1 /*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26 /*
27 * Authors:
28 * Jerome Glisse <glisse@freedesktop.org>
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30 * Dave Airlie
31 */
32
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swiotlb.h>
42 #include <linux/dma-buf.h>
43 #include <linux/sizes.h>
44 #include <linux/module.h>
45
46 #include <drm/ttm/ttm_bo_api.h>
47 #include <drm/ttm/ttm_bo_driver.h>
48 #include <drm/ttm/ttm_placement.h>
49 #include <drm/ttm/ttm_range_manager.h>
50
51 #include <drm/amdgpu_drm.h>
52
53 #include "amdgpu.h"
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "amdgpu_ras.h"
59 #include "amdgpu_atomfirmware.h"
60 #include "amdgpu_res_cursor.h"
61 #include "bif/bif_4_1_d.h"
62
63 MODULE_IMPORT_NS(DMA_BUF);
64
65 #define AMDGPU_TTM_VRAM_MAX_DW_READ (size_t)128
66
67 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
68 struct ttm_tt *ttm,
69 struct ttm_resource *bo_mem);
70 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
71 struct ttm_tt *ttm);
72
amdgpu_ttm_init_on_chip(struct amdgpu_device * adev,unsigned int type,uint64_t size_in_page)73 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
74 unsigned int type,
75 uint64_t size_in_page)
76 {
77 return ttm_range_man_init(&adev->mman.bdev, type,
78 false, size_in_page);
79 }
80
81 /**
82 * amdgpu_evict_flags - Compute placement flags
83 *
84 * @bo: The buffer object to evict
85 * @placement: Possible destination(s) for evicted BO
86 *
87 * Fill in placement data when ttm_bo_evict() is called
88 */
amdgpu_evict_flags(struct ttm_buffer_object * bo,struct ttm_placement * placement)89 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
90 struct ttm_placement *placement)
91 {
92 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
93 struct amdgpu_bo *abo;
94 static const struct ttm_place placements = {
95 .fpfn = 0,
96 .lpfn = 0,
97 .mem_type = TTM_PL_SYSTEM,
98 .flags = 0
99 };
100
101 /* Don't handle scatter gather BOs */
102 if (bo->type == ttm_bo_type_sg) {
103 placement->num_placement = 0;
104 placement->num_busy_placement = 0;
105 return;
106 }
107
108 /* Object isn't an AMDGPU object so ignore */
109 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
110 placement->placement = &placements;
111 placement->busy_placement = &placements;
112 placement->num_placement = 1;
113 placement->num_busy_placement = 1;
114 return;
115 }
116
117 abo = ttm_to_amdgpu_bo(bo);
118 if (abo->flags & AMDGPU_AMDKFD_CREATE_SVM_BO) {
119 struct dma_fence *fence;
120 struct dma_resv *resv = &bo->base._resv;
121
122 rcu_read_lock();
123 fence = rcu_dereference(resv->fence_excl);
124 if (fence && !fence->ops->signaled)
125 dma_fence_enable_sw_signaling(fence);
126
127 placement->num_placement = 0;
128 placement->num_busy_placement = 0;
129 rcu_read_unlock();
130 return;
131 }
132
133 switch (bo->resource->mem_type) {
134 case AMDGPU_PL_GDS:
135 case AMDGPU_PL_GWS:
136 case AMDGPU_PL_OA:
137 placement->num_placement = 0;
138 placement->num_busy_placement = 0;
139 return;
140
141 case TTM_PL_VRAM:
142 if (!adev->mman.buffer_funcs_enabled) {
143 /* Move to system memory */
144 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
145 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
146 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
147 amdgpu_bo_in_cpu_visible_vram(abo)) {
148
149 /* Try evicting to the CPU inaccessible part of VRAM
150 * first, but only set GTT as busy placement, so this
151 * BO will be evicted to GTT rather than causing other
152 * BOs to be evicted from VRAM
153 */
154 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
155 AMDGPU_GEM_DOMAIN_GTT |
156 AMDGPU_GEM_DOMAIN_CPU);
157 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
158 abo->placements[0].lpfn = 0;
159 abo->placement.busy_placement = &abo->placements[1];
160 abo->placement.num_busy_placement = 1;
161 } else {
162 /* Move to GTT memory */
163 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
164 AMDGPU_GEM_DOMAIN_CPU);
165 }
166 break;
167 case TTM_PL_TT:
168 case AMDGPU_PL_PREEMPT:
169 default:
170 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
171 break;
172 }
173 *placement = abo->placement;
174 }
175
176 /**
177 * amdgpu_ttm_map_buffer - Map memory into the GART windows
178 * @bo: buffer object to map
179 * @mem: memory object to map
180 * @mm_cur: range to map
181 * @num_pages: number of pages to map
182 * @window: which GART window to use
183 * @ring: DMA ring to use for the copy
184 * @tmz: if we should setup a TMZ enabled mapping
185 * @addr: resulting address inside the MC address space
186 *
187 * Setup one of the GART windows to access a specific piece of memory or return
188 * the physical address for local memory.
189 */
amdgpu_ttm_map_buffer(struct ttm_buffer_object * bo,struct ttm_resource * mem,struct amdgpu_res_cursor * mm_cur,unsigned num_pages,unsigned window,struct amdgpu_ring * ring,bool tmz,uint64_t * addr)190 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
191 struct ttm_resource *mem,
192 struct amdgpu_res_cursor *mm_cur,
193 unsigned num_pages, unsigned window,
194 struct amdgpu_ring *ring, bool tmz,
195 uint64_t *addr)
196 {
197 struct amdgpu_device *adev = ring->adev;
198 struct amdgpu_job *job;
199 unsigned num_dw, num_bytes;
200 struct dma_fence *fence;
201 uint64_t src_addr, dst_addr;
202 void *cpu_addr;
203 uint64_t flags;
204 unsigned int i;
205 int r;
206
207 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
208 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
209 BUG_ON(mem->mem_type == AMDGPU_PL_PREEMPT);
210
211 /* Map only what can't be accessed directly */
212 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
213 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
214 mm_cur->start;
215 return 0;
216 }
217
218 *addr = adev->gmc.gart_start;
219 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
220 AMDGPU_GPU_PAGE_SIZE;
221 *addr += mm_cur->start & ~PAGE_MASK;
222
223 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
224 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
225
226 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
227 AMDGPU_IB_POOL_DELAYED, &job);
228 if (r)
229 return r;
230
231 src_addr = num_dw * 4;
232 src_addr += job->ibs[0].gpu_addr;
233
234 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
235 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
236 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
237 dst_addr, num_bytes, false);
238
239 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
240 WARN_ON(job->ibs[0].length_dw > num_dw);
241
242 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
243 if (tmz)
244 flags |= AMDGPU_PTE_TMZ;
245
246 cpu_addr = &job->ibs[0].ptr[num_dw];
247
248 if (mem->mem_type == TTM_PL_TT) {
249 dma_addr_t *dma_addr;
250
251 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
252 r = amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags,
253 cpu_addr);
254 if (r)
255 goto error_free;
256 } else {
257 dma_addr_t dma_address;
258
259 dma_address = mm_cur->start;
260 dma_address += adev->vm_manager.vram_base_offset;
261
262 for (i = 0; i < num_pages; ++i) {
263 r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
264 &dma_address, flags, cpu_addr);
265 if (r)
266 goto error_free;
267
268 dma_address += PAGE_SIZE;
269 }
270 }
271
272 r = amdgpu_job_submit(job, &adev->mman.entity,
273 AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
274 if (r)
275 goto error_free;
276
277 dma_fence_put(fence);
278
279 return r;
280
281 error_free:
282 amdgpu_job_free(job);
283 return r;
284 }
285
286 /**
287 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
288 * @adev: amdgpu device
289 * @src: buffer/address where to read from
290 * @dst: buffer/address where to write to
291 * @size: number of bytes to copy
292 * @tmz: if a secure copy should be used
293 * @resv: resv object to sync to
294 * @f: Returns the last fence if multiple jobs are submitted.
295 *
296 * The function copies @size bytes from {src->mem + src->offset} to
297 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
298 * move and different for a BO to BO copy.
