1892 if (matchid)
1893 *matchid = devid;
1894
1895 return true;
1896 }
1897
1898 return false;
1899 }
1900
acpi_scan_match_handler(const char * idstr,const struct acpi_device_id ** matchid)1901 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1902 const struct acpi_device_id **matchid)
1903 {
1904 struct acpi_scan_handler *handler;
1905
1906 list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1907 if (acpi_scan_handler_matching(handler, idstr, matchid))
1908 return handler;
1909
1910 return NULL;
1911 }
1912
acpi_scan_hotplug_enabled(struct acpi_hotplug_profile * hotplug,bool val)1913 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1914 {
1915 if (!!hotplug->enabled == !!val)
1916 return;
1917
1918 mutex_lock(&acpi_scan_lock);
1919
1920 hotplug->enabled = val;
1921
1922 mutex_unlock(&acpi_scan_lock);
1923 }
1924
acpi_scan_init_hotplug(struct acpi_device * adev)1925 static void acpi_scan_init_hotplug(struct acpi_device *adev)
1926 {
1927 struct acpi_hardware_id *hwid;
1928
1929 if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
1930 acpi_dock_add(adev);
1931 return;
1932 }
1933 list_for_each_entry(hwid, &adev->pnp.ids, list) {
1934 struct acpi_scan_handler *handler;
1935
1936 handler = acpi_scan_match_handler(hwid->id, NULL);
1937 if (handler) {
1938 adev->flags.hotplug_notify = true;
1939 break;
1940 }
1941 }
1942 }
1943
acpi_scan_check_dep(acpi_handle handle,bool check_dep)1944 static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep)
1945 {
1946 struct acpi_handle_list dep_devices;
1947 acpi_status status;
1948 u32 count;
1949 int i;
1950
1951 /*
1952 * Check for _HID here to avoid deferring the enumeration of:
1953 * 1. PCI devices.
1954 * 2. ACPI nodes describing USB ports.
1955 * Still, checking for _HID catches more then just these cases ...
1956 */
1957 if (!check_dep || !acpi_has_method(handle, "_DEP") ||
1958 !acpi_has_method(handle, "_HID"))
1959 return 0;
1960
1961 status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices);
1962 if (ACPI_FAILURE(status)) {
1963 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
1964 return 0;
1965 }
1966
1967 for (count = 0, i = 0; i < dep_devices.count; i++) {
1968 struct acpi_device_info *info;
1969 struct acpi_dep_data *dep;
1970 bool skip;
1971
1972 status = acpi_get_object_info(dep_devices.handles[i], &info);
1973 if (ACPI_FAILURE(status)) {
1974 acpi_handle_debug(handle, "Error reading _DEP device info\n");
1975 continue;
1976 }
1977
1978 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
1979 kfree(info);
1980
1981 if (skip)
1982 continue;
1983
1984 dep = kzalloc(sizeof(*dep), GFP_KERNEL);
1985 if (!dep)
1986 continue;
1987
1988 count++;
1989
1990 dep->supplier = dep_devices.handles[i];
1991 dep->consumer = handle;
1992
1993 mutex_lock(&acpi_dep_list_lock);
1994 list_add_tail(&dep->node , &acpi_dep_list);
1995 mutex_unlock(&acpi_dep_list_lock);
1996 }
1997
1998 return count;
1999 }
2000
2001 static bool acpi_bus_scan_second_pass;
2002
acpi_bus_check_add(acpi_handle handle,bool check_dep,struct acpi_device ** adev_p)2003 static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep,
2004 struct acpi_device **adev_p)
2005 {
2006 struct acpi_device *device = NULL;
2007 acpi_object_type acpi_type;
2008 int type;
2009
2010 acpi_bus_get_device(handle, &device);
2011 if (device)
2012 goto out;
2013
2014 if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2015 return AE_OK;
2016
2017 switch (acpi_type) {
2018 case ACPI_TYPE_DEVICE:
2019 if (acpi_device_should_be_hidden(handle))
2020 return AE_OK;
2021
2022 /* Bail out if there are dependencies. */
2023 if (acpi_scan_check_dep(handle, check_dep) > 0) {
2024 acpi_bus_scan_second_pass = true;
2025 return AE_CTRL_DEPTH;
2026 }
2027
2028 fallthrough;
2029 case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */
2030 type = ACPI_BUS_TYPE_DEVICE;
2031 break;
2032
2033 case ACPI_TYPE_PROCESSOR:
2034 type = ACPI_BUS_TYPE_PROCESSOR;
2035 break;
2036
2037 case ACPI_TYPE_THERMAL:
2038 type = ACPI_BUS_TYPE_THERMAL;
2039 break;
2040
2041 case ACPI_TYPE_POWER:
2042 acpi_add_power_resource(handle);
2043 fallthrough;
2044 default:
2045 return AE_OK;
2046 }
2047
2048 /*
2049 * If check_dep is true at this point, the device has no dependencies,
2050 * or the creation of the device object would have been postponed above.
