1 /*
2  * Copyright (c) 2015-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 
10 #include <arch.h>
11 #include <arch_helpers.h>
12 #include <common/debug.h>
13 #include <drivers/delay_timer.h>
14 #include <denver.h>
15 #include <lib/mmio.h>
16 #include <plat/common/platform.h>
17 
18 #include <mce_private.h>
19 #include <t18x_ari.h>
20 
21 /*******************************************************************************
22  * Register offsets for ARI request/results
23  ******************************************************************************/
24 #define ARI_REQUEST			0x0U
25 #define ARI_REQUEST_EVENT_MASK		0x4U
26 #define ARI_STATUS			0x8U
27 #define ARI_REQUEST_DATA_LO		0xCU
28 #define ARI_REQUEST_DATA_HI		0x10U
29 #define ARI_RESPONSE_DATA_LO		0x14U
30 #define ARI_RESPONSE_DATA_HI		0x18U
31 
32 /* Status values for the current request */
33 #define ARI_REQ_PENDING			1U
34 #define ARI_REQ_ONGOING			3U
35 #define ARI_REQUEST_VALID_BIT		(1U << 8)
36 #define ARI_EVT_MASK_STANDBYWFI_BIT	(1U << 7)
37 
38 /* default timeout (us) to wait for ARI completion */
39 #define ARI_MAX_RETRY_COUNT		U(2000000)
40 
41 /*******************************************************************************
42  * ARI helper functions
43  ******************************************************************************/
ari_read_32(uint32_t ari_base,uint32_t reg)44 static inline uint32_t ari_read_32(uint32_t ari_base, uint32_t reg)
45 {
46 	return mmio_read_32((uint64_t)ari_base + (uint64_t)reg);
47 }
48 
ari_write_32(uint32_t ari_base,uint32_t val,uint32_t reg)49 static inline void ari_write_32(uint32_t ari_base, uint32_t val, uint32_t reg)
50 {
51 	mmio_write_32((uint64_t)ari_base + (uint64_t)reg, val);
52 }
53 
ari_get_request_low(uint32_t ari_base)54 static inline uint32_t ari_get_request_low(uint32_t ari_base)
55 {
56 	return ari_read_32(ari_base, ARI_REQUEST_DATA_LO);
57 }
58 
ari_get_request_high(uint32_t ari_base)59 static inline uint32_t ari_get_request_high(uint32_t ari_base)
60 {
61 	return ari_read_32(ari_base, ARI_REQUEST_DATA_HI);
62 }
63 
ari_get_response_low(uint32_t ari_base)64 static inline uint32_t ari_get_response_low(uint32_t ari_base)
65 {
66 	return ari_read_32(ari_base, ARI_RESPONSE_DATA_LO);
67 }
68 
ari_get_response_high(uint32_t ari_base)69 static inline uint32_t ari_get_response_high(uint32_t ari_base)
70 {
71 	return ari_read_32(ari_base, ARI_RESPONSE_DATA_HI);
72 }
73 
ari_clobber_response(uint32_t ari_base)74 static inline void ari_clobber_response(uint32_t ari_base)
75 {
76 	ari_write_32(ari_base, 0, ARI_RESPONSE_DATA_LO);
77 	ari_write_32(ari_base, 0, ARI_RESPONSE_DATA_HI);
78 }
79 
ari_request_wait(uint32_t ari_base,uint32_t evt_mask,uint32_t req,uint32_t lo,uint32_t hi)80 static int32_t ari_request_wait(uint32_t ari_base, uint32_t evt_mask, uint32_t req,
81 		uint32_t lo, uint32_t hi)
82 {
83 	uint32_t retries = (uint32_t)ARI_MAX_RETRY_COUNT;
84 	uint32_t status;
85 	int32_t ret = 0;
86 
87 	/* program the request, event_mask, hi and lo registers */
88 	ari_write_32(ari_base, lo, ARI_REQUEST_DATA_LO);
89 	ari_write_32(ari_base, hi, ARI_REQUEST_DATA_HI);
90 	ari_write_32(ari_base, evt_mask, ARI_REQUEST_EVENT_MASK);
91 	ari_write_32(ari_base, req | ARI_REQUEST_VALID_BIT, ARI_REQUEST);
92 
93 	/*
94 	 * For commands that have an event trigger, we should bypass
95 	 * ARI_STATUS polling, since MCE is waiting for SW to trigger
96 	 * the event.
