1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * ADXL372 3-Axis Digital Accelerometer core driver
4  *
5  * Copyright 2018 Analog Devices Inc.
6  */
7 
8 #include <linux/bitfield.h>
9 #include <linux/bitops.h>
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/module.h>
13 #include <linux/regmap.h>
14 #include <linux/spi/spi.h>
15 
16 #include <linux/iio/iio.h>
17 #include <linux/iio/sysfs.h>
18 #include <linux/iio/buffer.h>
19 #include <linux/iio/events.h>
20 #include <linux/iio/trigger.h>
21 #include <linux/iio/trigger_consumer.h>
22 #include <linux/iio/triggered_buffer.h>
23 
24 #include "adxl372.h"
25 
26 /* ADXL372 registers definition */
27 #define ADXL372_DEVID			0x00
28 #define ADXL372_DEVID_MST		0x01
29 #define ADXL372_PARTID			0x02
30 #define ADXL372_STATUS_1		0x04
31 #define ADXL372_STATUS_2		0x05
32 #define ADXL372_FIFO_ENTRIES_2		0x06
33 #define ADXL372_FIFO_ENTRIES_1		0x07
34 #define ADXL372_X_DATA_H		0x08
35 #define ADXL372_X_DATA_L		0x09
36 #define ADXL372_Y_DATA_H		0x0A
37 #define ADXL372_Y_DATA_L		0x0B
38 #define ADXL372_Z_DATA_H		0x0C
39 #define ADXL372_Z_DATA_L		0x0D
40 #define ADXL372_X_MAXPEAK_H		0x15
41 #define ADXL372_X_MAXPEAK_L		0x16
42 #define ADXL372_Y_MAXPEAK_H		0x17
43 #define ADXL372_Y_MAXPEAK_L		0x18
44 #define ADXL372_Z_MAXPEAK_H		0x19
45 #define ADXL372_Z_MAXPEAK_L		0x1A
46 #define ADXL372_OFFSET_X		0x20
47 #define ADXL372_OFFSET_Y		0x21
48 #define ADXL372_OFFSET_Z		0x22
49 #define ADXL372_X_THRESH_ACT_H		0x23
50 #define ADXL372_X_THRESH_ACT_L		0x24
51 #define ADXL372_Y_THRESH_ACT_H		0x25
52 #define ADXL372_Y_THRESH_ACT_L		0x26
53 #define ADXL372_Z_THRESH_ACT_H		0x27
54 #define ADXL372_Z_THRESH_ACT_L		0x28
55 #define ADXL372_TIME_ACT		0x29
56 #define ADXL372_X_THRESH_INACT_H	0x2A
57 #define ADXL372_X_THRESH_INACT_L	0x2B
58 #define ADXL372_Y_THRESH_INACT_H	0x2C
59 #define ADXL372_Y_THRESH_INACT_L	0x2D
60 #define ADXL372_Z_THRESH_INACT_H	0x2E
61 #define ADXL372_Z_THRESH_INACT_L	0x2F
62 #define ADXL372_TIME_INACT_H		0x30
63 #define ADXL372_TIME_INACT_L		0x31
64 #define ADXL372_X_THRESH_ACT2_H		0x32
65 #define ADXL372_X_THRESH_ACT2_L		0x33
66 #define ADXL372_Y_THRESH_ACT2_H		0x34
67 #define ADXL372_Y_THRESH_ACT2_L		0x35
68 #define ADXL372_Z_THRESH_ACT2_H		0x36
69 #define ADXL372_Z_THRESH_ACT2_L		0x37
70 #define ADXL372_HPF			0x38
71 #define ADXL372_FIFO_SAMPLES		0x39
72 #define ADXL372_FIFO_CTL		0x3A
73 #define ADXL372_INT1_MAP		0x3B
74 #define ADXL372_INT2_MAP		0x3C
75 #define ADXL372_TIMING			0x3D
76 #define ADXL372_MEASURE			0x3E
77 #define ADXL372_POWER_CTL		0x3F
78 #define ADXL372_SELF_TEST		0x40
79 #define ADXL372_RESET			0x41
80 #define ADXL372_FIFO_DATA		0x42
81 
82 #define ADXL372_DEVID_VAL		0xAD
83 #define ADXL372_PARTID_VAL		0xFA
84 #define ADXL372_RESET_CODE		0x52
85 
86 /* ADXL372_POWER_CTL */
87 #define ADXL372_POWER_CTL_MODE_MSK		GENMASK_ULL(1, 0)
88 #define ADXL372_POWER_CTL_MODE(x)		(((x) & 0x3) << 0)
89 
90 /* ADXL372_MEASURE */
91 #define ADXL372_MEASURE_LINKLOOP_MSK		GENMASK_ULL(5, 4)
92 #define ADXL372_MEASURE_LINKLOOP_MODE(x)	(((x) & 0x3) << 4)
93 #define ADXL372_MEASURE_BANDWIDTH_MSK		GENMASK_ULL(2, 0)
94 #define ADXL372_MEASURE_BANDWIDTH_MODE(x)	(((x) & 0x7) << 0)
95 
96 /* ADXL372_TIMING */
97 #define ADXL372_TIMING_ODR_MSK			GENMASK_ULL(7, 5)
98 #define ADXL372_TIMING_ODR_MODE(x)		(((x) & 0x7) << 5)
99 
100 /* ADXL372_FIFO_CTL */
101 #define ADXL372_FIFO_CTL_FORMAT_MSK		GENMASK(5, 3)
102 #define ADXL372_FIFO_CTL_FORMAT_MODE(x)		(((x) & 0x7) << 3)
103 #define ADXL372_FIFO_CTL_MODE_MSK		GENMASK(2, 1)
104 #define ADXL372_FIFO_CTL_MODE_MODE(x)		(((x) & 0x3) << 1)
105 #define ADXL372_FIFO_CTL_SAMPLES_MSK		BIT(1)
106 #define ADXL372_FIFO_CTL_SAMPLES_MODE(x)	(((x) > 0xFF) ? 1 : 0)
107 
108 /* ADXL372_STATUS_1 */
109 #define ADXL372_STATUS_1_DATA_RDY(x)		(((x) >> 0) & 0x1)
110 #define ADXL372_STATUS_1_FIFO_RDY(x)		(((x) >> 1) & 0x1)
111 #define ADXL372_STATUS_1_FIFO_FULL(x)		(((x) >> 2) & 0x1)
112 #define ADXL372_STATUS_1_FIFO_OVR(x)		(((x) >> 3) & 0x1)
113 #define ADXL372_STATUS_1_USR_NVM_BUSY(x)	(((x) >> 5) & 0x1)
114 #define ADXL372_STATUS_1_AWAKE(x)		(((x) >> 6) & 0x1)
115 #define ADXL372_STATUS_1_ERR_USR_REGS(x)	(((x) >> 7) & 0x1)
116 
117 /* ADXL372_STATUS_2 */
118 #define ADXL372_STATUS_2_INACT(x)		(((x) >> 4) & 0x1)
119 #define ADXL372_STATUS_2_ACT(x)			(((x) >> 5) & 0x1)
120 #define ADXL372_STATUS_2_AC2(x)			(((x) >> 6) & 0x1)
121 
122 /* ADXL372_INT1_MAP */
123 #define ADXL372_INT1_MAP_DATA_RDY_MSK		BIT(0)
124 #define ADXL372_INT1_MAP_DATA_RDY_MODE(x)	(((x) & 0x1) << 0)
125 #define ADXL372_INT1_MAP_FIFO_RDY_MSK		BIT(1)
126 #define ADXL372_INT1_MAP_FIFO_RDY_MODE(x)	(((x) & 0x1) << 1)
127 #define ADXL372_INT1_MAP_FIFO_FULL_MSK		BIT(2)
128 #define ADXL372_INT1_MAP_FIFO_FULL_MODE(x)	(((x) & 0x1) << 2)
129 #define ADXL372_INT1_MAP_FIFO_OVR_MSK		BIT(3)
130 #define ADXL372_INT1_MAP_FIFO_OVR_MODE(x)	(((x) & 0x1) << 3)
131 #define ADXL372_INT1_MAP_INACT_MSK		BIT(4)
132 #define ADXL372_INT1_MAP_INACT_MODE(x)		(((x) & 0x1) << 4)
133 #define ADXL372_INT1_MAP_ACT_MSK		BIT(5)
134 #define ADXL372_INT1_MAP_ACT_MODE(x)		(((x) & 0x1) << 5)
135 #define ADXL372_INT1_MAP_AWAKE_MSK		BIT(6)