2051 */
2052 acpi_add_single_object(&device, handle, type, !check_dep);
2053 if (!device)
2054 return AE_CTRL_DEPTH;
2055
2056 acpi_scan_init_hotplug(device);
2057
2058 out:
2059 if (!*adev_p)
2060 *adev_p = device;
2061
2062 return AE_OK;
2063 }
2064
acpi_bus_check_add_1(acpi_handle handle,u32 lvl_not_used,void * not_used,void ** ret_p)2065 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2066 void *not_used, void **ret_p)
2067 {
2068 return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2069 }
2070
acpi_bus_check_add_2(acpi_handle handle,u32 lvl_not_used,void * not_used,void ** ret_p)2071 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2072 void *not_used, void **ret_p)
2073 {
2074 return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2075 }
2076
acpi_default_enumeration(struct acpi_device * device)2077 static void acpi_default_enumeration(struct acpi_device *device)
2078 {
2079 /*
2080 * Do not enumerate devices with enumeration_by_parent flag set as
2081 * they will be enumerated by their respective parents.
2082 */
2083 if (!device->flags.enumeration_by_parent) {
2084 acpi_create_platform_device(device, NULL);
2085 acpi_device_set_enumerated(device);
2086 } else {
2087 blocking_notifier_call_chain(&acpi_reconfig_chain,
2088 ACPI_RECONFIG_DEVICE_ADD, device);
2089 }
2090 }
2091
2092 static const struct acpi_device_id generic_device_ids[] = {
2093 {ACPI_DT_NAMESPACE_HID, },
2094 {"", },
2095 };
2096
acpi_generic_device_attach(struct acpi_device * adev,const struct acpi_device_id * not_used)2097 static int acpi_generic_device_attach(struct acpi_device *adev,
2098 const struct acpi_device_id *not_used)
2099 {
2100 /*
2101 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2102 * below can be unconditional.
2103 */
2104 if (adev->data.of_compatible)
2105 acpi_default_enumeration(adev);
2106
2107 return 1;
2108 }
2109
2110 static struct acpi_scan_handler generic_device_handler = {
2111 .ids = generic_device_ids,
2112 .attach = acpi_generic_device_attach,
2113 };
2114
acpi_scan_attach_handler(struct acpi_device * device)2115 static int acpi_scan_attach_handler(struct acpi_device *device)
2116 {
2117 struct acpi_hardware_id *hwid;
2118 int ret = 0;
2119
2120 list_for_each_entry(hwid, &device->pnp.ids, list) {
2121 const struct acpi_device_id *devid;
2122 struct acpi_scan_handler *handler;
2123
2124 handler = acpi_scan_match_handler(hwid->id, &devid);
2125 if (handler) {
2126 if (!handler->attach) {
2127 device->pnp.type.platform_id = 0;
2128 continue;
2129 }
2130 device->handler = handler;
2131 ret = handler->attach(device, devid);
2132 if (ret > 0)
2133 break;
2134
2135 device->handler = NULL;
2136 if (ret < 0)
2137 break;
2138 }
2139 }
2140
2141 return ret;
2142 }
2143
acpi_bus_attach(struct acpi_device * device,bool first_pass)2144 static void acpi_bus_attach(struct acpi_device *device, bool first_pass)
2145 {
2146 struct acpi_device *child;
2147 bool skip = !first_pass && device->flags.visited;
2148 acpi_handle ejd;
2149 int ret;
2150
2151 if (skip)
2152 goto ok;
2153
2154 if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2155 register_dock_dependent_device(device, ejd);
2156
2157 acpi_bus_get_status(device);
2158 /* Skip devices that are not present. */
2159 if (!acpi_device_is_present(device)) {
2160 device->flags.initialized = false;
2161 acpi_device_clear_enumerated(device);
2162 device->flags.power_manageable = 0;
2163 return;
2164 }
2165 if (device->handler)
2166 goto ok;
2167
2168 if (!device->flags.initialized) {
2169 device->flags.power_manageable =