97 	 */
98 	if (evt_mask != 0U) {
99 		ret = 0;
100 	} else {
101 		/* For shutdown/reboot commands, we dont have to check for timeouts */
102 		if ((req == TEGRA_ARI_MISC_CCPLEX) &&
103 		    ((lo == TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_POWER_OFF) ||
104 		     (lo == TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_REBOOT))) {
105 				ret = 0;
106 		} else {
107 			/*
108 			 * Wait for the command response for not more than the timeout
109 			 */
110 			while (retries != 0U) {
111 
112 				/* read the command status */
113 				status = ari_read_32(ari_base, ARI_STATUS);
114 				if ((status & (ARI_REQ_ONGOING | ARI_REQ_PENDING)) == 0U) {
115 					break;
116 				}
117 
118 				/* delay 1 us */
119 				udelay(1);
120 
121 				/* decrement the retry count */
122 				retries--;
123 			}
124 
125 			/* assert if the command timed out */
126 			if (retries == 0U) {
127 				ERROR("ARI request timed out: req %d on CPU %d\n",
128 					req, plat_my_core_pos());
129 				assert(retries != 0U);
130 			}
131 		}
132 	}
133 
134 	return ret;
135 }
136 
ari_enter_cstate(uint32_t ari_base,uint32_t state,uint32_t wake_time)137 int32_t ari_enter_cstate(uint32_t ari_base, uint32_t state, uint32_t wake_time)
138 {
139 	int32_t ret = 0;
140 
141 	/* check for allowed power state */
142 	if ((state != TEGRA_ARI_CORE_C0) &&
143 	    (state != TEGRA_ARI_CORE_C1) &&
144 	    (state != TEGRA_ARI_CORE_C6) &&
145 	    (state != TEGRA_ARI_CORE_C7)) {
146 		ERROR("%s: unknown cstate (%d)\n", __func__, state);
147 		ret = EINVAL;
148 	} else {
149 		/* clean the previous response state */
150 		ari_clobber_response(ari_base);
151 
152 		/* Enter the cstate, to be woken up after wake_time (TSC ticks) */
153 		ret = ari_request_wait(ari_base, ARI_EVT_MASK_STANDBYWFI_BIT,
154 			(uint32_t)TEGRA_ARI_ENTER_CSTATE, state, wake_time);
155 	}
156 
157 	return ret;
158 }
159 
ari_update_cstate_info(uint32_t ari_base,uint32_t cluster,uint32_t ccplex,uint32_t system,uint8_t sys_state_force,uint32_t wake_mask,uint8_t update_wake_mask)160 int32_t ari_update_cstate_info(uint32_t ari_base, uint32_t cluster, uint32_t ccplex,
161 	uint32_t system, uint8_t sys_state_force, uint32_t wake_mask,
162 	uint8_t update_wake_mask)
163 {
164 	uint64_t val = 0U;
165 
166 	/* clean the previous response state */
167 	ari_clobber_response(ari_base);
168 
169 	/* update CLUSTER_CSTATE? */
170 	if (cluster != 0U) {
171 		val |= (cluster & CLUSTER_CSTATE_MASK) |
172 			CLUSTER_CSTATE_UPDATE_BIT;
173 	}
174 
175 	/* update CCPLEX_CSTATE? */
176 	if (ccplex != 0U) {
177 		val |= ((ccplex & CCPLEX_CSTATE_MASK) << CCPLEX_CSTATE_SHIFT) |
178 			CCPLEX_CSTATE_UPDATE_BIT;
179 	}
180 
181 	/* update SYSTEM_CSTATE? */
182 	if (system != 0U) {
183 		val |= ((system & SYSTEM_CSTATE_MASK) << SYSTEM_CSTATE_SHIFT) |
184 		       (((uint64_t)sys_state_force << SYSTEM_CSTATE_FORCE_UPDATE_SHIFT) |
185 			SYSTEM_CSTATE_UPDATE_BIT);
186 	}
187 
188 	/* update wake mask value? */
189 	if (update_wake_mask != 0U) {
190 		val |= CSTATE_WAKE_MASK_UPDATE_BIT;
191 	}
192 