136 #define ADXL372_INT1_MAP_AWAKE_MODE(x)		(((x) & 0x1) << 6)
137 #define ADXL372_INT1_MAP_LOW_MSK		BIT(7)
138 #define ADXL372_INT1_MAP_LOW_MODE(x)		(((x) & 0x1) << 7)
139 
140 /* ADX372_THRESH */
141 #define ADXL372_THRESH_VAL_H_MSK	GENMASK(10, 3)
142 #define ADXL372_THRESH_VAL_H_SEL(x)	FIELD_GET(ADXL372_THRESH_VAL_H_MSK, x)
143 #define ADXL372_THRESH_VAL_L_MSK	GENMASK(2, 0)
144 #define ADXL372_THRESH_VAL_L_SEL(x)	FIELD_GET(ADXL372_THRESH_VAL_L_MSK, x)
145 
146 /* The ADXL372 includes a deep, 512 sample FIFO buffer */
147 #define ADXL372_FIFO_SIZE			512
148 #define ADXL372_X_AXIS_EN(x)			((x) & BIT(0))
149 #define ADXL372_Y_AXIS_EN(x)			((x) & BIT(1))
150 #define ADXL372_Z_AXIS_EN(x)			((x) & BIT(2))
151 
152 /*
153  * At +/- 200g with 12-bit resolution, scale is computed as:
154  * (200 + 200) * 9.81 / (2^12 - 1) = 0.958241
155  */
156 #define ADXL372_USCALE	958241
157 
158 enum adxl372_op_mode {
159 	ADXL372_STANDBY,
160 	ADXL372_WAKE_UP,
161 	ADXL372_INSTANT_ON,
162 	ADXL372_FULL_BW_MEASUREMENT,
163 };
164 
165 enum adxl372_act_proc_mode {
166 	ADXL372_DEFAULT,
167 	ADXL372_LINKED,
168 	ADXL372_LOOPED,
169 };
170 
171 enum adxl372_th_activity {
172 	ADXL372_ACTIVITY,
173 	ADXL372_ACTIVITY2,
174 	ADXL372_INACTIVITY,
175 };
176 
177 enum adxl372_odr {
178 	ADXL372_ODR_400HZ,
179 	ADXL372_ODR_800HZ,
180 	ADXL372_ODR_1600HZ,
181 	ADXL372_ODR_3200HZ,
182 	ADXL372_ODR_6400HZ,
183 };
184 
185 enum adxl372_bandwidth {
186 	ADXL372_BW_200HZ,
187 	ADXL372_BW_400HZ,
188 	ADXL372_BW_800HZ,
189 	ADXL372_BW_1600HZ,
190 	ADXL372_BW_3200HZ,
191 };
192 
193 static const unsigned int adxl372_th_reg_high_addr[3] = {
194 	[ADXL372_ACTIVITY] = ADXL372_X_THRESH_ACT_H,
195 	[ADXL372_ACTIVITY2] = ADXL372_X_THRESH_ACT2_H,
196 	[ADXL372_INACTIVITY] = ADXL372_X_THRESH_INACT_H,
197 };
198 
199 enum adxl372_fifo_format {
200 	ADXL372_XYZ_FIFO,
201 	ADXL372_X_FIFO,
202 	ADXL372_Y_FIFO,
203 	ADXL372_XY_FIFO,
204 	ADXL372_Z_FIFO,
205 	ADXL372_XZ_FIFO,
206 	ADXL372_YZ_FIFO,
207 	ADXL372_XYZ_PEAK_FIFO,
208 };
209 
210 enum adxl372_fifo_mode {
211 	ADXL372_FIFO_BYPASSED,
212 	ADXL372_FIFO_STREAMED,
213 	ADXL372_FIFO_TRIGGERED,
214 	ADXL372_FIFO_OLD_SAVED
215 };
216 
217 static const int adxl372_samp_freq_tbl[5] = {
218 	400, 800, 1600, 3200, 6400,
219 };
220 
221 static const int adxl372_bw_freq_tbl[5] = {
222 	200, 400, 800, 1600, 3200,
223 };
224 
225 struct adxl372_axis_lookup {
226 	unsigned int bits;
227 	enum adxl372_fifo_format fifo_format;
228 };
229 
230 static const struct adxl372_axis_lookup adxl372_axis_lookup_table[] = {
231 	{ BIT(0), ADXL372_X_FIFO },
232 	{ BIT(1), ADXL372_Y_FIFO },
233 	{ BIT(2), ADXL372_Z_FIFO },
234 	{ BIT(0) | BIT(1), ADXL372_XY_FIFO },
235 	{ BIT(0) | BIT(2), ADXL372_XZ_FIFO },
236 	{ BIT(1) | BIT(2), ADXL372_YZ_FIFO },
237 	{ BIT(0) | BIT(1) | BIT(2), ADXL372_XYZ_FIFO },
238 };
239 
240 static const struct iio_event_spec adxl372_events[] = {
241 	{
242 		.type = IIO_EV_TYPE_THRESH,
243 		.dir = IIO_EV_DIR_RISING,
244 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
245 		.mask_shared_by_all = BIT(IIO_EV_INFO_PERIOD) | BIT(IIO_EV_INFO_ENABLE),
246 	}, {
247 		.type = IIO_EV_TYPE_THRESH,
248 		.dir = IIO_EV_DIR_FALLING,
249 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
250 		.mask_shared_by_all = BIT(IIO_EV_INFO_PERIOD) | BIT(IIO_EV_INFO_ENABLE),
251 	},
252 };
253 
254 #define ADXL372_ACCEL_CHANNEL(index, reg, axis) {			\
255 	.type = IIO_ACCEL,						\
256 	.address = reg,							\
257 	.modified = 1,							\
258 	.channel2 = IIO_MOD_##axis,					\
259 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
260 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
261 				    BIT(IIO_CHAN_INFO_SAMP_FREQ) |	\
262 		BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),	\
263 	.scan_index = index,						\
264 	.scan_type = {							\
265 		.sign = 's',						\
266 		.realbits = 12,						\
267 		.storagebits = 16,					\
268 		.shift = 4,						\
269 		.endianness = IIO_BE,					\
270 	},								\
271 	.event_spec = adxl372_events,					\
272 	.num_event_specs = ARRAY_SIZE(adxl372_events)			\
273 }
274 
275 static const struct iio_chan_spec adxl372_channels[] = {
276 	ADXL372_ACCEL_CHANNEL(0, ADXL372_X_DATA_H, X),
277 	ADXL372_ACCEL_CHANNEL(1, ADXL372_Y_DATA_H, Y),
278 	ADXL372_ACCEL_CHANNEL(2, ADXL372_Z_DATA_H, Z),
279 };
280 
281 struct adxl372_state {
282 	int				irq;
283 	struct device			*dev;
284 	struct regmap			*regmap;
285 	struct iio_trigger		*dready_trig;
286 	struct iio_trigger		*peak_datardy_trig;
287 	enum adxl372_fifo_mode		fifo_mode;
288 	enum adxl372_fifo_format	fifo_format;
289 	unsigned int			fifo_axis_mask;
290 	enum adxl372_op_mode		op_mode;
291 	enum adxl372_act_proc_mode	act_proc_mode;
292 	enum adxl372_odr		odr;
293 	enum adxl372_bandwidth		bw;
294 	u32				act_time_ms;
295 	u32				inact_time_ms;
296 	u8				fifo_set_size;
297 	unsigned long			int1_bitmask;
298 	unsigned long			int2_bitmask;
299 	u16				watermark;
300 	__be16				fifo_buf[ADXL372_FIFO_SIZE];
301 	bool				peak_fifo_mode_en;
302 	struct mutex			threshold_m; /* lock for threshold */
303 };
304 
305 static const unsigned long adxl372_channel_masks[] = {