299 *
300 */
amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device * adev,const struct amdgpu_copy_mem * src,const struct amdgpu_copy_mem * dst,uint64_t size,bool tmz,struct dma_resv * resv,struct dma_fence ** f)301 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
302 const struct amdgpu_copy_mem *src,
303 const struct amdgpu_copy_mem *dst,
304 uint64_t size, bool tmz,
305 struct dma_resv *resv,
306 struct dma_fence **f)
307 {
308 const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
309 AMDGPU_GPU_PAGE_SIZE);
310
311 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
312 struct amdgpu_res_cursor src_mm, dst_mm;
313 struct dma_fence *fence = NULL;
314 int r = 0;
315
316 if (!adev->mman.buffer_funcs_enabled) {
317 DRM_ERROR("Trying to move memory with ring turned off.\n");
318 return -EINVAL;
319 }
320
321 amdgpu_res_first(src->mem, src->offset, size, &src_mm);
322 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
323
324 mutex_lock(&adev->mman.gtt_window_lock);
325 while (src_mm.remaining) {
326 uint32_t src_page_offset = src_mm.start & ~PAGE_MASK;
327 uint32_t dst_page_offset = dst_mm.start & ~PAGE_MASK;
328 struct dma_fence *next;
329 uint32_t cur_size;
330 uint64_t from, to;
331
332 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
333 * begins at an offset, then adjust the size accordingly
334 */
335 cur_size = max(src_page_offset, dst_page_offset);
336 cur_size = min(min3(src_mm.size, dst_mm.size, size),
337 (uint64_t)(GTT_MAX_BYTES - cur_size));
338
339 /* Map src to window 0 and dst to window 1. */
340 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
341 PFN_UP(cur_size + src_page_offset),
342 0, ring, tmz, &from);
343 if (r)
344 goto error;
345
346 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
347 PFN_UP(cur_size + dst_page_offset),
348 1, ring, tmz, &to);
349 if (r)
350 goto error;
351
352 r = amdgpu_copy_buffer(ring, from, to, cur_size,
353 resv, &next, false, true, tmz);
354 if (r)
355 goto error;
356
357 dma_fence_put(fence);
358 fence = next;
359
360 amdgpu_res_next(&src_mm, cur_size);
361 amdgpu_res_next(&dst_mm, cur_size);
362 }
363 error:
364 mutex_unlock(&adev->mman.gtt_window_lock);
365 if (f)
366 *f = dma_fence_get(fence);
367 dma_fence_put(fence);
368 return r;
369 }
370
371 /*
372 * amdgpu_move_blit - Copy an entire buffer to another buffer
373 *
374 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
375 * help move buffers to and from VRAM.
376 */
amdgpu_move_blit(struct ttm_buffer_object * bo,bool evict,struct ttm_resource * new_mem,struct ttm_resource * old_mem)377 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
378 bool evict,
379 struct ttm_resource *new_mem,
380 struct ttm_resource *old_mem)
381 {
382 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
383 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
384 struct amdgpu_copy_mem src, dst;
385 struct dma_fence *fence = NULL;
386 int r;
387
388 src.bo = bo;
389 dst.bo = bo;
390 src.mem = old_mem;
391 dst.mem = new_mem;
392 src.offset = 0;
393 dst.offset = 0;
394
395 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
396 new_mem->num_pages << PAGE_SHIFT,
397 amdgpu_bo_encrypted(abo),
398 bo->base.resv, &fence);
399 if (r)
400 goto error;
401
402 /* clear the space being freed */
403 if (old_mem->mem_type == TTM_PL_VRAM &&
404 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
405 struct dma_fence *wipe_fence = NULL;
406
407 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
408 NULL, &wipe_fence);
409 if (r) {
410 goto error;
411 } else if (wipe_fence) {
412 dma_fence_put(fence);
413 fence = wipe_fence;
414 }
415 }
416
417 /* Always block for VM page tables before committing the new location */
418 if (bo->type == ttm_bo_type_kernel)
419 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
420 else
421 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
422 dma_fence_put(fence);
423 return r;
424
425 error:
426 if (fence)
427 dma_fence_wait(fence, false);
428 dma_fence_put(fence);
429 return r;
430 }
431
432 /*
433 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
434 *
435 * Called by amdgpu_bo_move()
436 */
amdgpu_mem_visible(struct amdgpu_device * adev,struct ttm_resource * mem)437 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
438 struct ttm_resource *mem)
439 {
440 uint64_t mem_size = (u64)mem->num_pages << PAGE_SHIFT;
441 struct amdgpu_res_cursor cursor;
442
443 if (mem->mem_type == TTM_PL_SYSTEM ||
444 mem->mem_type == TTM_PL_TT)
445 return true;
446 if (mem->mem_type != TTM_PL_VRAM)
447 return false;
448
449 amdgpu_res_first(mem, 0, mem_size, &cursor);
450
451 /* ttm_resource_ioremap only supports contiguous memory */
452 if (cursor.size != mem_size)
453 return false;
454
455 return cursor.start + cursor.size <= adev->gmc.visible_vram_size;
456 }
457
458 /*
459 * amdgpu_bo_move - Move a buffer object to a new memory location
460 *
461 * Called by ttm_bo_handle_move_mem()
462 */
amdgpu_bo_move(struct ttm_buffer_object * bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_resource * new_mem,struct ttm_place * hop)463 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
464 struct ttm_operation_ctx *ctx,
465 struct ttm_resource *new_mem,
466 struct ttm_place *hop)
467 {
468 struct amdgpu_device *adev;
469 struct amdgpu_bo *abo;
470 struct ttm_resource *old_mem = bo->resource;
471 int r;
472
473 if (new_mem->mem_type == TTM_PL_TT ||
474 new_mem->mem_type == AMDGPU_PL_PREEMPT) {
475 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
476 if (r)
477 return r;
478 }
479
480 /* Can't move a pinned BO */
481 abo = ttm_to_amdgpu_bo(bo);
482 if (WARN_ON_ONCE(abo->tbo.pin_count > 0))
483 return -EINVAL;
484
485 adev = amdgpu_ttm_adev(bo->bdev);
486
487 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
488 ttm_bo_move_null(bo, new_mem);
489 goto out;
490 }
491 if (old_mem->mem_type == TTM_PL_SYSTEM &&
492 (new_mem->mem_type == TTM_PL_TT ||
493 new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
494 ttm_bo_move_null(bo, new_mem);
495 goto out;
496 }
497 if ((old_mem->mem_type == TTM_PL_TT ||
498 old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
499 new_mem->mem_type == TTM_PL_SYSTEM) {
500 r = ttm_bo_wait_ctx(bo, ctx);
501 if (r)
502 return r;
503
504 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
505 ttm_resource_free(bo, &bo->resource);
506 ttm_bo_assign_mem(bo, new_mem);
507 goto out;
508 }
509
510 if (old_mem->mem_type == AMDGPU_PL_GDS ||
511 old_mem->mem_type == AMDGPU_PL_GWS ||
512 old_mem->mem_type == AMDGPU_PL_OA ||
513 new_mem->mem_type == AMDGPU_PL_GDS ||
514 new_mem->mem_type == AMDGPU_PL_GWS ||
515 new_mem->mem_type == AMDGPU_PL_OA) {
516 /* Nothing to save here */
517 ttm_bo_move_null(bo, new_mem);
518 goto out;
519 }
520
521 if (bo->type == ttm_bo_type_device &&
522 new_mem->mem_type == TTM_PL_VRAM &&
523 old_mem->mem_type != TTM_PL_VRAM) {
524 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
525 * accesses the BO after it's moved.
526 */
527 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
528 }
529
530 if (adev->mman.buffer_funcs_enabled) {
531 if (((old_mem->mem_type == TTM_PL_SYSTEM &&
532 new_mem->mem_type == TTM_PL_VRAM) ||
533 (old_mem->mem_type == TTM_PL_VRAM &&
534 new_mem->mem_type == TTM_PL_SYSTEM))) {
535 hop->fpfn = 0;
536 hop->lpfn = 0;
537 hop->mem_type = TTM_PL_TT;
538 hop->flags = TTM_PL_FLAG_TEMPORARY;
539 return -EMULTIHOP;
540 }
541
542 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
543 } else {
544 r = -ENODEV;
545 }
546
547 if (r) {
548 /* Check that all memory is CPU accessible */
549 if (!amdgpu_mem_visible(adev, old_mem) ||
550 !amdgpu_mem_visible(adev, new_mem)) {
551 pr_err("Move buffer fallback to memcpy unavailable\n");
552 return r;
553 }
554
555 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
556 if (r)
557 return r;
558 }
559
560 out:
561 /* update statistics */
562 atomic64_add(bo->base.size, &adev->num_bytes_moved);
563 amdgpu_bo_move_notify(bo, evict, new_mem);
564 return 0;
565 }
566
567 /*
568 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
569 *
570 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
571 */
amdgpu_ttm_io_mem_reserve(struct ttm_device * bdev,struct ttm_resource * mem)572 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
573 struct ttm_resource *mem)
574 {
575 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
576 size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
577
578 switch (mem->mem_type) {
579 case TTM_PL_SYSTEM:
580 /* system memory */
581 return 0;
582 case TTM_PL_TT:
583 case AMDGPU_PL_PREEMPT:
584 break;
585 case TTM_PL_VRAM:
586 mem->bus.offset = mem->start << PAGE_SHIFT;
587 /* check if it's visible */
588 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
589 return -EINVAL;
590
591 if (adev->mman.aper_base_kaddr &&
592 mem->placement & TTM_PL_FLAG_CONTIGUOUS)
593 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
594 mem->bus.offset;
595
596 mem->bus.offset += adev->gmc.aper_base;
597 mem->bus.is_iomem = true;
598 break;
599 default:
600 return -EINVAL;
601 }
602 return 0;
603 }
604
amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object * bo,unsigned long page_offset)605 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
606 unsigned long page_offset)
607 {
608 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
609 struct amdgpu_res_cursor cursor;
610
611 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
612 &cursor);
613 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
614 }
615
616 /**
617 * amdgpu_ttm_domain_start - Returns GPU start address
618 * @adev: amdgpu device object
619 * @type: type of the memory
620 *
621 * Returns:
622 * GPU start address of a memory domain
623 */
624
amdgpu_ttm_domain_start(struct amdgpu_device * adev,uint32_t type)625 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
626 {
627 switch (type) {
628 case TTM_PL_TT:
629 return adev->gmc.gart_start;
630 case TTM_PL_VRAM:
631 return adev->gmc.vram_start;
632 }
633
634 return 0;
635 }
636
637 /*
638 * TTM backend functions.
