1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved.
4 *
5 * Author: Yu Liu, <yu.liu@freescale.com>
6 *
7 * Description:
8 * This file is derived from arch/powerpc/kvm/44x.c,
9 * by Hollis Blanchard <hollisb@us.ibm.com>.
10 */
11
12 #include <linux/kvm_host.h>
13 #include <linux/slab.h>
14 #include <linux/err.h>
15 #include <linux/export.h>
16 #include <linux/module.h>
17 #include <linux/miscdevice.h>
18
19 #include <asm/reg.h>
20 #include <asm/cputable.h>
21 #include <asm/kvm_ppc.h>
22
23 #include "../mm/mmu_decl.h"
24 #include "booke.h"
25 #include "e500.h"
26
27 struct id {
28 unsigned long val;
29 struct id **pentry;
30 };
31
32 #define NUM_TIDS 256
33
34 /*
35 * This table provide mappings from:
36 * (guestAS,guestTID,guestPR) --> ID of physical cpu
37 * guestAS [0..1]
38 * guestTID [0..255]
39 * guestPR [0..1]
40 * ID [1..255]
41 * Each vcpu keeps one vcpu_id_table.
42 */
43 struct vcpu_id_table {
44 struct id id[2][NUM_TIDS][2];
45 };
46
47 /*
48 * This table provide reversed mappings of vcpu_id_table:
49 * ID --> address of vcpu_id_table item.
50 * Each physical core has one pcpu_id_table.
51 */
52 struct pcpu_id_table {
53 struct id *entry[NUM_TIDS];
54 };
55
56 static DEFINE_PER_CPU(struct pcpu_id_table, pcpu_sids);
57
58 /* This variable keeps last used shadow ID on local core.
59 * The valid range of shadow ID is [1..255] */
60 static DEFINE_PER_CPU(unsigned long, pcpu_last_used_sid);
61
62 /*
63 * Allocate a free shadow id and setup a valid sid mapping in given entry.
64 * A mapping is only valid when vcpu_id_table and pcpu_id_table are match.
65 *
66 * The caller must have preemption disabled, and keep it that way until
67 * it has finished with the returned shadow id (either written into the
68 * TLB or arch.shadow_pid, or discarded).
69 */
local_sid_setup_one(struct id * entry)70 static inline int local_sid_setup_one(struct id *entry)
71 {
72 unsigned long sid;
73 int ret = -1;
74
75 sid = __this_cpu_inc_return(pcpu_last_used_sid);
76 if (sid < NUM_TIDS) {
77 __this_cpu_write(pcpu_sids.entry[sid], entry);
78 entry->val = sid;
79 entry->pentry = this_cpu_ptr(&pcpu_sids.entry[sid]);
80 ret = sid;
81 }
82
83 /*
84 * If sid == NUM_TIDS, we've run out of sids. We return -1, and
85 * the caller will invalidate everything and start over.
86 *
87 * sid > NUM_TIDS indicates a race, which we disable preemption to
88 * avoid.
89 */
90 WARN_ON(sid > NUM_TIDS);
91
92 return ret;
93 }
94
95 /*
96 * Check if given entry contain a valid shadow id mapping.
97 * An ID mapping is considered valid only if
98 * both vcpu and pcpu know this mapping.
99 *
100 * The caller must have preemption disabled, and keep it that way until
101 * it has finished with the returned shadow id (either written into the
102 * TLB or arch.shadow_pid, or discarded).
103 */
local_sid_lookup(struct id * entry)104 static inline int local_sid_lookup(struct id *entry)
105 {
106 if (entry && entry->val != 0 &&
107 __this_cpu_read(pcpu_sids.entry[entry->val]) == entry &&
108 entry->pentry == this_cpu_ptr(&pcpu_sids.entry[entry->val]))
109 return entry->val;
110 return -1;
111 }
112
113 /* Invalidate all id mappings on local core -- call with preempt disabled */
local_sid_destroy_all(void)114 static inline void local_sid_destroy_all(void)
115 {
116 __this_cpu_write(pcpu_last_used_sid, 0);
117 memset(this_cpu_ptr(&pcpu_sids), 0, sizeof(pcpu_sids));
118 }
119
kvmppc_e500_id_table_alloc(struct kvmppc_vcpu_e500 * vcpu_e500)120 static void *kvmppc_e500_id_table_alloc(struct kvmppc_vcpu_e500 *vcpu_e500)
121 {
122 vcpu_e500->idt = kzalloc(sizeof(struct vcpu_id_table), GFP_KERNEL);
123 return vcpu_e500->idt;
124 }
125
kvmppc_e500_id_table_free(struct kvmppc_vcpu_e500 * vcpu_e500)126 static void kvmppc_e500_id_table_free(struct kvmppc_vcpu_e500 *vcpu_e500)
127 {
128 kfree(vcpu_e500->idt);
129 vcpu_e500->idt = NULL;
130 }
131
132 /* Map guest pid to shadow.