306 	BIT(0), BIT(1), BIT(2),
307 	BIT(0) | BIT(1),
308 	BIT(0) | BIT(2),
309 	BIT(1) | BIT(2),
310 	BIT(0) | BIT(1) | BIT(2),
311 	0
312 };
313 
adxl372_read_threshold_value(struct iio_dev * indio_dev,unsigned int addr,u16 * threshold)314 static ssize_t adxl372_read_threshold_value(struct iio_dev *indio_dev, unsigned int addr,
315 					    u16 *threshold)
316 {
317 	struct adxl372_state *st = iio_priv(indio_dev);
318 	__be16 raw_regval;
319 	u16 regval;
320 	int ret;
321 
322 	ret = regmap_bulk_read(st->regmap, addr, &raw_regval, sizeof(raw_regval));
323 	if (ret < 0)
324 		return ret;
325 
326 	regval = be16_to_cpu(raw_regval);
327 	regval >>= 5;
328 
329 	*threshold = regval;
330 
331 	return 0;
332 }
333 
adxl372_write_threshold_value(struct iio_dev * indio_dev,unsigned int addr,u16 threshold)334 static ssize_t adxl372_write_threshold_value(struct iio_dev *indio_dev, unsigned int addr,
335 					     u16 threshold)
336 {
337 	struct adxl372_state *st = iio_priv(indio_dev);
338 	int ret;
339 
340 	mutex_lock(&st->threshold_m);
341 	ret = regmap_write(st->regmap, addr, ADXL372_THRESH_VAL_H_SEL(threshold));
342 	if (ret < 0)
343 		goto unlock;
344 
345 	ret = regmap_update_bits(st->regmap, addr + 1, GENMASK(7, 5),
346 				 ADXL372_THRESH_VAL_L_SEL(threshold) << 5);
347 
348 unlock:
349 	mutex_unlock(&st->threshold_m);
350 
351 	return ret;
352 }
353 
adxl372_read_axis(struct adxl372_state * st,u8 addr)354 static int adxl372_read_axis(struct adxl372_state *st, u8 addr)
355 {
356 	__be16 regval;
357 	int ret;
358 
359 	ret = regmap_bulk_read(st->regmap, addr, &regval, sizeof(regval));
360 	if (ret < 0)
361 		return ret;
362 
363 	return be16_to_cpu(regval);
364 }
365 
adxl372_set_op_mode(struct adxl372_state * st,enum adxl372_op_mode op_mode)366 static int adxl372_set_op_mode(struct adxl372_state *st,
367 			       enum adxl372_op_mode op_mode)
368 {
369 	int ret;
370 
371 	ret = regmap_update_bits(st->regmap, ADXL372_POWER_CTL,
372 				 ADXL372_POWER_CTL_MODE_MSK,
373 				 ADXL372_POWER_CTL_MODE(op_mode));
374 	if (ret < 0)
375 		return ret;
376 
377 	st->op_mode = op_mode;
378 
379 	return ret;
380 }
381 
adxl372_set_odr(struct adxl372_state * st,enum adxl372_odr odr)382 static int adxl372_set_odr(struct adxl372_state *st,
383 			   enum adxl372_odr odr)
384 {
385 	int ret;
386 
387 	ret = regmap_update_bits(st->regmap, ADXL372_TIMING,
388 				 ADXL372_TIMING_ODR_MSK,
389 				 ADXL372_TIMING_ODR_MODE(odr));
390 	if (ret < 0)
391 		return ret;
392 
393 	st->odr = odr;
394 
395 	return ret;
396 }
397 
adxl372_find_closest_match(const int * array,unsigned int size,int val)398 static int adxl372_find_closest_match(const int *array,
399 				      unsigned int size, int val)
400 {
401 	int i;
402 
403 	for (i = 0; i < size; i++) {
404 		if (val <= array[i])
405 			return i;
406 	}
407 
408 	return size - 1;
409 }
410 
adxl372_set_bandwidth(struct adxl372_state * st,enum adxl372_bandwidth bw)411 static int adxl372_set_bandwidth(struct adxl372_state *st,
412 				 enum adxl372_bandwidth bw)
413 {
414 	int ret;
415 
416 	ret = regmap_update_bits(st->regmap, ADXL372_MEASURE,
417 				 ADXL372_MEASURE_BANDWIDTH_MSK,
418 				 ADXL372_MEASURE_BANDWIDTH_MODE(bw));
419 	if (ret < 0)
420 		return ret;
421 
422 	st->bw = bw;
423 
424 	return ret;
425 }
426 
adxl372_set_act_proc_mode(struct adxl372_state * st,enum adxl372_act_proc_mode mode)427 static int adxl372_set_act_proc_mode(struct adxl372_state *st,
428 				     enum adxl372_act_proc_mode mode)
429 {
430 	int ret;
431 
432 	ret = regmap_update_bits(st->regmap,
433 				 ADXL372_MEASURE,
434 				 ADXL372_MEASURE_LINKLOOP_MSK,
435 				 ADXL372_MEASURE_LINKLOOP_MODE(mode));
436 	if (ret < 0)
437 		return ret;
438 
439 	st->act_proc_mode = mode;
440 
441 	return ret;
442 }
443 
adxl372_set_activity_threshold(struct adxl372_state * st,enum adxl372_th_activity act,bool ref_en,bool enable,unsigned int threshold)444 static int adxl372_set_activity_threshold(struct adxl372_state *st,
445 					  enum adxl372_th_activity act,
446 					  bool ref_en, bool enable,
447 					  unsigned int threshold)
448 {
449 	unsigned char buf[6];
450 	unsigned char th_reg_high_val, th_reg_low_val, th_reg_high_addr;
451 
452 	/* scale factor is 100 mg/code */
453 	th_reg_high_val = (threshold / 100) >> 3;
454 	th_reg_low_val = ((threshold / 100) << 5) | (ref_en << 1) | enable;
455 	th_reg_high_addr = adxl372_th_reg_high_addr[act];
456 
457 	buf[0] = th_reg_high_val;
458 	buf[1] = th_reg_low_val;
459 	buf[2] = th_reg_high_val;
460 	buf[3] = th_reg_low_val;
461 	buf[4] = th_reg_high_val;
462 	buf[5] = th_reg_low_val;
463 
464 	return regmap_bulk_write(st->regmap, th_reg_high_addr,
465 				 buf, ARRAY_SIZE(buf));
466 }
467 
adxl372_set_activity_time_ms(struct adxl372_state * st,unsigned int act_time_ms)468 static int adxl372_set_activity_time_ms(struct adxl372_state *st,
469 					unsigned int act_time_ms)
470 {
471 	unsigned int reg_val, scale_factor;
472 	int ret;
473 
474 	/*
475 	 * 3.3 ms per code is the scale factor of the TIME_ACT register for
476 	 * ODR = 6400 Hz. It is 6.6 ms per code for ODR = 3200 Hz and below.