639 */
640 struct amdgpu_ttm_tt {
641 struct ttm_tt ttm;
642 struct drm_gem_object *gobj;
643 u64 offset;
644 uint64_t userptr;
645 struct task_struct *usertask;
646 uint32_t userflags;
647 bool bound;
648 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
649 struct hmm_range *range;
650 #endif
651 };
652
653 #ifdef CONFIG_DRM_AMDGPU_USERPTR
654 /*
655 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
656 * memory and start HMM tracking CPU page table update
657 *
658 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
659 * once afterwards to stop HMM tracking
660 */
amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo * bo,struct page ** pages)661 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
662 {
663 struct ttm_tt *ttm = bo->tbo.ttm;
664 struct amdgpu_ttm_tt *gtt = (void *)ttm;
665 unsigned long start = gtt->userptr;
666 struct vm_area_struct *vma;
667 struct mm_struct *mm;
668 bool readonly;
669 int r = 0;
670
671 mm = bo->notifier.mm;
672 if (unlikely(!mm)) {
673 DRM_DEBUG_DRIVER("BO is not registered?\n");
674 return -EFAULT;
675 }
676
677 /* Another get_user_pages is running at the same time?? */
678 if (WARN_ON(gtt->range))
679 return -EFAULT;
680
681 if (!mmget_not_zero(mm)) /* Happens during process shutdown */
682 return -ESRCH;
683
684 mmap_read_lock(mm);
685 vma = vma_lookup(mm, start);
686 if (unlikely(!vma)) {
687 r = -EFAULT;
688 goto out_unlock;
689 }
690 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
691 vma->vm_file)) {
692 r = -EPERM;
693 goto out_unlock;
694 }
695
696 readonly = amdgpu_ttm_tt_is_readonly(ttm);
697 r = amdgpu_hmm_range_get_pages(&bo->notifier, mm, pages, start,
698 ttm->num_pages, >t->range, readonly,
699 true, NULL);
700 out_unlock:
701 mmap_read_unlock(mm);
702 if (r)
703 pr_debug("failed %d to get user pages 0x%lx\n", r, start);
704
705 mmput(mm);
706
707 return r;
708 }
709
710 /*
711 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
712 * Check if the pages backing this ttm range have been invalidated
713 *
714 * Returns: true if pages are still valid
715 */
amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt * ttm)716 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
717 {
718 struct amdgpu_ttm_tt *gtt = (void *)ttm;
719 bool r = false;
720
721 if (!gtt || !gtt->userptr)
722 return false;
723
724 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
725 gtt->userptr, ttm->num_pages);
726
727 WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
728 "No user pages to check\n");
729
730 if (gtt->range) {
731 /*
732 * FIXME: Must always hold notifier_lock for this, and must
733 * not ignore the return code.
734 */
735 r = amdgpu_hmm_range_get_pages_done(gtt->range);
736 gtt->range = NULL;
737 }
738
739 return !r;
740 }
741 #endif
742
743 /*
744 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
745 *
746 * Called by amdgpu_cs_list_validate(). This creates the page list
747 * that backs user memory and will ultimately be mapped into the device
748 * address space.
749 */
amdgpu_ttm_tt_set_user_pages(struct ttm_tt * ttm,struct page ** pages)750 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
751 {
752 unsigned long i;
753
754 for (i = 0; i < ttm->num_pages; ++i)
755 ttm->pages[i] = pages ? pages[i] : NULL;
756 }
757
758 /*
759 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
760 *
761 * Called by amdgpu_ttm_backend_bind()
762 **/
amdgpu_ttm_tt_pin_userptr(struct ttm_device * bdev,struct ttm_tt * ttm)763 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
764 struct ttm_tt *ttm)
765 {
766 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
767 struct amdgpu_ttm_tt *gtt = (void *)ttm;
768 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
769 enum dma_data_direction direction = write ?
770 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
771 int r;
772
773 /* Allocate an SG array and squash pages into it */
774 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
775 (u64)ttm->num_pages << PAGE_SHIFT,
776 GFP_KERNEL);
777 if (r)
778 goto release_sg;
779
780 /* Map SG to device */
781 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
782 if (r)
783 goto release_sg;
784
785 /* convert SG to linear array of pages and dma addresses */
786 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
787 ttm->num_pages);
788
789 return 0;
790
791 release_sg:
792 kfree(ttm->sg);
793 ttm->sg = NULL;
794 return r;
795 }
796
797 /*
798 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
799 */
amdgpu_ttm_tt_unpin_userptr(struct ttm_device * bdev,struct ttm_tt * ttm)800 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
801 struct ttm_tt *ttm)
802 {
803 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
804 struct amdgpu_ttm_tt *gtt = (void *)ttm;
805 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
806 enum dma_data_direction direction = write ?
807 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
808
809 /* double check that we don't free the table twice */
810 if (!ttm->sg || !ttm->sg->sgl)
811 return;
812
813 /* unmap the pages mapped to the device */
814 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
815 sg_free_table(ttm->sg);
816
817 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
818 if (gtt->range) {
819 unsigned long i;
820
821 for (i = 0; i < ttm->num_pages; i++) {
822 if (ttm->pages[i] !=
823 hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
824 break;
825 }
826
827 WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
828 }
829 #endif
830 }
831
amdgpu_ttm_gart_bind(struct amdgpu_device * adev,struct ttm_buffer_object * tbo,uint64_t flags)832 static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
833 struct ttm_buffer_object *tbo,
834 uint64_t flags)
835 {
836 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
837 struct ttm_tt *ttm = tbo->ttm;
838 struct amdgpu_ttm_tt *gtt = (void *)ttm;
839 int r;
840
841 if (amdgpu_bo_encrypted(abo))
842 flags |= AMDGPU_PTE_TMZ;
843
844 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
845 uint64_t page_idx = 1;
846
847 r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
848 gtt->ttm.dma_address, flags);
849 if (r)
850 goto gart_bind_fail;
851
852 /* The memory type of the first page defaults to UC. Now
853 * modify the memory type to NC from the second page of
854 * the BO onward.
855 */
856 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
857 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
858
859 r = amdgpu_gart_bind(adev,
860 gtt->offset + (page_idx << PAGE_SHIFT),
861 ttm->num_pages - page_idx,
862 &(gtt->ttm.dma_address[page_idx]), flags);
863 } else {
864 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
865 gtt->ttm.dma_address, flags);
866 }
867
868 gart_bind_fail:
869 if (r)
870 DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
871 ttm->num_pages, gtt->offset);
872
873 return r;
874 }
875
876 /*
877 * amdgpu_ttm_backend_bind - Bind GTT memory
878 *
879 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
880 * This handles binding GTT memory to the device address space.
881 */
amdgpu_ttm_backend_bind(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_resource * bo_mem)882 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
883 struct ttm_tt *ttm,
884 struct ttm_resource *bo_mem)
885 {
886 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
887 struct amdgpu_ttm_tt *gtt = (void*)ttm;
888 uint64_t flags;
889 int r = 0;
890
891 if (!bo_mem)
892 return -EINVAL;
893
894 if (gtt->bound)
895 return 0;
896
897 if (gtt->userptr) {
898 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
899 if (r) {
900 DRM_ERROR("failed to pin userptr\n");
901 return r;
902 }
903 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
904 if (!ttm->sg) {
905 struct dma_buf_attachment *attach;
906 struct sg_table *sgt;
907
908 attach = gtt->gobj->import_attach;
909 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
910 if (IS_ERR(sgt))
911 return PTR_ERR(sgt);
912
913 ttm->sg = sgt;
914 }
915
916 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
917 ttm->num_pages);
918 }
919
920 if (!ttm->num_pages) {
921 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
922 ttm->num_pages, bo_mem, ttm);
923 }
924
925 if (bo_mem->mem_type == AMDGPU_PL_GDS ||
926 bo_mem->mem_type == AMDGPU_PL_GWS ||
927 bo_mem->mem_type == AMDGPU_PL_OA)
928 return -EINVAL;
929
930 if (bo_mem->mem_type != TTM_PL_TT ||
931 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
932 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
933 return 0;
934 }
935
936 /* compute PTE flags relevant to this BO memory */
937 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
938
939 /* bind pages into GART page tables */
940 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
941 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
942 gtt->ttm.dma_address, flags);
943
944 if (r)
945 DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
946 ttm->num_pages, gtt->offset);
947 gtt->bound = true;
948 return r;
949 }
950
951 /*
952 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
953 * through AGP or GART aperture.