2170 device->power.states[ACPI_STATE_D0].flags.valid;
2171 if (acpi_bus_init_power(device))
2172 device->flags.power_manageable = 0;
2173
2174 device->flags.initialized = true;
2175 } else if (device->flags.visited) {
2176 goto ok;
2177 }
2178
2179 ret = acpi_scan_attach_handler(device);
2180 if (ret < 0)
2181 return;
2182
2183 device->flags.match_driver = true;
2184 if (ret > 0 && !device->flags.enumeration_by_parent) {
2185 acpi_device_set_enumerated(device);
2186 goto ok;
2187 }
2188
2189 ret = device_attach(&device->dev);
2190 if (ret < 0)
2191 return;
2192
2193 if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2194 acpi_default_enumeration(device);
2195 else
2196 acpi_device_set_enumerated(device);
2197
2198 ok:
2199 list_for_each_entry(child, &device->children, node)
2200 acpi_bus_attach(child, first_pass);
2201
2202 if (!skip && device->handler && device->handler->hotplug.notify_online)
2203 device->handler->hotplug.notify_online(device);
2204 }
2205
acpi_dev_get_first_consumer_dev_cb(struct acpi_dep_data * dep,void * data)2206 static int acpi_dev_get_first_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2207 {
2208 struct acpi_device *adev;
2209
2210 adev = acpi_bus_get_acpi_device(dep->consumer);
2211 if (adev) {
2212 *(struct acpi_device **)data = adev;
2213 return 1;
2214 }
2215 /* Continue parsing if the device object is not present. */
2216 return 0;
2217 }
2218
2219 struct acpi_scan_clear_dep_work {
2220 struct work_struct work;
2221 struct acpi_device *adev;
2222 };
2223
acpi_scan_clear_dep_fn(struct work_struct * work)2224 static void acpi_scan_clear_dep_fn(struct work_struct *work)
2225 {
2226 struct acpi_scan_clear_dep_work *cdw;
2227
2228 cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2229
2230 acpi_scan_lock_acquire();
2231 acpi_bus_attach(cdw->adev, true);
2232 acpi_scan_lock_release();
2233
2234 acpi_dev_put(cdw->adev);
2235 kfree(cdw);
2236 }
2237
acpi_scan_clear_dep_queue(struct acpi_device * adev)2238 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2239 {
2240 struct acpi_scan_clear_dep_work *cdw;
2241
2242 if (adev->dep_unmet)
2243 return false;
2244
2245 cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2246 if (!cdw)
2247 return false;
2248
2249 cdw->adev = adev;
2250 INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2251 /*
2252 * Since the work function may block on the lock until the entire
2253 * initial enumeration of devices is complete, put it into the unbound
2254 * workqueue.
2255 */
2256 queue_work(system_unbound_wq, &cdw->work);
2257
2258 return true;
2259 }
2260
acpi_scan_clear_dep(struct acpi_dep_data * dep,void * data)2261 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2262 {
2263 struct acpi_device *adev = acpi_bus_get_acpi_device(dep->consumer);
2264
2265 if (adev) {
2266 adev->dep_unmet--;
2267 if (!acpi_scan_clear_dep_queue(adev))
2268 acpi_dev_put(adev);
2269 }
2270
2271 list_del(&dep->node);
2272 kfree(dep);
2273
2274 return 0;
2275 }
2276
2277 /**
2278 * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2279 * @handle: The ACPI handle of the supplier device
2280 * @callback: Pointer to the callback function to apply
2281 * @data: Pointer to some data to pass to the callback
2282 *
2283 * The return value of the callback determines this function's behaviour. If 0
2284 * is returned we continue to iterate over acpi_dep_list. If a positive value
2285 * is returned then the loop is broken but this function returns 0. If a
2286 * negative value is returned by the callback then the loop is broken and that
2287 * value is returned as the final error.