477 	 */
478 	if (st->odr == ADXL372_ODR_6400HZ)
479 		scale_factor = 3300;
480 	else
481 		scale_factor = 6600;
482 
483 	reg_val = DIV_ROUND_CLOSEST(act_time_ms * 1000, scale_factor);
484 
485 	/* TIME_ACT register is 8 bits wide */
486 	if (reg_val > 0xFF)
487 		reg_val = 0xFF;
488 
489 	ret = regmap_write(st->regmap, ADXL372_TIME_ACT, reg_val);
490 	if (ret < 0)
491 		return ret;
492 
493 	st->act_time_ms = act_time_ms;
494 
495 	return ret;
496 }
497 
adxl372_set_inactivity_time_ms(struct adxl372_state * st,unsigned int inact_time_ms)498 static int adxl372_set_inactivity_time_ms(struct adxl372_state *st,
499 					  unsigned int inact_time_ms)
500 {
501 	unsigned int reg_val_h, reg_val_l, res, scale_factor;
502 	int ret;
503 
504 	/*
505 	 * 13 ms per code is the scale factor of the TIME_INACT register for
506 	 * ODR = 6400 Hz. It is 26 ms per code for ODR = 3200 Hz and below.
507 	 */
508 	if (st->odr == ADXL372_ODR_6400HZ)
509 		scale_factor = 13;
510 	else
511 		scale_factor = 26;
512 
513 	res = DIV_ROUND_CLOSEST(inact_time_ms, scale_factor);
514 	reg_val_h = (res >> 8) & 0xFF;
515 	reg_val_l = res & 0xFF;
516 
517 	ret = regmap_write(st->regmap, ADXL372_TIME_INACT_H, reg_val_h);
518 	if (ret < 0)
519 		return ret;
520 
521 	ret = regmap_write(st->regmap, ADXL372_TIME_INACT_L, reg_val_l);
522 	if (ret < 0)
523 		return ret;
524 
525 	st->inact_time_ms = inact_time_ms;
526 
527 	return ret;
528 }
529 
adxl372_set_interrupts(struct adxl372_state * st,unsigned long int1_bitmask,unsigned long int2_bitmask)530 static int adxl372_set_interrupts(struct adxl372_state *st,
531 				  unsigned long int1_bitmask,
532 				  unsigned long int2_bitmask)
533 {
534 	int ret;
535 
536 	ret = regmap_write(st->regmap, ADXL372_INT1_MAP, int1_bitmask);
537 	if (ret < 0)
538 		return ret;
539 
540 	return regmap_write(st->regmap, ADXL372_INT2_MAP, int2_bitmask);
541 }
542 
adxl372_configure_fifo(struct adxl372_state * st)543 static int adxl372_configure_fifo(struct adxl372_state *st)
544 {
545 	unsigned int fifo_samples, fifo_ctl;
546 	int ret;
547 
548 	/* FIFO must be configured while in standby mode */
549 	ret = adxl372_set_op_mode(st, ADXL372_STANDBY);
550 	if (ret < 0)
551 		return ret;
552 
553 	/*
554 	 * watermark stores the number of sets; we need to write the FIFO
555 	 * registers with the number of samples
556 	 */
557 	fifo_samples = (st->watermark * st->fifo_set_size);
558 	fifo_ctl = ADXL372_FIFO_CTL_FORMAT_MODE(st->fifo_format) |
559 		   ADXL372_FIFO_CTL_MODE_MODE(st->fifo_mode) |
560 		   ADXL372_FIFO_CTL_SAMPLES_MODE(fifo_samples);
561 
562 	ret = regmap_write(st->regmap,
563 			   ADXL372_FIFO_SAMPLES, fifo_samples & 0xFF);
564 	if (ret < 0)
565 		return ret;
566 
567 	ret = regmap_write(st->regmap, ADXL372_FIFO_CTL, fifo_ctl);
568 	if (ret < 0)
569 		return ret;
570 
571 	return adxl372_set_op_mode(st, ADXL372_FULL_BW_MEASUREMENT);
572 }
573 
adxl372_get_status(struct adxl372_state * st,u8 * status1,u8 * status2,u16 * fifo_entries)574 static int adxl372_get_status(struct adxl372_state *st,
575 			      u8 *status1, u8 *status2,
576 			      u16 *fifo_entries)
577 {
578 	__be32 buf;
579 	u32 val;
580 	int ret;
581 
582 	/* STATUS1, STATUS2, FIFO_ENTRIES2 and FIFO_ENTRIES are adjacent regs */
583 	ret = regmap_bulk_read(st->regmap, ADXL372_STATUS_1,
584 			       &buf, sizeof(buf));
585 	if (ret < 0)
586 		return ret;
587 
588 	val = be32_to_cpu(buf);
589 
590 	*status1 = (val >> 24) & 0x0F;
591 	*status2 = (val >> 16) & 0x0F;
592 	/*
593 	 * FIFO_ENTRIES contains the least significant byte, and FIFO_ENTRIES2
594 	 * contains the two most significant bits
595 	 */
596 	*fifo_entries = val & 0x3FF;
597 
598 	return ret;
599 }
600 
adxl372_arrange_axis_data(struct adxl372_state * st,__be16 * sample)601 static void adxl372_arrange_axis_data(struct adxl372_state *st, __be16 *sample)
602 {
603 	__be16	axis_sample[3];
604 	int i = 0;
605 
606 	memset(axis_sample, 0, 3 * sizeof(__be16));
607 	if (ADXL372_X_AXIS_EN(st->fifo_axis_mask))
608 		axis_sample[i++] = sample[0];
609 	if (ADXL372_Y_AXIS_EN(st->fifo_axis_mask))
610 		axis_sample[i++] = sample[1];
611 	if (ADXL372_Z_AXIS_EN(st->fifo_axis_mask))
612 		axis_sample[i++] = sample[2];
613 
614 	memcpy(sample, axis_sample, 3 * sizeof(__be16));
615 }
616 
adxl372_push_event(struct iio_dev * indio_dev,s64 timestamp,u8 status2)617 static void adxl372_push_event(struct iio_dev *indio_dev, s64 timestamp, u8 status2)
618 {
619 	unsigned int ev_dir = IIO_EV_DIR_NONE;
620 
621 	if (ADXL372_STATUS_2_ACT(status2))
622 		ev_dir = IIO_EV_DIR_RISING;
623 
624 	if (ADXL372_STATUS_2_INACT(status2))
625 		ev_dir = IIO_EV_DIR_FALLING;
626 
627 	if (ev_dir != IIO_EV_DIR_NONE)
628 		iio_push_event(indio_dev,
629 			       IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_X_OR_Y_OR_Z,
630 						  IIO_EV_TYPE_THRESH, ev_dir),
631 			       timestamp);
632 }
633 
adxl372_trigger_handler(int irq,void * p)634 static irqreturn_t adxl372_trigger_handler(int irq, void  *p)
635 {
636 	struct iio_poll_func *pf = p;
637 	struct iio_dev *indio_dev = pf->indio_dev;
638 	struct adxl372_state *st = iio_priv(indio_dev);
639 	u8 status1, status2;
640 	u16 fifo_entries;
641 	int i, ret;
642 