954 *
955 * If bo is accessible through AGP aperture, then use AGP aperture
956 * to access bo; otherwise allocate logical space in GART aperture
957 * and map bo to GART aperture.
958 */
amdgpu_ttm_alloc_gart(struct ttm_buffer_object * bo)959 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
960 {
961 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
962 struct ttm_operation_ctx ctx = { false, false };
963 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
964 struct ttm_placement placement;
965 struct ttm_place placements;
966 struct ttm_resource *tmp;
967 uint64_t addr, flags;
968 int r;
969
970 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
971 return 0;
972
973 addr = amdgpu_gmc_agp_addr(bo);
974 if (addr != AMDGPU_BO_INVALID_OFFSET) {
975 bo->resource->start = addr >> PAGE_SHIFT;
976 return 0;
977 }
978
979 /* allocate GART space */
980 placement.num_placement = 1;
981 placement.placement = &placements;
982 placement.num_busy_placement = 1;
983 placement.busy_placement = &placements;
984 placements.fpfn = 0;
985 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
986 placements.mem_type = TTM_PL_TT;
987 placements.flags = bo->resource->placement;
988
989 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
990 if (unlikely(r))
991 return r;
992
993 /* compute PTE flags for this buffer object */
994 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
995
996 /* Bind pages */
997 gtt->offset = (u64)tmp->start << PAGE_SHIFT;
998 r = amdgpu_ttm_gart_bind(adev, bo, flags);
999 if (unlikely(r)) {
1000 ttm_resource_free(bo, &tmp);
1001 return r;
1002 }
1003
1004 amdgpu_gart_invalidate_tlb(adev);
1005 ttm_resource_free(bo, &bo->resource);
1006 ttm_bo_assign_mem(bo, tmp);
1007
1008 return 0;
1009 }
1010
1011 /*
1012 * amdgpu_ttm_recover_gart - Rebind GTT pages
1013 *
1014 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1015 * rebind GTT pages during a GPU reset.
1016 */
amdgpu_ttm_recover_gart(struct ttm_buffer_object * tbo)1017 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1018 {
1019 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1020 uint64_t flags;
1021 int r;
1022
1023 if (!tbo->ttm)
1024 return 0;
1025
1026 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1027 r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1028
1029 return r;
1030 }
1031
1032 /*
1033 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1034 *
1035 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1036 * ttm_tt_destroy().
1037 */
amdgpu_ttm_backend_unbind(struct ttm_device * bdev,struct ttm_tt * ttm)1038 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1039 struct ttm_tt *ttm)
1040 {
1041 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1042 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1043 int r;
1044
1045 /* if the pages have userptr pinning then clear that first */
1046 if (gtt->userptr) {
1047 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1048 } else if (ttm->sg && gtt->gobj->import_attach) {
1049 struct dma_buf_attachment *attach;
1050
1051 attach = gtt->gobj->import_attach;
1052 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1053 ttm->sg = NULL;
1054 }
1055
1056 if (!gtt->bound)
1057 return;
1058
1059 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1060 return;
1061
1062 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1063 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1064 if (r)
1065 DRM_ERROR("failed to unbind %u pages at 0x%08llX\n",
1066 gtt->ttm.num_pages, gtt->offset);
1067 gtt->bound = false;
1068 }
1069
amdgpu_ttm_backend_destroy(struct ttm_device * bdev,struct ttm_tt * ttm)1070 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1071 struct ttm_tt *ttm)
1072 {
1073 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1074
1075 if (gtt->usertask)
1076 put_task_struct(gtt->usertask);
1077
1078 ttm_tt_fini(>t->ttm);
1079 kfree(gtt);
1080 }
1081
1082 /**
1083 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1084 *
1085 * @bo: The buffer object to create a GTT ttm_tt object around
1086 * @page_flags: Page flags to be added to the ttm_tt object
1087 *
1088 * Called by ttm_tt_create().
1089 */
amdgpu_ttm_tt_create(struct ttm_buffer_object * bo,uint32_t page_flags)1090 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1091 uint32_t page_flags)
1092 {
1093 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1094 struct amdgpu_ttm_tt *gtt;
1095 enum ttm_caching caching;
1096
1097 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1098 if (gtt == NULL) {
1099 return NULL;
1100 }
1101 gtt->gobj = &bo->base;
1102
1103 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1104 caching = ttm_write_combined;
1105 else
1106 caching = ttm_cached;
1107
1108 /* allocate space for the uninitialized page entries */
1109 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) {
1110 kfree(gtt);
1111 return NULL;
1112 }
1113 return >t->ttm;
1114 }
1115
1116 /*
1117 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1118 *
1119 * Map the pages of a ttm_tt object to an address space visible
1120 * to the underlying device.
1121 */
amdgpu_ttm_tt_populate(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_operation_ctx * ctx)1122 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1123 struct ttm_tt *ttm,
1124 struct ttm_operation_ctx *ctx)
1125 {
1126 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1127 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1128 pgoff_t i;
1129 int ret;
1130
1131 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1132 if (gtt->userptr) {
1133 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1134 if (!ttm->sg)
1135 return -ENOMEM;
1136 return 0;
1137 }
1138
1139 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1140 return 0;
1141
1142 ret = ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
1143 if (ret)
1144 return ret;
1145
1146 for (i = 0; i < ttm->num_pages; ++i)
1147 ttm->pages[i]->mapping = bdev->dev_mapping;
1148
1149 return 0;
1150 }
1151
1152 /*
1153 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1154 *
1155 * Unmaps pages of a ttm_tt object from the device address space and
1156 * unpopulates the page array backing it.
1157 */
amdgpu_ttm_tt_unpopulate(struct ttm_device * bdev,struct ttm_tt * ttm)1158 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1159 struct ttm_tt *ttm)
1160 {
1161 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1162 struct amdgpu_device *adev;
1163 pgoff_t i;
1164
1165 amdgpu_ttm_backend_unbind(bdev, ttm);
1166
1167 if (gtt->userptr) {
1168 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1169 kfree(ttm->sg);
1170 ttm->sg = NULL;
1171 return;
1172 }
1173
1174 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1175 return;
1176
1177 for (i = 0; i < ttm->num_pages; ++i)
1178 ttm->pages[i]->mapping = NULL;
1179
1180 adev = amdgpu_ttm_adev(bdev);
1181 return ttm_pool_free(&adev->mman.bdev.pool, ttm);
1182 }
1183
1184 /**
1185 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1186 * task
1187 *
1188 * @bo: The ttm_buffer_object to bind this userptr to
1189 * @addr: The address in the current tasks VM space to use
1190 * @flags: Requirements of userptr object.
1191 *
1192 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1193 * to current task
1194 */
amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object * bo,uint64_t addr,uint32_t flags)1195 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1196 uint64_t addr, uint32_t flags)
1197 {
1198 struct amdgpu_ttm_tt *gtt;
1199
1200 if (!bo->ttm) {
1201 /* TODO: We want a separate TTM object type for userptrs */
1202 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1203 if (bo->ttm == NULL)
1204 return -ENOMEM;
1205 }
1206
1207 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1208 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1209
1210 gtt = (void *)bo->ttm;
1211 gtt->userptr = addr;
1212 gtt->userflags = flags;
1213
1214 if (gtt->usertask)
1215 put_task_struct(gtt->usertask);
1216 gtt->usertask = current->group_leader;
1217 get_task_struct(gtt->usertask);
1218
1219 return 0;
1220 }
1221
1222 /*
1223 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1224 */
amdgpu_ttm_tt_get_usermm(struct ttm_tt * ttm)1225 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1226 {
1227 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1228
1229 if (gtt == NULL)
1230 return NULL;
1231
1232 if (gtt->usertask == NULL)
1233 return NULL;
1234
1235 return gtt->usertask->mm;
1236 }
1237
1238 /*
1239 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1240 * address range for the current task.