193 	/* set the updated cstate info */
194 	return ari_request_wait(ari_base, 0U, (uint32_t)TEGRA_ARI_UPDATE_CSTATE_INFO,
195 				(uint32_t)val, wake_mask);
196 }
197 
ari_update_crossover_time(uint32_t ari_base,uint32_t type,uint32_t time)198 int32_t ari_update_crossover_time(uint32_t ari_base, uint32_t type, uint32_t time)
199 {
200 	int32_t ret = 0;
201 
202 	/* sanity check crossover type */
203 	if ((type == TEGRA_ARI_CROSSOVER_C1_C6) ||
204 	    (type > TEGRA_ARI_CROSSOVER_CCP3_SC1)) {
205 		ret = EINVAL;
206 	} else {
207 		/* clean the previous response state */
208 		ari_clobber_response(ari_base);
209 
210 		/* update crossover threshold time */
211 		ret = ari_request_wait(ari_base, 0U,
212 				(uint32_t)TEGRA_ARI_UPDATE_CROSSOVER, type, time);
213 	}
214 
215 	return ret;
216 }
217 
ari_read_cstate_stats(uint32_t ari_base,uint32_t state)218 uint64_t ari_read_cstate_stats(uint32_t ari_base, uint32_t state)
219 {
220 	int32_t ret;
221 	uint64_t result;
222 
223 	/* sanity check crossover type */
224 	if (state == 0U) {
225 		result = EINVAL;
226 	} else {
227 		/* clean the previous response state */
228 		ari_clobber_response(ari_base);
229 
230 		ret = ari_request_wait(ari_base, 0U,
231 				(uint32_t)TEGRA_ARI_CSTATE_STATS, state, 0U);
232 		if (ret != 0) {
233 			result = EINVAL;
234 		} else {
235 			result = (uint64_t)ari_get_response_low(ari_base);
236 		}
237 	}
238 	return result;
239 }
240 
ari_write_cstate_stats(uint32_t ari_base,uint32_t state,uint32_t stats)241 int32_t ari_write_cstate_stats(uint32_t ari_base, uint32_t state, uint32_t stats)
242 {
243 	/* clean the previous response state */
244 	ari_clobber_response(ari_base);
245 
246 	/* write the cstate stats */
247 	return ari_request_wait(ari_base, 0U, (uint32_t)TEGRA_ARI_WRITE_CSTATE_STATS,
248 			state, stats);
249 }
250 
ari_enumeration_misc(uint32_t ari_base,uint32_t cmd,uint32_t data)251 uint64_t ari_enumeration_misc(uint32_t ari_base, uint32_t cmd, uint32_t data)
252 {
253 	uint64_t resp;
254 	int32_t ret;
255 	uint32_t local_data = data;
256 
257 	/* clean the previous response state */
258 	ari_clobber_response(ari_base);
259 
260 	/* ARI_REQUEST_DATA_HI is reserved for commands other than 'ECHO' */
261 	if (cmd != TEGRA_ARI_MISC_ECHO) {
262 		local_data = 0U;
263 	}
264 
265 	ret = ari_request_wait(ari_base, 0U, (uint32_t)TEGRA_ARI_MISC, cmd, local_data);
266 	if (ret != 0) {
267 		resp = (uint64_t)ret;
268 	} else {
269 		/* get the command response */
270 		resp = ari_get_response_low(ari_base);
271 		resp |= ((uint64_t)ari_get_response_high(ari_base) << 32);
272 	}
273 
274 	return resp;
275 }
276 
ari_is_ccx_allowed(uint32_t ari_base,uint32_t state,uint32_t wake_time)277 int32_t ari_is_ccx_allowed(uint32_t ari_base, uint32_t state, uint32_t wake_time)
278 {
279 	int32_t ret;
280 	uint32_t result;
281 
282 	/* clean the previous response state */
283 	ari_clobber_response(ari_base);
284 
285 	ret = ari_request_wait(ari_base, 0U, (uint32_t)TEGRA_ARI_IS_CCX_ALLOWED,
286 			state & 0x7U, wake_time);
287 	if (ret != 0) {
288 		ERROR("%s: failed (%d)\n", __func__, ret);