643 	ret = adxl372_get_status(st, &status1, &status2, &fifo_entries);
644 	if (ret < 0)
645 		goto err;
646 
647 	adxl372_push_event(indio_dev, iio_get_time_ns(indio_dev), status2);
648 
649 	if (st->fifo_mode != ADXL372_FIFO_BYPASSED &&
650 	    ADXL372_STATUS_1_FIFO_FULL(status1)) {
651 		/*
652 		 * When reading data from multiple axes from the FIFO,
653 		 * to ensure that data is not overwritten and stored out
654 		 * of order at least one sample set must be left in the
655 		 * FIFO after every read.
656 		 */
657 		fifo_entries -= st->fifo_set_size;
658 
659 		/* Read data from the FIFO */
660 		ret = regmap_noinc_read(st->regmap, ADXL372_FIFO_DATA,
661 					st->fifo_buf,
662 					fifo_entries * sizeof(u16));
663 		if (ret < 0)
664 			goto err;
665 
666 		/* Each sample is 2 bytes */
667 		for (i = 0; i < fifo_entries; i += st->fifo_set_size) {
668 			/* filter peak detection data */
669 			if (st->peak_fifo_mode_en)
670 				adxl372_arrange_axis_data(st, &st->fifo_buf[i]);
671 			iio_push_to_buffers(indio_dev, &st->fifo_buf[i]);
672 		}
673 	}
674 err:
675 	iio_trigger_notify_done(indio_dev->trig);
676 	return IRQ_HANDLED;
677 }
678 
adxl372_setup(struct adxl372_state * st)679 static int adxl372_setup(struct adxl372_state *st)
680 {
681 	unsigned int regval;
682 	int ret;
683 
684 	ret = regmap_read(st->regmap, ADXL372_DEVID, &regval);
685 	if (ret < 0)
686 		return ret;
687 
688 	if (regval != ADXL372_DEVID_VAL) {
689 		dev_err(st->dev, "Invalid chip id %x\n", regval);
690 		return -ENODEV;
691 	}
692 
693 	/*
694 	 * Perform a software reset to make sure the device is in a consistent
695 	 * state after start up.
696 	 */
697 	ret = regmap_write(st->regmap, ADXL372_RESET, ADXL372_RESET_CODE);
698 	if (ret < 0)
699 		return ret;
700 
701 	ret = adxl372_set_op_mode(st, ADXL372_STANDBY);
702 	if (ret < 0)
703 		return ret;
704 
705 	/* Set threshold for activity detection to 1g */
706 	ret = adxl372_set_activity_threshold(st, ADXL372_ACTIVITY,
707 					     true, true, 1000);
708 	if (ret < 0)
709 		return ret;
710 
711 	/* Set threshold for inactivity detection to 100mg */
712 	ret = adxl372_set_activity_threshold(st, ADXL372_INACTIVITY,
713 					     true, true, 100);
714 	if (ret < 0)
715 		return ret;
716 
717 	/* Set activity processing in Looped mode */
718 	ret = adxl372_set_act_proc_mode(st, ADXL372_LOOPED);
719 	if (ret < 0)
720 		return ret;
721 
722 	ret = adxl372_set_odr(st, ADXL372_ODR_6400HZ);
723 	if (ret < 0)
724 		return ret;
725 
726 	ret = adxl372_set_bandwidth(st, ADXL372_BW_3200HZ);
727 	if (ret < 0)
728 		return ret;
729 
730 	/* Set activity timer to 1ms */
731 	ret = adxl372_set_activity_time_ms(st, 1);
732 	if (ret < 0)
733 		return ret;
734 
735 	/* Set inactivity timer to 10s */
736 	ret = adxl372_set_inactivity_time_ms(st, 10000);
737 	if (ret < 0)
738 		return ret;
739 
740 	/* Set the mode of operation to full bandwidth measurement mode */
741 	return adxl372_set_op_mode(st, ADXL372_FULL_BW_MEASUREMENT);
742 }
743 
adxl372_reg_access(struct iio_dev * indio_dev,unsigned int reg,unsigned int writeval,unsigned int * readval)744 static int adxl372_reg_access(struct iio_dev *indio_dev,
745 			      unsigned int reg,
746 			      unsigned int writeval,
747 			      unsigned int *readval)
748 {
749 	struct adxl372_state *st = iio_priv(indio_dev);
750 
751 	if (readval)
752 		return regmap_read(st->regmap, reg, readval);
753 	else
754 		return regmap_write(st->regmap, reg, writeval);
755 }
756 
adxl372_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long info)757 static int adxl372_read_raw(struct iio_dev *indio_dev,
758 			    struct iio_chan_spec const *chan,
759 			    int *val, int *val2, long info)
760 {
761 	struct adxl372_state *st = iio_priv(indio_dev);
762 	int ret;
763 
764 	switch (info) {
765 	case IIO_CHAN_INFO_RAW:
766 		ret = iio_device_claim_direct_mode(indio_dev);
767 		if (ret)
768 			return ret;
769 
770 		ret = adxl372_read_axis(st, chan->address);
771 		iio_device_release_direct_mode(indio_dev);
772 		if (ret < 0)
773 			return ret;
774 
775 		*val = sign_extend32(ret >> chan->scan_type.shift,
776 				     chan->scan_type.realbits - 1);
777 		return IIO_VAL_INT;
778 	case IIO_CHAN_INFO_SCALE:
779 		*val = 0;
780 		*val2 = ADXL372_USCALE;
781 		return IIO_VAL_INT_PLUS_MICRO;
782 	case IIO_CHAN_INFO_SAMP_FREQ:
783 		*val = adxl372_samp_freq_tbl[st->odr];
784 		return IIO_VAL_INT;
785 	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
786 		*val = adxl372_bw_freq_tbl[st->bw];
787 		return IIO_VAL_INT;
788 	}
789 
790 	return -EINVAL;
791 }
792 
adxl372_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long info)793 static int adxl372_write_raw(struct iio_dev *indio_dev,
794 			     struct iio_chan_spec const *chan,
795 			     int val, int val2, long info)
796 {
797 	struct adxl372_state *st = iio_priv(indio_dev);
798 	int odr_index, bw_index, ret;
799 
800 	switch (info) {
801 	case IIO_CHAN_INFO_SAMP_FREQ:
802 		odr_index = adxl372_find_closest_match(adxl372_samp_freq_tbl,
803 					ARRAY_SIZE(adxl372_samp_freq_tbl),
804 					val);
805 		ret = adxl372_set_odr(st, odr_index);
806 		if (ret < 0)
807 			return ret;
808 		/*
809 		 * The timer period depends on the ODR selected.