1241 *
1242 */
amdgpu_ttm_tt_affect_userptr(struct ttm_tt * ttm,unsigned long start,unsigned long end,unsigned long * userptr)1243 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1244 unsigned long end, unsigned long *userptr)
1245 {
1246 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1247 unsigned long size;
1248
1249 if (gtt == NULL || !gtt->userptr)
1250 return false;
1251
1252 /* Return false if no part of the ttm_tt object lies within
1253 * the range
1254 */
1255 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1256 if (gtt->userptr > end || gtt->userptr + size <= start)
1257 return false;
1258
1259 if (userptr)
1260 *userptr = gtt->userptr;
1261 return true;
1262 }
1263
1264 /*
1265 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1266 */
amdgpu_ttm_tt_is_userptr(struct ttm_tt * ttm)1267 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1268 {
1269 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1270
1271 if (gtt == NULL || !gtt->userptr)
1272 return false;
1273
1274 return true;
1275 }
1276
1277 /*
1278 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1279 */
amdgpu_ttm_tt_is_readonly(struct ttm_tt * ttm)1280 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1281 {
1282 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1283
1284 if (gtt == NULL)
1285 return false;
1286
1287 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1288 }
1289
1290 /**
1291 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1292 *
1293 * @ttm: The ttm_tt object to compute the flags for
1294 * @mem: The memory registry backing this ttm_tt object
1295 *
1296 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1297 */
amdgpu_ttm_tt_pde_flags(struct ttm_tt * ttm,struct ttm_resource * mem)1298 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1299 {
1300 uint64_t flags = 0;
1301
1302 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1303 flags |= AMDGPU_PTE_VALID;
1304
1305 if (mem && (mem->mem_type == TTM_PL_TT ||
1306 mem->mem_type == AMDGPU_PL_PREEMPT)) {
1307 flags |= AMDGPU_PTE_SYSTEM;
1308
1309 if (ttm->caching == ttm_cached)
1310 flags |= AMDGPU_PTE_SNOOPED;
1311 }
1312
1313 if (mem && mem->mem_type == TTM_PL_VRAM &&
1314 mem->bus.caching == ttm_cached)
1315 flags |= AMDGPU_PTE_SNOOPED;
1316
1317 return flags;
1318 }
1319
1320 /**
1321 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1322 *
1323 * @adev: amdgpu_device pointer
1324 * @ttm: The ttm_tt object to compute the flags for
1325 * @mem: The memory registry backing this ttm_tt object
1326 *
1327 * Figure out the flags to use for a VM PTE (Page Table Entry).
1328 */
amdgpu_ttm_tt_pte_flags(struct amdgpu_device * adev,struct ttm_tt * ttm,struct ttm_resource * mem)1329 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1330 struct ttm_resource *mem)
1331 {
1332 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1333
1334 flags |= adev->gart.gart_pte_flags;
1335 flags |= AMDGPU_PTE_READABLE;
1336
1337 if (!amdgpu_ttm_tt_is_readonly(ttm))
1338 flags |= AMDGPU_PTE_WRITEABLE;
1339
1340 return flags;
1341 }
1342
1343 /*
1344 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1345 * object.
1346 *
1347 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1348 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1349 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1350 * used to clean out a memory space.
1351 */
amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object * bo,const struct ttm_place * place)1352 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1353 const struct ttm_place *place)
1354 {
1355 unsigned long num_pages = bo->resource->num_pages;
1356 struct amdgpu_res_cursor cursor;
1357 struct dma_resv_list *flist;
1358 struct dma_fence *f;
1359 int i;
1360
1361 /* Swapout? */
1362 if (bo->resource->mem_type == TTM_PL_SYSTEM)
1363 return true;
1364
1365 if (bo->type == ttm_bo_type_kernel &&
1366 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1367 return false;
1368
1369 /* If bo is a KFD BO, check if the bo belongs to the current process.
1370 * If true, then return false as any KFD process needs all its BOs to
1371 * be resident to run successfully
1372 */
1373 flist = dma_resv_shared_list(bo->base.resv);
1374 if (flist) {
1375 for (i = 0; i < flist->shared_count; ++i) {
1376 f = rcu_dereference_protected(flist->shared[i],
1377 dma_resv_held(bo->base.resv));
1378 if (amdkfd_fence_check_mm(f, current->mm))
1379 return false;
1380 }
1381 }
1382
1383 switch (bo->resource->mem_type) {
1384 case AMDGPU_PL_PREEMPT:
1385 /* Preemptible BOs don't own system resources managed by the
1386 * driver (pages, VRAM, GART space). They point to resources
1387 * owned by someone else (e.g. pageable memory in user mode
1388 * or a DMABuf). They are used in a preemptible context so we
1389 * can guarantee no deadlocks and good QoS in case of MMU
1390 * notifiers or DMABuf move notifiers from the resource owner.
1391 */
1392 return false;
1393 case TTM_PL_TT:
1394 if (amdgpu_bo_is_amdgpu_bo(bo) &&
1395 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1396 return false;
1397 return true;
1398
1399 case TTM_PL_VRAM:
1400 /* Check each drm MM node individually */
1401 amdgpu_res_first(bo->resource, 0, (u64)num_pages << PAGE_SHIFT,
1402 &cursor);
1403 while (cursor.remaining) {
1404 if (place->fpfn < PFN_DOWN(cursor.start + cursor.size)
1405 && !(place->lpfn &&
1406 place->lpfn <= PFN_DOWN(cursor.start)))
1407 return true;
1408
1409 amdgpu_res_next(&cursor, cursor.size);
1410 }
1411 return false;
1412
1413 default:
1414 break;
1415 }
1416
1417 return ttm_bo_eviction_valuable(bo, place);
1418 }
1419
amdgpu_ttm_vram_mm_access(struct amdgpu_device * adev,loff_t pos,void * buf,size_t size,bool write)1420 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1421 void *buf, size_t size, bool write)
1422 {
1423 while (size) {
1424 uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1425 uint64_t bytes = 4 - (pos & 0x3);
1426 uint32_t shift = (pos & 0x3) * 8;
1427 uint32_t mask = 0xffffffff << shift;
1428 uint32_t value = 0;
1429
1430 if (size < bytes) {
1431 mask &= 0xffffffff >> (bytes - size) * 8;
1432 bytes = size;
1433 }
1434
1435 if (mask != 0xffffffff) {
1436 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1437 if (write) {
1438 value &= ~mask;
1439 value |= (*(uint32_t *)buf << shift) & mask;
1440 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1441 } else {
1442 value = (value & mask) >> shift;
1443 memcpy(buf, &value, bytes);
1444 }
1445 } else {
1446 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1447 }
1448
1449 pos += bytes;
1450 buf += bytes;
1451 size -= bytes;
1452 }
1453 }
1454
1455 /**
1456 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1457 *
1458 * @bo: The buffer object to read/write
1459 * @offset: Offset into buffer object
1460 * @buf: Secondary buffer to write/read from
1461 * @len: Length in bytes of access
1462 * @write: true if writing
1463 *
1464 * This is used to access VRAM that backs a buffer object via MMIO
1465 * access for debugging purposes.
1466 */
amdgpu_ttm_access_memory(struct ttm_buffer_object * bo,unsigned long offset,void * buf,int len,int write)1467 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1468 unsigned long offset, void *buf, int len,
1469 int write)
1470 {
1471 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1472 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1473 struct amdgpu_res_cursor cursor;
1474 int ret = 0;
1475
1476 if (bo->resource->mem_type != TTM_PL_VRAM)
1477 return -EIO;
1478
1479 amdgpu_res_first(bo->resource, offset, len, &cursor);
1480 while (cursor.remaining) {
1481 size_t count, size = cursor.size;
1482 loff_t pos = cursor.start;
1483
1484 count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1485 size -= count;
1486 if (size) {
1487 /* using MM to access rest vram and handle un-aligned address */
1488 pos += count;
1489 buf += count;
1490 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1491 }
1492
1493 ret += cursor.size;
1494 buf += cursor.size;
1495 amdgpu_res_next(&cursor, cursor.size);
1496 }
1497
1498 return ret;
1499 }
1500
1501 static void
amdgpu_bo_delete_mem_notify(struct ttm_buffer_object * bo)1502 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1503 {
1504 amdgpu_bo_move_notify(bo, false, NULL);
1505 }
1506
1507 static struct ttm_device_funcs amdgpu_bo_driver = {
1508 .ttm_tt_create = &amdgpu_ttm_tt_create,
1509 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1510 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1511 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1512 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1513 .evict_flags = &amdgpu_evict_flags,
1514 .move = &amdgpu_bo_move,
1515 .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1516 .release_notify = &amdgpu_bo_release_notify,
1517 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1518 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1519 .access_memory = &amdgpu_ttm_access_memory,
1520 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1521 };
1522
1523 /*
1524 * Firmware Reservation functions
1525 */
1526 /**
1527 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1528 *
1529 * @adev: amdgpu_device pointer
1530 *
1531 * free fw reserved vram if it has been reserved.
1532 */
amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device * adev)1533 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1534 {
1535 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1536 NULL, &adev->mman.fw_vram_usage_va);
1537 }
1538
1539 /**
1540 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1541 *
1542 * @adev: amdgpu_device pointer
1543 *
1544 * create bo vram reservation from fw.