2288 */
acpi_walk_dep_device_list(acpi_handle handle,int (* callback)(struct acpi_dep_data *,void *),void * data)2289 static int acpi_walk_dep_device_list(acpi_handle handle,
2290 int (*callback)(struct acpi_dep_data *, void *),
2291 void *data)
2292 {
2293 struct acpi_dep_data *dep, *tmp;
2294 int ret = 0;
2295
2296 mutex_lock(&acpi_dep_list_lock);
2297 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2298 if (dep->supplier == handle) {
2299 ret = callback(dep, data);
2300 if (ret)
2301 break;
2302 }
2303 }
2304 mutex_unlock(&acpi_dep_list_lock);
2305
2306 return ret > 0 ? 0 : ret;
2307 }
2308
2309 /**
2310 * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2311 * @supplier: Pointer to the supplier &struct acpi_device
2312 *
2313 * Clear dependencies on the given device.
2314 */
acpi_dev_clear_dependencies(struct acpi_device * supplier)2315 void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2316 {
2317 acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2318 }
2319 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2320
2321 /**
2322 * acpi_dev_get_first_consumer_dev - Return ACPI device dependent on @supplier
2323 * @supplier: Pointer to the dependee device
2324 *
2325 * Returns the first &struct acpi_device which declares itself dependent on
2326 * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2327 *
2328 * The caller is responsible for putting the reference to adev when it is no
2329 * longer needed.
2330 */
acpi_dev_get_first_consumer_dev(struct acpi_device * supplier)2331 struct acpi_device *acpi_dev_get_first_consumer_dev(struct acpi_device *supplier)
2332 {
2333 struct acpi_device *adev = NULL;
2334
2335 acpi_walk_dep_device_list(supplier->handle,
2336 acpi_dev_get_first_consumer_dev_cb, &adev);
2337
2338 return adev;
2339 }
2340 EXPORT_SYMBOL_GPL(acpi_dev_get_first_consumer_dev);
2341
2342 /**
2343 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2344 * @handle: Root of the namespace scope to scan.
2345 *
2346 * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2347 * found devices.
2348 *
2349 * If no devices were found, -ENODEV is returned, but it does not mean that
2350 * there has been a real error. There just have been no suitable ACPI objects
2351 * in the table trunk from which the kernel could create a device and add an
2352 * appropriate driver.
2353 *
2354 * Must be called under acpi_scan_lock.
2355 */
acpi_bus_scan(acpi_handle handle)2356 int acpi_bus_scan(acpi_handle handle)
2357 {
2358 struct acpi_device *device = NULL;
2359
2360 acpi_bus_scan_second_pass = false;
2361
2362 /* Pass 1: Avoid enumerating devices with missing dependencies. */
2363
2364 if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2365 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2366 acpi_bus_check_add_1, NULL, NULL,
2367 (void **)&device);
2368
2369 if (!device)
2370 return -ENODEV;
2371
2372 acpi_bus_attach(device, true);
2373
2374 if (!acpi_bus_scan_second_pass)
2375 return 0;
2376
2377 /* Pass 2: Enumerate all of the remaining devices. */
2378
2379 device = NULL;
2380
2381 if (ACPI_SUCCESS(acpi_bus_check_add(handle, false, &device)))
2382 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2383 acpi_bus_check_add_2, NULL, NULL,
2384 (void **)&device);
2385
2386 acpi_bus_attach(device, false);
2387
2388 return 0;
2389 }
2390 EXPORT_SYMBOL(acpi_bus_scan);
2391
2392 /**
2393 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2394 * @adev: Root of the ACPI namespace scope to walk.
2395 *
2396 * Must be called under acpi_scan_lock.