810 		 * At 3200 Hz and below, it is 6.6 ms; at 6400 Hz, it is 3.3 ms
811 		 */
812 		ret = adxl372_set_activity_time_ms(st, st->act_time_ms);
813 		if (ret < 0)
814 			return ret;
815 		/*
816 		 * The timer period depends on the ODR selected.
817 		 * At 3200 Hz and below, it is 26 ms; at 6400 Hz, it is 13 ms
818 		 */
819 		ret = adxl372_set_inactivity_time_ms(st, st->inact_time_ms);
820 		if (ret < 0)
821 			return ret;
822 		/*
823 		 * The maximum bandwidth is constrained to at most half of
824 		 * the ODR to ensure that the Nyquist criteria is not violated
825 		 */
826 		if (st->bw > odr_index)
827 			ret = adxl372_set_bandwidth(st, odr_index);
828 
829 		return ret;
830 	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
831 		bw_index = adxl372_find_closest_match(adxl372_bw_freq_tbl,
832 					ARRAY_SIZE(adxl372_bw_freq_tbl),
833 					val);
834 		return adxl372_set_bandwidth(st, bw_index);
835 	default:
836 		return -EINVAL;
837 	}
838 }
839 
adxl372_read_event_value(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int * val,int * val2)840 static int adxl372_read_event_value(struct iio_dev *indio_dev, const struct iio_chan_spec *chan,
841 				    enum iio_event_type type, enum iio_event_direction dir,
842 				    enum iio_event_info info, int *val, int *val2)
843 {
844 	struct adxl372_state *st = iio_priv(indio_dev);
845 	unsigned int addr;
846 	u16 raw_value;
847 	int ret;
848 
849 	switch (info) {
850 	case IIO_EV_INFO_VALUE:
851 		switch (dir) {
852 		case IIO_EV_DIR_RISING:
853 			addr = ADXL372_X_THRESH_ACT_H + 2 * chan->scan_index;
854 			ret = adxl372_read_threshold_value(indio_dev, addr, &raw_value);
855 			if (ret < 0)
856 				return ret;
857 			*val = raw_value * ADXL372_USCALE;
858 			*val2 = 1000000;
859 			return IIO_VAL_FRACTIONAL;
860 		case IIO_EV_DIR_FALLING:
861 			addr = ADXL372_X_THRESH_INACT_H + 2 * chan->scan_index;
862 			ret =  adxl372_read_threshold_value(indio_dev, addr, &raw_value);
863 			if (ret < 0)
864 				return ret;
865 			*val = raw_value * ADXL372_USCALE;
866 			*val2 = 1000000;
867 			return IIO_VAL_FRACTIONAL;
868 		default:
869 			return -EINVAL;
870 		}
871 	case IIO_EV_INFO_PERIOD:
872 		switch (dir) {
873 		case IIO_EV_DIR_RISING:
874 			*val = st->act_time_ms;
875 			*val2 = 1000;
876 			return IIO_VAL_FRACTIONAL;
877 		case IIO_EV_DIR_FALLING:
878 			*val = st->inact_time_ms;
879 			*val2 = 1000;
880 			return IIO_VAL_FRACTIONAL;
881 		default:
882 			return -EINVAL;
883 		}
884 	default:
885 		return -EINVAL;
886 	}
887 }
888 
adxl372_write_event_value(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int val,int val2)889 static int adxl372_write_event_value(struct iio_dev *indio_dev, const struct iio_chan_spec *chan,
890 				     enum iio_event_type type, enum iio_event_direction dir,
891 				     enum iio_event_info info, int val, int val2)
892 {
893 	struct adxl372_state *st = iio_priv(indio_dev);
894 	unsigned int val_ms;
895 	unsigned int addr;
896 	u16 raw_val;
897 
898 	switch (info) {
899 	case IIO_EV_INFO_VALUE:
900 		raw_val = DIV_ROUND_UP(val * 1000000, ADXL372_USCALE);
901 		switch (dir) {
902 		case IIO_EV_DIR_RISING:
903 			addr = ADXL372_X_THRESH_ACT_H + 2 * chan->scan_index;
904 			return adxl372_write_threshold_value(indio_dev, addr, raw_val);
905 		case IIO_EV_DIR_FALLING:
906 			addr = ADXL372_X_THRESH_INACT_H + 2 * chan->scan_index;
907 			return adxl372_write_threshold_value(indio_dev, addr, raw_val);
908 		default:
909 			return -EINVAL;
910 		}
911 	case IIO_EV_INFO_PERIOD:
912 		val_ms = val * 1000 + DIV_ROUND_UP(val2, 1000);
913 		switch (dir) {
914 		case IIO_EV_DIR_RISING:
915 			return adxl372_set_activity_time_ms(st, val_ms);
916 		case IIO_EV_DIR_FALLING:
917 			return adxl372_set_inactivity_time_ms(st, val_ms);
918 		default:
919 			return -EINVAL;
920 		}
921 	default:
922 		return -EINVAL;
923 	}
924 }
925 
adxl372_read_event_config(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir)926 static int adxl372_read_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan,
927 				     enum iio_event_type type, enum iio_event_direction dir)
928 {
929 	struct adxl372_state *st = iio_priv(indio_dev);
930 
931 	switch (dir) {
932 	case IIO_EV_DIR_RISING:
933 		return FIELD_GET(ADXL372_INT1_MAP_ACT_MSK, st->int1_bitmask);
934 	case IIO_EV_DIR_FALLING:
935 		return FIELD_GET(ADXL372_INT1_MAP_INACT_MSK, st->int1_bitmask);
936 	default:
937 		return -EINVAL;
938 	}
939 }
940 
adxl372_write_event_config(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,int state)941 static int adxl372_write_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan,
942 				      enum iio_event_type type, enum iio_event_direction dir,
943 				      int state)
944 {
945 	struct adxl372_state *st = iio_priv(indio_dev);
946 
947 	switch (dir) {
948 	case IIO_EV_DIR_RISING:
949 		set_mask_bits(&st->int1_bitmask, ADXL372_INT1_MAP_ACT_MSK,
950 			      ADXL372_INT1_MAP_ACT_MODE(state));
951 		break;
952 	case IIO_EV_DIR_FALLING:
953 		set_mask_bits(&st->int1_bitmask, ADXL372_INT1_MAP_INACT_MSK,
954 			      ADXL372_INT1_MAP_INACT_MODE(state));
955 		break;
956 	default:
957 		return -EINVAL;
958 	}
959 
960 	return adxl372_set_interrupts(st, st->int1_bitmask, 0);
961 }
962 
adxl372_show_filter_freq_avail(struct device * dev,struct device_attribute * attr,char * buf)963 static ssize_t adxl372_show_filter_freq_avail(struct device *dev,