1545 */
amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device * adev)1546 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1547 {
1548 uint64_t vram_size = adev->gmc.visible_vram_size;
1549
1550 adev->mman.fw_vram_usage_va = NULL;
1551 adev->mman.fw_vram_usage_reserved_bo = NULL;
1552
1553 if (adev->mman.fw_vram_usage_size == 0 ||
1554 adev->mman.fw_vram_usage_size > vram_size)
1555 return 0;
1556
1557 return amdgpu_bo_create_kernel_at(adev,
1558 adev->mman.fw_vram_usage_start_offset,
1559 adev->mman.fw_vram_usage_size,
1560 AMDGPU_GEM_DOMAIN_VRAM,
1561 &adev->mman.fw_vram_usage_reserved_bo,
1562 &adev->mman.fw_vram_usage_va);
1563 }
1564
1565 /*
1566 * Memoy training reservation functions
1567 */
1568
1569 /**
1570 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1571 *
1572 * @adev: amdgpu_device pointer
1573 *
1574 * free memory training reserved vram if it has been reserved.
1575 */
amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device * adev)1576 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1577 {
1578 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1579
1580 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1581 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1582 ctx->c2p_bo = NULL;
1583
1584 return 0;
1585 }
1586
amdgpu_ttm_training_data_block_init(struct amdgpu_device * adev)1587 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1588 {
1589 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1590
1591 memset(ctx, 0, sizeof(*ctx));
1592
1593 ctx->c2p_train_data_offset =
1594 ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1595 ctx->p2c_train_data_offset =
1596 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1597 ctx->train_data_size =
1598 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1599
1600 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1601 ctx->train_data_size,
1602 ctx->p2c_train_data_offset,
1603 ctx->c2p_train_data_offset);
1604 }
1605
1606 /*
1607 * reserve TMR memory at the top of VRAM which holds
1608 * IP Discovery data and is protected by PSP.
1609 */
amdgpu_ttm_reserve_tmr(struct amdgpu_device * adev)1610 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1611 {
1612 int ret;
1613 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1614 bool mem_train_support = false;
1615
1616 if (!amdgpu_sriov_vf(adev)) {
1617 if (amdgpu_atomfirmware_mem_training_supported(adev))
1618 mem_train_support = true;
1619 else
1620 DRM_DEBUG("memory training does not support!\n");
1621 }
1622
1623 /*
1624 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1625 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1626 *
1627 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1628 * discovery data and G6 memory training data respectively
1629 */
1630 adev->mman.discovery_tmr_size =
1631 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1632 if (!adev->mman.discovery_tmr_size)
1633 adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1634
1635 if (mem_train_support) {
1636 /* reserve vram for mem train according to TMR location */
1637 amdgpu_ttm_training_data_block_init(adev);
1638 ret = amdgpu_bo_create_kernel_at(adev,
1639 ctx->c2p_train_data_offset,
1640 ctx->train_data_size,
1641 AMDGPU_GEM_DOMAIN_VRAM,
1642 &ctx->c2p_bo,
1643 NULL);
1644 if (ret) {
1645 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1646 amdgpu_ttm_training_reserve_vram_fini(adev);
1647 return ret;
1648 }
1649 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1650 }
1651
1652 ret = amdgpu_bo_create_kernel_at(adev,
1653 adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1654 adev->mman.discovery_tmr_size,
1655 AMDGPU_GEM_DOMAIN_VRAM,
1656 &adev->mman.discovery_memory,
1657 NULL);
1658 if (ret) {
1659 DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1660 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1661 return ret;
1662 }
1663
1664 return 0;
1665 }
1666
1667 /*
1668 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1669 * gtt/vram related fields.
1670 *
1671 * This initializes all of the memory space pools that the TTM layer
1672 * will need such as the GTT space (system memory mapped to the device),
1673 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1674 * can be mapped per VMID.
1675 */
amdgpu_ttm_init(struct amdgpu_device * adev)1676 int amdgpu_ttm_init(struct amdgpu_device *adev)
1677 {
1678 uint64_t gtt_size;
1679 int r;
1680 u64 vis_vram_limit;
1681
1682 mutex_init(&adev->mman.gtt_window_lock);
1683
1684 /* No others user of address space so set it to 0 */
1685 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1686 adev_to_drm(adev)->anon_inode->i_mapping,
1687 adev_to_drm(adev)->vma_offset_manager,
1688 adev->need_swiotlb,
1689 dma_addressing_limited(adev->dev));
1690 if (r) {
1691 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1692 return r;
1693 }
1694 adev->mman.initialized = true;
1695
1696 /* Initialize VRAM pool with all of VRAM divided into pages */
1697 r = amdgpu_vram_mgr_init(adev);
1698 if (r) {
1699 DRM_ERROR("Failed initializing VRAM heap.\n");
1700 return r;
1701 }
1702
1703 /* Reduce size of CPU-visible VRAM if requested */
1704 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1705 if (amdgpu_vis_vram_limit > 0 &&
1706 vis_vram_limit <= adev->gmc.visible_vram_size)
1707 adev->gmc.visible_vram_size = vis_vram_limit;
1708
1709 /* Change the size here instead of the init above so only lpfn is affected */
1710 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1711 #ifdef CONFIG_64BIT
1712 #ifdef CONFIG_X86
1713 if (adev->gmc.xgmi.connected_to_cpu)
1714 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1715 adev->gmc.visible_vram_size);
1716
1717 else
1718 #endif
1719 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1720 adev->gmc.visible_vram_size);
1721 #endif
1722
1723 /*
1724 *The reserved vram for firmware must be pinned to the specified
1725 *place on the VRAM, so reserve it early.
1726 */
1727 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1728 if (r) {
1729 return r;
1730 }
1731
1732 /*
1733 * only NAVI10 and onwards ASIC support for IP discovery.
1734 * If IP discovery enabled, a block of memory should be
1735 * reserved for IP discovey.
1736 */
1737 if (adev->mman.discovery_bin) {
1738 r = amdgpu_ttm_reserve_tmr(adev);
1739 if (r)
1740 return r;
1741 }
1742
1743 /* allocate memory as required for VGA
1744 * This is used for VGA emulation and pre-OS scanout buffers to
1745 * avoid display artifacts while transitioning between pre-OS
1746 * and driver. */
1747 r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1748 AMDGPU_GEM_DOMAIN_VRAM,
1749 &adev->mman.stolen_vga_memory,
1750 NULL);
1751 if (r)
1752 return r;
1753 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1754 adev->mman.stolen_extended_size,
1755 AMDGPU_GEM_DOMAIN_VRAM,
1756 &adev->mman.stolen_extended_memory,
1757 NULL);
1758 if (r)
1759 return r;
1760 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset,
1761 adev->mman.stolen_reserved_size,
1762 AMDGPU_GEM_DOMAIN_VRAM,
1763 &adev->mman.stolen_reserved_memory,
1764 NULL);
1765 if (r)
1766 return r;
1767
1768 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1769 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1770
1771 /* Compute GTT size, either bsaed on 3/4th the size of RAM size
1772 * or whatever the user passed on module init */
1773 if (amdgpu_gtt_size == -1) {
1774 struct sysinfo si;
1775
1776 si_meminfo(&si);
1777 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1778 adev->gmc.mc_vram_size),
1779 ((uint64_t)si.totalram * si.mem_unit * 3/4));
1780 }
1781 else
1782 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1783
1784 /* Initialize GTT memory pool */
1785 r = amdgpu_gtt_mgr_init(adev, gtt_size);
1786 if (r) {
1787 DRM_ERROR("Failed initializing GTT heap.\n");
1788 return r;
1789 }
1790 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1791 (unsigned)(gtt_size / (1024 * 1024)));
1792
1793 /* Initialize preemptible memory pool */
1794 r = amdgpu_preempt_mgr_init(adev);
1795 if (r) {
1796 DRM_ERROR("Failed initializing PREEMPT heap.\n");
1797 return r;
1798 }
1799
1800 /* Initialize various on-chip memory pools */
1801 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1802 if (r) {
1803 DRM_ERROR("Failed initializing GDS heap.\n");
1804 return r;
1805 }
1806
1807 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1808 if (r) {
1809 DRM_ERROR("Failed initializing gws heap.\n");
1810 return r;
1811 }
1812
1813 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1814 if (r) {
1815 DRM_ERROR("Failed initializing oa heap.\n");
1816 return r;
1817 }
1818
1819 return 0;
1820 }
1821
1822 /*
1823 * amdgpu_ttm_fini - De-initialize the TTM memory pools
1824 */
amdgpu_ttm_fini(struct amdgpu_device * adev)1825 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1826 {
1827 if (!adev->mman.initialized)
1828 return;
1829
1830 amdgpu_ttm_training_reserve_vram_fini(adev);
1831 /* return the stolen vga memory back to VRAM */
1832 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1833 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1834 /* return the IP Discovery TMR memory back to VRAM */
1835 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1836 if (adev->mman.stolen_reserved_size)
1837 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
1838 NULL, NULL);
1839 amdgpu_ttm_fw_reserve_vram_fini(adev);
1840
1841 amdgpu_vram_mgr_fini(adev);
1842 amdgpu_gtt_mgr_fini(adev);
1843 amdgpu_preempt_mgr_fini(adev);
1844 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1845 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1846 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1847 ttm_device_fini(&adev->mman.bdev);
1848 adev->mman.initialized = false;
1849 DRM_INFO("amdgpu: ttm finalized\n");
1850 }
1851
1852 /**
1853 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1854 *
1855 * @adev: amdgpu_device pointer
1856 * @enable: true when we can use buffer functions.