2397 */
acpi_bus_trim(struct acpi_device * adev)2398 void acpi_bus_trim(struct acpi_device *adev)
2399 {
2400 struct acpi_scan_handler *handler = adev->handler;
2401 struct acpi_device *child;
2402
2403 list_for_each_entry_reverse(child, &adev->children, node)
2404 acpi_bus_trim(child);
2405
2406 adev->flags.match_driver = false;
2407 if (handler) {
2408 if (handler->detach)
2409 handler->detach(adev);
2410
2411 adev->handler = NULL;
2412 } else {
2413 device_release_driver(&adev->dev);
2414 }
2415 /*
2416 * Most likely, the device is going away, so put it into D3cold before
2417 * that.
2418 */
2419 acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
2420 adev->flags.initialized = false;
2421 acpi_device_clear_enumerated(adev);
2422 }
2423 EXPORT_SYMBOL_GPL(acpi_bus_trim);
2424
acpi_bus_register_early_device(int type)2425 int acpi_bus_register_early_device(int type)
2426 {
2427 struct acpi_device *device = NULL;
2428 int result;
2429
2430 result = acpi_add_single_object(&device, NULL, type, false);
2431 if (result)
2432 return result;
2433
2434 device->flags.match_driver = true;
2435 return device_attach(&device->dev);
2436 }
2437 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2438
acpi_bus_scan_fixed(void)2439 static int acpi_bus_scan_fixed(void)
2440 {
2441 int result = 0;
2442
2443 /*
2444 * Enumerate all fixed-feature devices.
2445 */
2446 if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2447 struct acpi_device *device = NULL;
2448
2449 result = acpi_add_single_object(&device, NULL,
2450 ACPI_BUS_TYPE_POWER_BUTTON, false);
2451 if (result)
2452 return result;
2453
2454 device->flags.match_driver = true;
2455 result = device_attach(&device->dev);
2456 if (result < 0)
2457 return result;
2458
2459 device_init_wakeup(&device->dev, true);
2460 }
2461
2462 if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2463 struct acpi_device *device = NULL;
2464
2465 result = acpi_add_single_object(&device, NULL,
2466 ACPI_BUS_TYPE_SLEEP_BUTTON, false);
2467 if (result)
2468 return result;
2469
2470 device->flags.match_driver = true;
2471 result = device_attach(&device->dev);
2472 }
2473
2474 return result < 0 ? result : 0;
2475 }
2476
acpi_get_spcr_uart_addr(void)2477 static void __init acpi_get_spcr_uart_addr(void)
2478 {
2479 acpi_status status;
2480 struct acpi_table_spcr *spcr_ptr;
2481
2482 status = acpi_get_table(ACPI_SIG_SPCR, 0,
2483 (struct acpi_table_header **)&spcr_ptr);
2484 if (ACPI_FAILURE(status)) {
2485 pr_warn("STAO table present, but SPCR is missing\n");
2486 return;
2487 }
2488
2489 spcr_uart_addr = spcr_ptr->serial_port.address;
2490 acpi_put_table((struct acpi_table_header *)spcr_ptr);
2491 }
2492
2493 static bool acpi_scan_initialized;
2494
acpi_scan_init(void)2495 int __init acpi_scan_init(void)
2496 {
2497 int result;
2498 acpi_status status;
2499 struct acpi_table_stao *stao_ptr;
2500
2501 acpi_pci_root_init();
2502 acpi_pci_link_init();
2503 acpi_processor_init();
2504 acpi_platform_init();
2505 acpi_lpss_init();
2506 acpi_apd_init();
2507 acpi_cmos_rtc_init();
2508 acpi_container_init();
2509 acpi_memory_hotplug_init();
2510 acpi_watchdog_init();
2511 acpi_pnp_init();
2512 acpi_int340x_thermal_init();
2513 acpi_amba_init();
2514 acpi_init_lpit();
2515
2516 acpi_scan_add_handler(&generic_device_handler);
2517
2518 /*
2519 * If there is STAO table, check whether it needs to ignore the UART
2520 * device in SPCR table.