964 					      struct device_attribute *attr,
965 					      char *buf)
966 {
967 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
968 	struct adxl372_state *st = iio_priv(indio_dev);
969 	int i;
970 	size_t len = 0;
971 
972 	for (i = 0; i <= st->odr; i++)
973 		len += scnprintf(buf + len, PAGE_SIZE - len,
974 				 "%d ", adxl372_bw_freq_tbl[i]);
975 
976 	buf[len - 1] = '\n';
977 
978 	return len;
979 }
980 
adxl372_get_fifo_enabled(struct device * dev,struct device_attribute * attr,char * buf)981 static ssize_t adxl372_get_fifo_enabled(struct device *dev,
982 					  struct device_attribute *attr,
983 					  char *buf)
984 {
985 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
986 	struct adxl372_state *st = iio_priv(indio_dev);
987 
988 	return sprintf(buf, "%d\n", st->fifo_mode);
989 }
990 
adxl372_get_fifo_watermark(struct device * dev,struct device_attribute * attr,char * buf)991 static ssize_t adxl372_get_fifo_watermark(struct device *dev,
992 					  struct device_attribute *attr,
993 					  char *buf)
994 {
995 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
996 	struct adxl372_state *st = iio_priv(indio_dev);
997 
998 	return sprintf(buf, "%d\n", st->watermark);
999 }
1000 
1001 static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
1002 static IIO_CONST_ATTR(hwfifo_watermark_max,
1003 		      __stringify(ADXL372_FIFO_SIZE));
1004 static IIO_DEVICE_ATTR(hwfifo_watermark, 0444,
1005 		       adxl372_get_fifo_watermark, NULL, 0);
1006 static IIO_DEVICE_ATTR(hwfifo_enabled, 0444,
1007 		       adxl372_get_fifo_enabled, NULL, 0);
1008 
1009 static const struct attribute *adxl372_fifo_attributes[] = {
1010 	&iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
1011 	&iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
1012 	&iio_dev_attr_hwfifo_watermark.dev_attr.attr,
1013 	&iio_dev_attr_hwfifo_enabled.dev_attr.attr,
1014 	NULL,
1015 };
1016 
adxl372_set_watermark(struct iio_dev * indio_dev,unsigned int val)1017 static int adxl372_set_watermark(struct iio_dev *indio_dev, unsigned int val)
1018 {
1019 	struct adxl372_state *st  = iio_priv(indio_dev);
1020 
1021 	if (val > ADXL372_FIFO_SIZE)
1022 		val = ADXL372_FIFO_SIZE;
1023 
1024 	st->watermark = val;
1025 
1026 	return 0;
1027 }
1028 
adxl372_buffer_postenable(struct iio_dev * indio_dev)1029 static int adxl372_buffer_postenable(struct iio_dev *indio_dev)
1030 {
1031 	struct adxl372_state *st = iio_priv(indio_dev);
1032 	unsigned int mask;
1033 	int i, ret;
1034 
1035 	st->int1_bitmask |= ADXL372_INT1_MAP_FIFO_FULL_MSK;
1036 	ret = adxl372_set_interrupts(st, st->int1_bitmask, 0);
1037 	if (ret < 0)
1038 		return ret;
1039 
1040 	mask = *indio_dev->active_scan_mask;
1041 
1042 	for (i = 0; i < ARRAY_SIZE(adxl372_axis_lookup_table); i++) {
1043 		if (mask == adxl372_axis_lookup_table[i].bits)
1044 			break;
1045 	}
1046 
1047 	if (i == ARRAY_SIZE(adxl372_axis_lookup_table))
1048 		return -EINVAL;
1049 
1050 	st->fifo_format = adxl372_axis_lookup_table[i].fifo_format;
1051 	st->fifo_axis_mask = adxl372_axis_lookup_table[i].bits;
1052 	st->fifo_set_size = bitmap_weight(indio_dev->active_scan_mask,
1053 					  indio_dev->masklength);
1054 
1055 	/* Configure the FIFO to store sets of impact event peak. */
1056 	if (st->peak_fifo_mode_en) {
1057 		st->fifo_set_size = 3;
1058 		st->fifo_format = ADXL372_XYZ_PEAK_FIFO;
1059 	}
1060 
1061 	/*
1062 	 * The 512 FIFO samples can be allotted in several ways, such as:
1063 	 * 170 sample sets of concurrent 3-axis data
1064 	 * 256 sample sets of concurrent 2-axis data (user selectable)
1065 	 * 512 sample sets of single-axis data
1066 	 * 170 sets of impact event peak (x, y, z)
1067 	 */
1068 	if ((st->watermark * st->fifo_set_size) > ADXL372_FIFO_SIZE)
1069 		st->watermark = (ADXL372_FIFO_SIZE  / st->fifo_set_size);
1070 
1071 	st->fifo_mode = ADXL372_FIFO_STREAMED;
1072 
1073 	ret = adxl372_configure_fifo(st);
1074 	if (ret < 0) {
1075 		st->fifo_mode = ADXL372_FIFO_BYPASSED;
1076 		st->int1_bitmask &= ~ADXL372_INT1_MAP_FIFO_FULL_MSK;
1077 		adxl372_set_interrupts(st, st->int1_bitmask, 0);
1078 		return ret;
1079 	}
1080 
1081 	return 0;
1082 }
1083 
adxl372_buffer_predisable(struct iio_dev * indio_dev)1084 static int adxl372_buffer_predisable(struct iio_dev *indio_dev)
1085 {
1086 	struct adxl372_state *st = iio_priv(indio_dev);
1087 
1088 	st->int1_bitmask &= ~ADXL372_INT1_MAP_FIFO_FULL_MSK;
1089 	adxl372_set_interrupts(st, st->int1_bitmask, 0);
1090 	st->fifo_mode = ADXL372_FIFO_BYPASSED;
1091 	adxl372_configure_fifo(st);
1092 
1093 	return 0;
1094 }
1095 
1096 static const struct iio_buffer_setup_ops adxl372_buffer_ops = {
1097 	.postenable = adxl372_buffer_postenable,
1098 	.predisable = adxl372_buffer_predisable,
1099 };
1100 
adxl372_dready_trig_set_state(struct iio_trigger * trig,bool state)1101 static int adxl372_dready_trig_set_state(struct iio_trigger *trig,
1102 					 bool state)
1103 {
1104 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
1105 	struct adxl372_state *st = iio_priv(indio_dev);
1106 
1107 	if (state)
1108 		st->int1_bitmask |= ADXL372_INT1_MAP_FIFO_FULL_MSK;
1109 
1110 	return adxl372_set_interrupts(st, st->int1_bitmask, 0);
1111 }
1112 
adxl372_validate_trigger(struct iio_dev * indio_dev,struct iio_trigger * trig)1113 static int adxl372_validate_trigger(struct iio_dev *indio_dev,