289 		result = 0U;
290 	} else {
291 		result = ari_get_response_low(ari_base) & 0x1U;
292 	}
293 
294 	/* 1 = CCx allowed, 0 = CCx not allowed */
295 	return (int32_t)result;
296 }
297 
ari_is_sc7_allowed(uint32_t ari_base,uint32_t state,uint32_t wake_time)298 int32_t ari_is_sc7_allowed(uint32_t ari_base, uint32_t state, uint32_t wake_time)
299 {
300 	int32_t ret, result;
301 
302 	/* check for allowed power state */
303 	if ((state != TEGRA_ARI_CORE_C0) && (state != TEGRA_ARI_CORE_C1) &&
304 	    (state != TEGRA_ARI_CORE_C6) && (state != TEGRA_ARI_CORE_C7)) {
305 		ERROR("%s: unknown cstate (%d)\n", __func__, state);
306 		result = EINVAL;
307 	} else {
308 		/* clean the previous response state */
309 		ari_clobber_response(ari_base);
310 
311 		ret = ari_request_wait(ari_base, 0U,
312 			(uint32_t)TEGRA_ARI_IS_SC7_ALLOWED, state, wake_time);
313 		if (ret != 0) {
314 			ERROR("%s: failed (%d)\n", __func__, ret);
315 			result = 0;
316 		} else {
317 			/* 1 = SC7 allowed, 0 = SC7 not allowed */
318 			result = (ari_get_response_low(ari_base) != 0U) ? 1 : 0;
319 		}
320 	}
321 
322 	return result;
323 }
324 
ari_online_core(uint32_t ari_base,uint32_t core)325 int32_t ari_online_core(uint32_t ari_base, uint32_t core)
326 {
327 	uint64_t cpu = read_mpidr() & (MPIDR_CPU_MASK);
328 	uint64_t cluster = (read_mpidr() & (MPIDR_CLUSTER_MASK)) >>
329 			   (MPIDR_AFFINITY_BITS);
330 	uint64_t impl = (read_midr() >> MIDR_IMPL_SHIFT) & MIDR_IMPL_MASK;
331 	int32_t ret;
332 
333 	/* construct the current CPU # */
334 	cpu |= (cluster << 2);
335 
336 	/* sanity check target core id */
337 	if ((core >= MCE_CORE_ID_MAX) || (cpu == (uint64_t)core)) {
338 		ERROR("%s: unsupported core id (%d)\n", __func__, core);
339 		ret = EINVAL;
340 	} else {
341 		/*
342 		 * The Denver cluster has 2 CPUs only - 0, 1.
343 		 */
344 		if ((impl == DENVER_IMPL) && ((core == 2U) || (core == 3U))) {
345 			ERROR("%s: unknown core id (%d)\n", __func__, core);
346 			ret = EINVAL;
347 		} else {
348 			/* clean the previous response state */
349 			ari_clobber_response(ari_base);
350 			ret = ari_request_wait(ari_base, 0U,
351 				(uint32_t)TEGRA_ARI_ONLINE_CORE, core, 0U);
352 		}
353 	}
354 
355 	return ret;
356 }
357 
ari_cc3_ctrl(uint32_t ari_base,uint32_t freq,uint32_t volt,uint8_t enable)358 int32_t ari_cc3_ctrl(uint32_t ari_base, uint32_t freq, uint32_t volt, uint8_t enable)
359 {
360 	uint32_t val;
361 
362 	/* clean the previous response state */
363 	ari_clobber_response(ari_base);
364 
365 	/*
366 	 * If the enable bit is cleared, Auto-CC3 will be disabled by setting
367 	 * the SW visible voltage/frequency request registers for all non
368 	 * floorswept cores valid independent of StandbyWFI and disabling
369 	 * the IDLE voltage/frequency request register. If set, Auto-CC3
370 	 * will be enabled by setting the ARM SW visible voltage/frequency
371 	 * request registers for all non floorswept cores to be enabled by
372 	 * StandbyWFI or the equivalent signal, and always keeping the IDLE
373 	 * voltage/frequency request register enabled.