133 * We use PID to keep shadow of current guest non-zero PID,
134 * and use PID1 to keep shadow of guest zero PID.
135 * So that guest tlbe with TID=0 can be accessed at any time */
kvmppc_e500_recalc_shadow_pid(struct kvmppc_vcpu_e500 * vcpu_e500)136 static void kvmppc_e500_recalc_shadow_pid(struct kvmppc_vcpu_e500 *vcpu_e500)
137 {
138 preempt_disable();
139 vcpu_e500->vcpu.arch.shadow_pid = kvmppc_e500_get_sid(vcpu_e500,
140 get_cur_as(&vcpu_e500->vcpu),
141 get_cur_pid(&vcpu_e500->vcpu),
142 get_cur_pr(&vcpu_e500->vcpu), 1);
143 vcpu_e500->vcpu.arch.shadow_pid1 = kvmppc_e500_get_sid(vcpu_e500,
144 get_cur_as(&vcpu_e500->vcpu), 0,
145 get_cur_pr(&vcpu_e500->vcpu), 1);
146 preempt_enable();
147 }
148
149 /* Invalidate all mappings on vcpu */
kvmppc_e500_id_table_reset_all(struct kvmppc_vcpu_e500 * vcpu_e500)150 static void kvmppc_e500_id_table_reset_all(struct kvmppc_vcpu_e500 *vcpu_e500)
151 {
152 memset(vcpu_e500->idt, 0, sizeof(struct vcpu_id_table));
153
154 /* Update shadow pid when mappings are changed */
155 kvmppc_e500_recalc_shadow_pid(vcpu_e500);
156 }
157
158 /* Invalidate one ID mapping on vcpu */
kvmppc_e500_id_table_reset_one(struct kvmppc_vcpu_e500 * vcpu_e500,int as,int pid,int pr)159 static inline void kvmppc_e500_id_table_reset_one(
160 struct kvmppc_vcpu_e500 *vcpu_e500,
161 int as, int pid, int pr)
162 {
163 struct vcpu_id_table *idt = vcpu_e500->idt;
164
165 BUG_ON(as >= 2);
166 BUG_ON(pid >= NUM_TIDS);
167 BUG_ON(pr >= 2);
168
169 idt->id[as][pid][pr].val = 0;
170 idt->id[as][pid][pr].pentry = NULL;
171
172 /* Update shadow pid when mappings are changed */
173 kvmppc_e500_recalc_shadow_pid(vcpu_e500);
174 }
175
176 /*
177 * Map guest (vcpu,AS,ID,PR) to physical core shadow id.
178 * This function first lookup if a valid mapping exists,
179 * if not, then creates a new one.
180 *
181 * The caller must have preemption disabled, and keep it that way until
182 * it has finished with the returned shadow id (either written into the
183 * TLB or arch.shadow_pid, or discarded).
184 */
kvmppc_e500_get_sid(struct kvmppc_vcpu_e500 * vcpu_e500,unsigned int as,unsigned int gid,unsigned int pr,int avoid_recursion)185 unsigned int kvmppc_e500_get_sid(struct kvmppc_vcpu_e500 *vcpu_e500,
186 unsigned int as, unsigned int gid,
187 unsigned int pr, int avoid_recursion)
188 {
189 struct vcpu_id_table *idt = vcpu_e500->idt;
190 int sid;
191
192 BUG_ON(as >= 2);
193 BUG_ON(gid >= NUM_TIDS);
194 BUG_ON(pr >= 2);
195
196 sid = local_sid_lookup(&idt->id[as][gid][pr]);
197
198 while (sid <= 0) {
199 /* No mapping yet */
200 sid = local_sid_setup_one(&idt->id[as][gid][pr]);
201 if (sid <= 0) {
202 _tlbil_all();
203 local_sid_destroy_all();
204 }
205
206 /* Update shadow pid when mappings are changed */
207 if (!avoid_recursion)
208 kvmppc_e500_recalc_shadow_pid(vcpu_e500);
209 }
210
211 return sid;
212 }
213
kvmppc_e500_get_tlb_stid(struct kvm_vcpu * vcpu,struct kvm_book3e_206_tlb_entry * gtlbe)214 unsigned int kvmppc_e500_get_tlb_stid(struct kvm_vcpu *vcpu,
215 struct kvm_book3e_206_tlb_entry *gtlbe)
216 {
217 return kvmppc_e500_get_sid(to_e500(vcpu), get_tlb_ts(gtlbe),
218 get_tlb_tid(gtlbe), get_cur_pr(vcpu), 0);
219 }
220
kvmppc_set_pid(struct kvm_vcpu * vcpu,u32 pid)221 void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 pid)
222 {
223 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
224
225 if (vcpu->arch.pid != pid) {
226 vcpu_e500->pid[0] = vcpu->arch.pid = pid;
227 kvmppc_e500_recalc_shadow_pid(vcpu_e500);
228 }
229 }
230
231 /* gtlbe must not be mapped by more than one host tlbe */
kvmppc_e500_tlbil_one(struct kvmppc_vcpu_e500 * vcpu_e500,struct kvm_book3e_206_tlb_entry * gtlbe)232 void kvmppc_e500_tlbil_one(struct kvmppc_vcpu_e500 *vcpu_e500,
233 struct kvm_book3e_206_tlb_entry *gtlbe)
234 {
235 struct vcpu_id_table *idt = vcpu_e500->idt;
236 unsigned int pr, tid, ts;
237 int pid;
238 u32 val, eaddr;
239 unsigned long flags;
240
241 ts = get_tlb_ts(gtlbe);
242 tid = get_tlb_tid(gtlbe);
243
244 preempt_disable();
245
246 /* One guest ID may be mapped to two shadow IDs */
247 for (pr = 0; pr < 2; pr++) {
248 /*
249 * The shadow PID can have a valid mapping on at most one
250 * host CPU. In the common case, it will be valid on this
251 * CPU, in which case we do a local invalidation of the
252 * specific address.