1114 				    struct iio_trigger *trig)
1115 {
1116 	struct adxl372_state *st = iio_priv(indio_dev);
1117 
1118 	if (st->dready_trig != trig && st->peak_datardy_trig != trig)
1119 		return -EINVAL;
1120 
1121 	return 0;
1122 }
1123 
1124 static const struct iio_trigger_ops adxl372_trigger_ops = {
1125 	.validate_device = &iio_trigger_validate_own_device,
1126 	.set_trigger_state = adxl372_dready_trig_set_state,
1127 };
1128 
adxl372_peak_dready_trig_set_state(struct iio_trigger * trig,bool state)1129 static int adxl372_peak_dready_trig_set_state(struct iio_trigger *trig,
1130 					      bool state)
1131 {
1132 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
1133 	struct adxl372_state *st = iio_priv(indio_dev);
1134 
1135 	if (state)
1136 		st->int1_bitmask |= ADXL372_INT1_MAP_FIFO_FULL_MSK;
1137 
1138 	st->peak_fifo_mode_en = state;
1139 
1140 	return adxl372_set_interrupts(st, st->int1_bitmask, 0);
1141 }
1142 
1143 static const struct iio_trigger_ops adxl372_peak_data_trigger_ops = {
1144 	.validate_device = &iio_trigger_validate_own_device,
1145 	.set_trigger_state = adxl372_peak_dready_trig_set_state,
1146 };
1147 
1148 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("400 800 1600 3200 6400");
1149 static IIO_DEVICE_ATTR(in_accel_filter_low_pass_3db_frequency_available,
1150 		       0444, adxl372_show_filter_freq_avail, NULL, 0);
1151 
1152 static struct attribute *adxl372_attributes[] = {
1153 	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
1154 	&iio_dev_attr_in_accel_filter_low_pass_3db_frequency_available.dev_attr.attr,
1155 	NULL,
1156 };
1157 
1158 static const struct attribute_group adxl372_attrs_group = {
1159 	.attrs = adxl372_attributes,
1160 };
1161 
1162 static const struct iio_info adxl372_info = {
1163 	.validate_trigger = &adxl372_validate_trigger,
1164 	.attrs = &adxl372_attrs_group,
1165 	.read_raw = adxl372_read_raw,
1166 	.write_raw = adxl372_write_raw,
1167 	.read_event_config = adxl372_read_event_config,
1168 	.write_event_config = adxl372_write_event_config,
1169 	.read_event_value = adxl372_read_event_value,
1170 	.write_event_value = adxl372_write_event_value,
1171 	.debugfs_reg_access = &adxl372_reg_access,
1172 	.hwfifo_set_watermark = adxl372_set_watermark,
1173 };
1174 
adxl372_readable_noinc_reg(struct device * dev,unsigned int reg)1175 bool adxl372_readable_noinc_reg(struct device *dev, unsigned int reg)
1176 {
1177 	return (reg == ADXL372_FIFO_DATA);
1178 }
1179 EXPORT_SYMBOL_GPL(adxl372_readable_noinc_reg);
1180 
adxl372_probe(struct device * dev,struct regmap * regmap,int irq,const char * name)1181 int adxl372_probe(struct device *dev, struct regmap *regmap,
1182 		  int irq, const char *name)
1183 {
1184 	struct iio_dev *indio_dev;
1185 	struct adxl372_state *st;
1186 	int ret;
1187 
1188 	indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
1189 	if (!indio_dev)
1190 		return -ENOMEM;
1191 
1192 	st = iio_priv(indio_dev);
1193 	dev_set_drvdata(dev, indio_dev);
1194 
1195 	st->dev = dev;
1196 	st->regmap = regmap;
1197 	st->irq = irq;
1198 
1199 	mutex_init(&st->threshold_m);
1200 
1201 	indio_dev->channels = adxl372_channels;
1202 	indio_dev->num_channels = ARRAY_SIZE(adxl372_channels);
1203 	indio_dev->available_scan_masks = adxl372_channel_masks;
1204 	indio_dev->name = name;
1205 	indio_dev->info = &adxl372_info;
1206 	indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;
1207 
1208 	ret = adxl372_setup(st);
1209 	if (ret < 0) {
1210 		dev_err(dev, "ADXL372 setup failed\n");
1211 		return ret;
1212 	}
1213 
1214 	ret = devm_iio_triggered_buffer_setup_ext(dev,
1215 						  indio_dev, NULL,
1216 						  adxl372_trigger_handler,
1217 						  IIO_BUFFER_DIRECTION_IN,
1218 						  &adxl372_buffer_ops,
1219 						  adxl372_fifo_attributes);
1220 	if (ret < 0)
1221 		return ret;
1222 
1223 	if (st->irq) {
1224 		st->dready_trig = devm_iio_trigger_alloc(dev,
1225 							 "%s-dev%d",
1226 							 indio_dev->name,
1227 							 iio_device_id(indio_dev));
1228 		if (st->dready_trig == NULL)
1229 			return -ENOMEM;
1230 
1231 		st->peak_datardy_trig = devm_iio_trigger_alloc(dev,
1232 							       "%s-dev%d-peak",
1233 							       indio_dev->name,
1234 							       iio_device_id(indio_dev));
1235 		if (!st->peak_datardy_trig)
1236 			return -ENOMEM;
1237 
1238 		st->dready_trig->ops = &adxl372_trigger_ops;
1239 		st->peak_datardy_trig->ops = &adxl372_peak_data_trigger_ops;
1240 		iio_trigger_set_drvdata(st->dready_trig, indio_dev);
1241 		iio_trigger_set_drvdata(st->peak_datardy_trig, indio_dev);
1242 		ret = devm_iio_trigger_register(dev, st->dready_trig);
1243 		if (ret < 0)
1244 			return ret;
1245 
1246 		ret = devm_iio_trigger_register(dev, st->peak_datardy_trig);
1247 		if (ret < 0)
1248 			return ret;
1249 
1250 		indio_dev->trig = iio_trigger_get(st->dready_trig);
1251 
1252 		ret = devm_request_threaded_irq(dev, st->irq,
1253 					iio_trigger_generic_data_rdy_poll,
1254 					NULL,
1255 					IRQF_TRIGGER_RISING | IRQF_ONESHOT,
1256 					indio_dev->name, st->dready_trig);
1257 		if (ret < 0)
1258 			return ret;
1259 	}
1260 
1261 	return devm_iio_device_register(dev, indio_dev);
1262 }
1263 EXPORT_SYMBOL_GPL(adxl372_probe);
1264 
1265 MODULE_AUTHOR("Stefan Popa <stefan.popa@analog.com>");
1266 MODULE_DESCRIPTION("Analog Devices ADXL372 3-axis accelerometer driver");
1267 MODULE_LICENSE("GPL");
1268