1857 *
1858 * Enable/disable use of buffer functions during suspend/resume. This should
1859 * only be called at bootup or when userspace isn't running.
1860 */
amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device * adev,bool enable)1861 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1862 {
1863 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
1864 uint64_t size;
1865 int r;
1866
1867 if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
1868 adev->mman.buffer_funcs_enabled == enable)
1869 return;
1870
1871 if (enable) {
1872 struct amdgpu_ring *ring;
1873 struct drm_gpu_scheduler *sched;
1874
1875 ring = adev->mman.buffer_funcs_ring;
1876 sched = &ring->sched;
1877 r = drm_sched_entity_init(&adev->mman.entity,
1878 DRM_SCHED_PRIORITY_KERNEL, &sched,
1879 1, NULL);
1880 if (r) {
1881 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1882 r);
1883 return;
1884 }
1885 } else {
1886 drm_sched_entity_destroy(&adev->mman.entity);
1887 dma_fence_put(man->move);
1888 man->move = NULL;
1889 }
1890
1891 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
1892 if (enable)
1893 size = adev->gmc.real_vram_size;
1894 else
1895 size = adev->gmc.visible_vram_size;
1896 man->size = size >> PAGE_SHIFT;
1897 adev->mman.buffer_funcs_enabled = enable;
1898 }
1899
amdgpu_copy_buffer(struct amdgpu_ring * ring,uint64_t src_offset,uint64_t dst_offset,uint32_t byte_count,struct dma_resv * resv,struct dma_fence ** fence,bool direct_submit,bool vm_needs_flush,bool tmz)1900 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1901 uint64_t dst_offset, uint32_t byte_count,
1902 struct dma_resv *resv,
1903 struct dma_fence **fence, bool direct_submit,
1904 bool vm_needs_flush, bool tmz)
1905 {
1906 enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
1907 AMDGPU_IB_POOL_DELAYED;
1908 struct amdgpu_device *adev = ring->adev;
1909 struct amdgpu_job *job;
1910
1911 uint32_t max_bytes;
1912 unsigned num_loops, num_dw;
1913 unsigned i;
1914 int r;
1915
1916 if (direct_submit && !ring->sched.ready) {
1917 DRM_ERROR("Trying to move memory with ring turned off.\n");
1918 return -EINVAL;
1919 }
1920
1921 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
1922 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
1923 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
1924
1925 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
1926 if (r)
1927 return r;
1928
1929 if (vm_needs_flush) {
1930 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
1931 adev->gmc.pdb0_bo : adev->gart.bo);
1932 job->vm_needs_flush = true;
1933 }
1934 if (resv) {
1935 r = amdgpu_sync_resv(adev, &job->sync, resv,
1936 AMDGPU_SYNC_ALWAYS,
1937 AMDGPU_FENCE_OWNER_UNDEFINED);
1938 if (r) {
1939 DRM_ERROR("sync failed (%d).\n", r);
1940 goto error_free;
1941 }
1942 }
1943
1944 for (i = 0; i < num_loops; i++) {
1945 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
1946
1947 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
1948 dst_offset, cur_size_in_bytes, tmz);
1949
1950 src_offset += cur_size_in_bytes;
1951 dst_offset += cur_size_in_bytes;
1952 byte_count -= cur_size_in_bytes;
1953 }
1954
1955 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1956 WARN_ON(job->ibs[0].length_dw > num_dw);
1957 if (direct_submit)
1958 r = amdgpu_job_submit_direct(job, ring, fence);
1959 else
1960 r = amdgpu_job_submit(job, &adev->mman.entity,
1961 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
1962 if (r)
1963 goto error_free;
1964
1965 return r;
1966
1967 error_free:
1968 amdgpu_job_free(job);
1969 DRM_ERROR("Error scheduling IBs (%d)\n", r);
1970 return r;
1971 }
1972
amdgpu_fill_buffer(struct amdgpu_bo * bo,uint32_t src_data,struct dma_resv * resv,struct dma_fence ** fence)1973 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
1974 uint32_t src_data,
1975 struct dma_resv *resv,
1976 struct dma_fence **fence)
1977 {
1978 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
1979 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
1980 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
1981
1982 struct amdgpu_res_cursor cursor;
1983 unsigned int num_loops, num_dw;
1984 uint64_t num_bytes;
1985
1986 struct amdgpu_job *job;
1987 int r;
1988
1989 if (!adev->mman.buffer_funcs_enabled) {
1990 DRM_ERROR("Trying to clear memory with ring turned off.\n");
1991 return -EINVAL;
1992 }
1993
1994 if (bo->tbo.resource->mem_type == AMDGPU_PL_PREEMPT) {
1995 DRM_ERROR("Trying to clear preemptible memory.\n");
1996 return -EINVAL;
1997 }
1998
1999 if (bo->tbo.resource->mem_type == TTM_PL_TT) {
2000 r = amdgpu_ttm_alloc_gart(&bo->tbo);
2001 if (r)
2002 return r;
2003 }
2004
2005 num_bytes = bo->tbo.resource->num_pages << PAGE_SHIFT;
2006 num_loops = 0;
2007
2008 amdgpu_res_first(bo->tbo.resource, 0, num_bytes, &cursor);
2009 while (cursor.remaining) {
2010 num_loops += DIV_ROUND_UP_ULL(cursor.size, max_bytes);
2011 amdgpu_res_next(&cursor, cursor.size);
2012 }
2013 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2014
2015 /* for IB padding */
2016 num_dw += 64;
2017
2018 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
2019 &job);
2020 if (r)
2021 return r;
2022
2023 if (resv) {
2024 r = amdgpu_sync_resv(adev, &job->sync, resv,
2025 AMDGPU_SYNC_ALWAYS,
2026 AMDGPU_FENCE_OWNER_UNDEFINED);
2027 if (r) {
2028 DRM_ERROR("sync failed (%d).\n", r);
2029 goto error_free;
2030 }
2031 }
2032
2033 amdgpu_res_first(bo->tbo.resource, 0, num_bytes, &cursor);
2034 while (cursor.remaining) {
2035 uint32_t cur_size = min_t(uint64_t, cursor.size, max_bytes);
2036 uint64_t dst_addr = cursor.start;
2037
2038 dst_addr += amdgpu_ttm_domain_start(adev,
2039 bo->tbo.resource->mem_type);
2040 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2041 cur_size);
2042
2043 amdgpu_res_next(&cursor, cur_size);
2044 }
2045
2046 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2047 WARN_ON(job->ibs[0].length_dw > num_dw);
2048 r = amdgpu_job_submit(job, &adev->mman.entity,
2049 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2050 if (r)
2051 goto error_free;
2052
2053 return 0;
2054
2055 error_free:
2056 amdgpu_job_free(job);
2057 return r;
2058 }
2059
2060 /**
2061 * amdgpu_ttm_evict_resources - evict memory buffers
2062 * @adev: amdgpu device object
2063 * @mem_type: evicted BO's memory type
2064 *
2065 * Evicts all @mem_type buffers on the lru list of the memory type.
2066 *
2067 * Returns:
2068 * 0 for success or a negative error code on failure.