2521 */
2522 status = acpi_get_table(ACPI_SIG_STAO, 0,
2523 (struct acpi_table_header **)&stao_ptr);
2524 if (ACPI_SUCCESS(status)) {
2525 if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2526 pr_info("STAO Name List not yet supported.\n");
2527
2528 if (stao_ptr->ignore_uart)
2529 acpi_get_spcr_uart_addr();
2530
2531 acpi_put_table((struct acpi_table_header *)stao_ptr);
2532 }
2533
2534 acpi_gpe_apply_masked_gpes();
2535 acpi_update_all_gpes();
2536
2537 /*
2538 * Although we call __add_memory() that is documented to require the
2539 * device_hotplug_lock, it is not necessary here because this is an
2540 * early code when userspace or any other code path cannot trigger
2541 * hotplug/hotunplug operations.
2542 */
2543 mutex_lock(&acpi_scan_lock);
2544 /*
2545 * Enumerate devices in the ACPI namespace.
2546 */
2547 result = acpi_bus_scan(ACPI_ROOT_OBJECT);
2548 if (result)
2549 goto out;
2550
2551 result = acpi_bus_get_device(ACPI_ROOT_OBJECT, &acpi_root);
2552 if (result)
2553 goto out;
2554
2555 /* Fixed feature devices do not exist on HW-reduced platform */
2556 if (!acpi_gbl_reduced_hardware) {
2557 result = acpi_bus_scan_fixed();
2558 if (result) {
2559 acpi_detach_data(acpi_root->handle,
2560 acpi_scan_drop_device);
2561 acpi_device_del(acpi_root);
2562 acpi_bus_put_acpi_device(acpi_root);
2563 goto out;
2564 }
2565 }
2566
2567 acpi_turn_off_unused_power_resources();
2568
2569 acpi_scan_initialized = true;
2570
2571 out:
2572 mutex_unlock(&acpi_scan_lock);
2573 return result;
2574 }
2575
2576 static struct acpi_probe_entry *ape;
2577 static int acpi_probe_count;
2578 static DEFINE_MUTEX(acpi_probe_mutex);
2579
acpi_match_madt(union acpi_subtable_headers * header,const unsigned long end)2580 static int __init acpi_match_madt(union acpi_subtable_headers *header,
2581 const unsigned long end)
2582 {
2583 if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2584 if (!ape->probe_subtbl(header, end))
2585 acpi_probe_count++;
2586
2587 return 0;
2588 }
2589
__acpi_probe_device_table(struct acpi_probe_entry * ap_head,int nr)2590 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2591 {
2592 int count = 0;
2593
2594 if (acpi_disabled)
2595 return 0;
2596
2597 mutex_lock(&acpi_probe_mutex);
2598 for (ape = ap_head; nr; ape++, nr--) {
2599 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2600 acpi_probe_count = 0;
2601 acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2602 count += acpi_probe_count;
2603 } else {
2604 int res;
2605 res = acpi_table_parse(ape->id, ape->probe_table);
2606 if (!res)
2607 count++;
2608 }
2609 }
2610 mutex_unlock(&acpi_probe_mutex);
2611
2612 return count;
2613 }
2614
acpi_table_events_fn(struct work_struct * work)2615 static void acpi_table_events_fn(struct work_struct *work)
2616 {
2617 acpi_scan_lock_acquire();
2618 acpi_bus_scan(ACPI_ROOT_OBJECT);
2619 acpi_scan_lock_release();
2620
2621 kfree(work);
2622 }
2623
acpi_scan_table_notify(void)2624 void acpi_scan_table_notify(void)
2625 {
2626 struct work_struct *work;
2627
2628 if (!acpi_scan_initialized)
2629 return;
2630
2631 work = kmalloc(sizeof(*work), GFP_KERNEL);
2632 if (!work)
2633 return;
2634
2635 INIT_WORK(work, acpi_table_events_fn);
2636 schedule_work(work);
2637 }
2638
acpi_reconfig_notifier_register(struct notifier_block * nb)2639 int acpi_reconfig_notifier_register(struct notifier_block *nb)
2640 {
2641 return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2642 }
2643 EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2644
acpi_reconfig_notifier_unregister(struct notifier_block * nb)2645 int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2646 {
2647 return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2648 }
2649 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);
2650