374 	 */
375 	val = (((freq & MCE_AUTO_CC3_FREQ_MASK) << MCE_AUTO_CC3_FREQ_SHIFT) |\
376 		((volt & MCE_AUTO_CC3_VTG_MASK) << MCE_AUTO_CC3_VTG_SHIFT) |\
377 		((enable != 0U) ? MCE_AUTO_CC3_ENABLE_BIT : 0U));
378 
379 	return ari_request_wait(ari_base, 0U,
380 			(uint32_t)TEGRA_ARI_CC3_CTRL, val, 0U);
381 }
382 
ari_reset_vector_update(uint32_t ari_base)383 int32_t ari_reset_vector_update(uint32_t ari_base)
384 {
385 	/* clean the previous response state */
386 	ari_clobber_response(ari_base);
387 
388 	/*
389 	 * Need to program the CPU reset vector one time during cold boot
390 	 * and SC7 exit
391 	 */
392 	(void)ari_request_wait(ari_base, 0U,
393 			(uint32_t)TEGRA_ARI_COPY_MISCREG_AA64_RST, 0U, 0U);
394 
395 	return 0;
396 }
397 
ari_roc_flush_cache_trbits(uint32_t ari_base)398 int32_t ari_roc_flush_cache_trbits(uint32_t ari_base)
399 {
400 	/* clean the previous response state */
401 	ari_clobber_response(ari_base);
402 
403 	return ari_request_wait(ari_base, 0U,
404 			(uint32_t)TEGRA_ARI_ROC_FLUSH_CACHE_TRBITS, 0U, 0U);
405 }
406 
ari_roc_flush_cache(uint32_t ari_base)407 int32_t ari_roc_flush_cache(uint32_t ari_base)
408 {
409 	/* clean the previous response state */
410 	ari_clobber_response(ari_base);
411 
412 	return ari_request_wait(ari_base, 0U,
413 			(uint32_t)TEGRA_ARI_ROC_FLUSH_CACHE_ONLY, 0U, 0U);
414 }
415 
ari_roc_clean_cache(uint32_t ari_base)416 int32_t ari_roc_clean_cache(uint32_t ari_base)
417 {
418 	/* clean the previous response state */
419 	ari_clobber_response(ari_base);
420 
421 	return ari_request_wait(ari_base, 0U,
422 			(uint32_t)TEGRA_ARI_ROC_CLEAN_CACHE_ONLY, 0U, 0U);
423 }
424 
ari_read_write_mca(uint32_t ari_base,uint64_t cmd,uint64_t * data)425 uint64_t ari_read_write_mca(uint32_t ari_base, uint64_t cmd, uint64_t *data)
426 {
427 	uint64_t mca_arg_data, result = 0;
428 	uint32_t resp_lo, resp_hi;
429 	uint32_t mca_arg_err, mca_arg_finish;
430 	int32_t ret;
431 
432 	/* Set data (write) */
433 	mca_arg_data = (data != NULL) ? *data : 0ULL;
434 
435 	/* Set command */
436 	ari_write_32(ari_base, (uint32_t)cmd, ARI_RESPONSE_DATA_LO);
437 	ari_write_32(ari_base, (uint32_t)(cmd >> 32U), ARI_RESPONSE_DATA_HI);
438 
439 	ret = ari_request_wait(ari_base, 0U, (uint32_t)TEGRA_ARI_MCA,
440 			       (uint32_t)mca_arg_data,
441 			       (uint32_t)(mca_arg_data >> 32U));
442 	if (ret == 0) {
443 		resp_lo = ari_get_response_low(ari_base);
444 		resp_hi = ari_get_response_high(ari_base);
445 
446 		mca_arg_err = resp_lo & MCA_ARG_ERROR_MASK;
447 		mca_arg_finish = (resp_hi >> MCA_ARG_FINISH_SHIFT) &
448 				 MCA_ARG_FINISH_MASK;
449 
450 		if (mca_arg_finish == 0U) {
451 			result = (uint64_t)mca_arg_err;
452 		} else {
453 			if (data != NULL) {
454 				resp_lo = ari_get_request_low(ari_base);
455 				resp_hi = ari_get_request_high(ari_base);
456 				*data = ((uint64_t)resp_hi << 32U) |
457 					 (uint64_t)resp_lo;
458 			}
459 		}
460 	}
461 
462 	return result;
463 }
464 
ari_update_ccplex_gsc(uint32_t ari_base,uint32_t gsc_idx)465 int32_t ari_update_ccplex_gsc(uint32_t ari_base, uint32_t gsc_idx)
466 {
467 	int32_t ret = 0;
468 	/* sanity check GSC ID */
469 	if (gsc_idx > TEGRA_ARI_GSC_VPR_IDX) {
470 		ret = EINVAL;
471 	} else {
472 		/* clean the previous response state */
473 		ari_clobber_response(ari_base);
474 
475 		/*
476 		 * The MCE code will read the GSC carveout value, corrseponding to
477 		 * the ID, from the MC registers and update the internal GSC registers
478 		 * of the CCPLEX.