2069 */
amdgpu_ttm_evict_resources(struct amdgpu_device * adev,int mem_type)2070 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2071 {
2072 struct ttm_resource_manager *man;
2073
2074 switch (mem_type) {
2075 case TTM_PL_VRAM:
2076 case TTM_PL_TT:
2077 case AMDGPU_PL_GWS:
2078 case AMDGPU_PL_GDS:
2079 case AMDGPU_PL_OA:
2080 man = ttm_manager_type(&adev->mman.bdev, mem_type);
2081 break;
2082 default:
2083 DRM_ERROR("Trying to evict invalid memory type\n");
2084 return -EINVAL;
2085 }
2086
2087 return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2088 }
2089
2090 #if defined(CONFIG_DEBUG_FS)
2091
amdgpu_mm_vram_table_show(struct seq_file * m,void * unused)2092 static int amdgpu_mm_vram_table_show(struct seq_file *m, void *unused)
2093 {
2094 struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2095 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2096 TTM_PL_VRAM);
2097 struct drm_printer p = drm_seq_file_printer(m);
2098
2099 man->func->debug(man, &p);
2100 return 0;
2101 }
2102
amdgpu_ttm_page_pool_show(struct seq_file * m,void * unused)2103 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2104 {
2105 struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2106
2107 return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2108 }
2109
amdgpu_mm_tt_table_show(struct seq_file * m,void * unused)2110 static int amdgpu_mm_tt_table_show(struct seq_file *m, void *unused)
2111 {
2112 struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2113 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2114 TTM_PL_TT);
2115 struct drm_printer p = drm_seq_file_printer(m);
2116
2117 man->func->debug(man, &p);
2118 return 0;
2119 }
2120
amdgpu_mm_gds_table_show(struct seq_file * m,void * unused)2121 static int amdgpu_mm_gds_table_show(struct seq_file *m, void *unused)
2122 {
2123 struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2124 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2125 AMDGPU_PL_GDS);
2126 struct drm_printer p = drm_seq_file_printer(m);
2127
2128 man->func->debug(man, &p);
2129 return 0;
2130 }
2131
amdgpu_mm_gws_table_show(struct seq_file * m,void * unused)2132 static int amdgpu_mm_gws_table_show(struct seq_file *m, void *unused)
2133 {
2134 struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2135 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2136 AMDGPU_PL_GWS);
2137 struct drm_printer p = drm_seq_file_printer(m);
2138
2139 man->func->debug(man, &p);
2140 return 0;
2141 }
2142
amdgpu_mm_oa_table_show(struct seq_file * m,void * unused)2143 static int amdgpu_mm_oa_table_show(struct seq_file *m, void *unused)
2144 {
2145 struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2146 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2147 AMDGPU_PL_OA);
2148 struct drm_printer p = drm_seq_file_printer(m);
2149
2150 man->func->debug(man, &p);
2151 return 0;
2152 }
2153
2154 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_vram_table);
2155 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_tt_table);
2156 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gds_table);
2157 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gws_table);
2158 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_oa_table);
2159 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2160
2161 /*
2162 * amdgpu_ttm_vram_read - Linear read access to VRAM
2163 *
2164 * Accesses VRAM via MMIO for debugging purposes.
2165 */
amdgpu_ttm_vram_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2166 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2167 size_t size, loff_t *pos)
2168 {
2169 struct amdgpu_device *adev = file_inode(f)->i_private;
2170 ssize_t result = 0;
2171
2172 if (size & 0x3 || *pos & 0x3)
2173 return -EINVAL;
2174
2175 if (*pos >= adev->gmc.mc_vram_size)
2176 return -ENXIO;
2177
2178 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2179 while (size) {
2180 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2181 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2182
2183 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2184 if (copy_to_user(buf, value, bytes))
2185 return -EFAULT;
2186
2187 result += bytes;
2188 buf += bytes;
2189 *pos += bytes;
2190 size -= bytes;
2191 }
2192
2193 return result;
2194 }
2195
2196 /*
2197 * amdgpu_ttm_vram_write - Linear write access to VRAM
2198 *
2199 * Accesses VRAM via MMIO for debugging purposes.
2200 */
amdgpu_ttm_vram_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2201 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2202 size_t size, loff_t *pos)
2203 {
2204 struct amdgpu_device *adev = file_inode(f)->i_private;
2205 ssize_t result = 0;
2206 int r;
2207
2208 if (size & 0x3 || *pos & 0x3)
2209 return -EINVAL;
2210
2211 if (*pos >= adev->gmc.mc_vram_size)
2212 return -ENXIO;
2213
2214 while (size) {
2215 uint32_t value;
2216
2217 if (*pos >= adev->gmc.mc_vram_size)
2218 return result;
2219
2220 r = get_user(value, (uint32_t *)buf);
2221 if (r)
2222 return r;
2223
2224 amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2225
2226 result += 4;
2227 buf += 4;
2228 *pos += 4;
2229 size -= 4;
2230 }
2231
2232 return result;
2233 }
2234
2235 static const struct file_operations amdgpu_ttm_vram_fops = {
2236 .owner = THIS_MODULE,
2237 .read = amdgpu_ttm_vram_read,
2238 .write = amdgpu_ttm_vram_write,
2239 .llseek = default_llseek,
2240 };
2241
2242 /*
2243 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2244 *
2245 * This function is used to read memory that has been mapped to the
2246 * GPU and the known addresses are not physical addresses but instead
2247 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2248 */
amdgpu_iomem_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2249 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2250 size_t size, loff_t *pos)
2251 {
2252 struct amdgpu_device *adev = file_inode(f)->i_private;
2253 struct iommu_domain *dom;
2254 ssize_t result = 0;
2255 int r;
2256
2257 /* retrieve the IOMMU domain if any for this device */
2258 dom = iommu_get_domain_for_dev(adev->dev);
2259
2260 while (size) {
2261 phys_addr_t addr = *pos & PAGE_MASK;
2262 loff_t off = *pos & ~PAGE_MASK;
2263 size_t bytes = PAGE_SIZE - off;
2264 unsigned long pfn;
2265 struct page *p;
2266 void *ptr;
2267
2268 bytes = bytes < size ? bytes : size;
2269
2270 /* Translate the bus address to a physical address. If
2271 * the domain is NULL it means there is no IOMMU active
2272 * and the address translation is the identity
2273 */
2274 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2275
2276 pfn = addr >> PAGE_SHIFT;
2277 if (!pfn_valid(pfn))
2278 return -EPERM;
2279
2280 p = pfn_to_page(pfn);
2281 if (p->mapping != adev->mman.bdev.dev_mapping)
2282 return -EPERM;
2283
2284 ptr = kmap(p);
2285 r = copy_to_user(buf, ptr + off, bytes);
2286 kunmap(p);
2287 if (r)
2288 return -EFAULT;
2289
2290 size -= bytes;
2291 *pos += bytes;
2292 result += bytes;
2293 }
2294
2295 return result;
2296 }
2297
2298 /*
2299 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2300 *
2301 * This function is used to write memory that has been mapped to the
2302 * GPU and the known addresses are not physical addresses but instead
2303 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2304 */
amdgpu_iomem_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2305 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2306 size_t size, loff_t *pos)
2307 {
2308 struct amdgpu_device *adev = file_inode(f)->i_private;
2309 struct iommu_domain *dom;
2310 ssize_t result = 0;
2311 int r;
2312
2313 dom = iommu_get_domain_for_dev(adev->dev);
2314
2315 while (size) {
2316 phys_addr_t addr = *pos & PAGE_MASK;
2317 loff_t off = *pos & ~PAGE_MASK;
2318 size_t bytes = PAGE_SIZE - off;
2319 unsigned long pfn;
2320 struct page *p;
2321 void *ptr;
2322
2323 bytes = bytes < size ? bytes : size;
2324
2325 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2326
2327 pfn = addr >> PAGE_SHIFT;
2328 if (!pfn_valid(pfn))
2329 return -EPERM;
2330
2331 p = pfn_to_page(pfn);
2332 if (p->mapping != adev->mman.bdev.dev_mapping)
2333 return -EPERM;
2334
2335 ptr = kmap(p);
2336 r = copy_from_user(ptr + off, buf, bytes);
2337 kunmap(p);
2338 if (r)
2339 return -EFAULT;
2340
2341 size -= bytes;
2342 *pos += bytes;
2343 result += bytes;
2344 }
2345
2346 return result;
2347 }
2348
2349 static const struct file_operations amdgpu_ttm_iomem_fops = {
2350 .owner = THIS_MODULE,
2351 .read = amdgpu_iomem_read,
2352 .write = amdgpu_iomem_write,
2353 .llseek = default_llseek
2354 };
2355
2356 #endif
2357
amdgpu_ttm_debugfs_init(struct amdgpu_device * adev)2358 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2359 {
2360 #if defined(CONFIG_DEBUG_FS)
2361 struct drm_minor *minor = adev_to_drm(adev)->primary;
2362 struct dentry *root = minor->debugfs_root;
2363
2364 debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2365 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2366 debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2367 &amdgpu_ttm_iomem_fops);
2368 debugfs_create_file("amdgpu_vram_mm", 0444, root, adev,
2369 &amdgpu_mm_vram_table_fops);
2370 debugfs_create_file("amdgpu_gtt_mm", 0444, root, adev,
2371 &amdgpu_mm_tt_table_fops);
2372 debugfs_create_file("amdgpu_gds_mm", 0444, root, adev,
2373 &amdgpu_mm_gds_table_fops);
2374 debugfs_create_file("amdgpu_gws_mm", 0444, root, adev,
2375 &amdgpu_mm_gws_table_fops);
2376 debugfs_create_file("amdgpu_oa_mm", 0444, root, adev,
2377 &amdgpu_mm_oa_table_fops);
2378 debugfs_create_file("ttm_page_pool", 0444, root, adev,
2379 &amdgpu_ttm_page_pool_fops);
2380 #endif
2381 }
2382