479 		 */
480 		(void)ari_request_wait(ari_base, 0U,
481 				(uint32_t)TEGRA_ARI_UPDATE_CCPLEX_GSC, gsc_idx, 0U);
482 	}
483 
484 	return ret;
485 }
486 
ari_enter_ccplex_state(uint32_t ari_base,uint32_t state_idx)487 void ari_enter_ccplex_state(uint32_t ari_base, uint32_t state_idx)
488 {
489 	/* clean the previous response state */
490 	ari_clobber_response(ari_base);
491 
492 	/*
493 	 * The MCE will shutdown or restart the entire system
494 	 */
495 	(void)ari_request_wait(ari_base, 0U,
496 			(uint32_t)TEGRA_ARI_MISC_CCPLEX, state_idx, 0U);
497 }
498 
ari_read_write_uncore_perfmon(uint32_t ari_base,uint64_t req,uint64_t * data)499 int32_t ari_read_write_uncore_perfmon(uint32_t ari_base, uint64_t req,
500 		uint64_t *data)
501 {
502 	int32_t ret, result;
503 	uint32_t val, req_status;
504 	uint8_t req_cmd;
505 
506 	req_cmd = (uint8_t)(req & UNCORE_PERFMON_CMD_MASK);
507 
508 	/* clean the previous response state */
509 	ari_clobber_response(ari_base);
510 
511 	/* sanity check input parameters */
512 	if ((req_cmd == UNCORE_PERFMON_CMD_READ) && (data == NULL)) {
513 		ERROR("invalid parameters\n");
514 		result = EINVAL;
515 	} else {
516 		/*
517 		 * For "write" commands get the value that has to be written
518 		 * to the uncore perfmon registers
519 		 */
520 		val = (req_cmd == UNCORE_PERFMON_CMD_WRITE) ?
521 			(uint32_t)*data : 0U;
522 
523 		ret = ari_request_wait(ari_base, 0U,
524 			(uint32_t)TEGRA_ARI_PERFMON, val, (uint32_t)req);
525 		if (ret != 0) {
526 			result = ret;
527 		} else {
528 			/* read the command status value */
529 			req_status = ari_get_response_high(ari_base) &
530 					 UNCORE_PERFMON_RESP_STATUS_MASK;
531 
532 			/*
533 			 * For "read" commands get the data from the uncore
534 			 * perfmon registers
535 			 */
536 			req_status &= UNCORE_PERFMON_RESP_STATUS_MASK;
537 			if ((req_status == 0U) && (req_cmd == UNCORE_PERFMON_CMD_READ)) {
538 				*data = ari_get_response_low(ari_base);
539 			}
540 			result = (int32_t)req_status;
541 		}
542 	}
543 
544 	return result;
545 }
546 
ari_misc_ccplex(uint32_t ari_base,uint32_t index,uint32_t value)547 void ari_misc_ccplex(uint32_t ari_base, uint32_t index, uint32_t value)
548 {
549 	/*
550 	 * This invokes the ARI_MISC_CCPLEX commands. This can be
551 	 * used to enable/disable coresight clock gating.
552 	 */
553 
554 	if ((index > TEGRA_ARI_MISC_CCPLEX_EDBGREQ) ||
555 		((index == TEGRA_ARI_MISC_CCPLEX_CORESIGHT_CG_CTRL) &&
556 		(value > 1U))) {
557 		ERROR("%s: invalid parameters \n", __func__);
558 	} else {
559 		/* clean the previous response state */
560 		ari_clobber_response(ari_base);
561 		(void)ari_request_wait(ari_base, 0U,
562 			(uint32_t)TEGRA_ARI_MISC_CCPLEX, index, value);
563 	}
564 }
565