253 *
254 * If the shadow PID is not valid on the current host CPU,
255 * we invalidate the entire shadow PID.
256 */
257 pid = local_sid_lookup(&idt->id[ts][tid][pr]);
258 if (pid <= 0) {
259 kvmppc_e500_id_table_reset_one(vcpu_e500, ts, tid, pr);
260 continue;
261 }
262
263 /*
264 * The guest is invalidating a 4K entry which is in a PID
265 * that has a valid shadow mapping on this host CPU. We
266 * search host TLB to invalidate it's shadow TLB entry,
267 * similar to __tlbil_va except that we need to look in AS1.
268 */
269 val = (pid << MAS6_SPID_SHIFT) | MAS6_SAS;
270 eaddr = get_tlb_eaddr(gtlbe);
271
272 local_irq_save(flags);
273
274 mtspr(SPRN_MAS6, val);
275 asm volatile("tlbsx 0, %[eaddr]" : : [eaddr] "r" (eaddr));
276 val = mfspr(SPRN_MAS1);
277 if (val & MAS1_VALID) {
278 mtspr(SPRN_MAS1, val & ~MAS1_VALID);
279 asm volatile("tlbwe");
280 }
281
282 local_irq_restore(flags);
283 }
284
285 preempt_enable();
286 }
287
kvmppc_e500_tlbil_all(struct kvmppc_vcpu_e500 * vcpu_e500)288 void kvmppc_e500_tlbil_all(struct kvmppc_vcpu_e500 *vcpu_e500)
289 {
290 kvmppc_e500_id_table_reset_all(vcpu_e500);
291 }
292
kvmppc_mmu_msr_notify(struct kvm_vcpu * vcpu,u32 old_msr)293 void kvmppc_mmu_msr_notify(struct kvm_vcpu *vcpu, u32 old_msr)
294 {
295 /* Recalc shadow pid since MSR changes */
296 kvmppc_e500_recalc_shadow_pid(to_e500(vcpu));
297 }
298
kvmppc_core_vcpu_load_e500(struct kvm_vcpu * vcpu,int cpu)299 static void kvmppc_core_vcpu_load_e500(struct kvm_vcpu *vcpu, int cpu)
300 {
301 kvmppc_booke_vcpu_load(vcpu, cpu);
302
303 /* Shadow PID may be expired on local core */
304 kvmppc_e500_recalc_shadow_pid(to_e500(vcpu));
305 }
306
kvmppc_core_vcpu_put_e500(struct kvm_vcpu * vcpu)307 static void kvmppc_core_vcpu_put_e500(struct kvm_vcpu *vcpu)
308 {
309 #ifdef CONFIG_SPE
310 if (vcpu->arch.shadow_msr & MSR_SPE)
311 kvmppc_vcpu_disable_spe(vcpu);
312 #endif
313
314 kvmppc_booke_vcpu_put(vcpu);
315 }
316
kvmppc_core_check_processor_compat(void)317 int kvmppc_core_check_processor_compat(void)
318 {
319 int r;
320
321 if (strcmp(cur_cpu_spec->cpu_name, "e500v2") == 0)
322 r = 0;
323 else
324 r = -ENOTSUPP;
325
326 return r;
327 }
328
kvmppc_e500_tlb_setup(struct kvmppc_vcpu_e500 * vcpu_e500)329 static void kvmppc_e500_tlb_setup(struct kvmppc_vcpu_e500 *vcpu_e500)
330 {
331 struct kvm_book3e_206_tlb_entry *tlbe;
332
333 /* Insert large initial mapping for guest. */
334 tlbe = get_entry(vcpu_e500, 1, 0);
335 tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_256M);
336 tlbe->mas2 = 0;
337 tlbe->mas7_3 = E500_TLB_SUPER_PERM_MASK;
338
339 /* 4K map for serial output. Used by kernel wrapper. */
340 tlbe = get_entry(vcpu_e500, 1, 1);
341 tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_4K);
342 tlbe->mas2 = (0xe0004500 & 0xFFFFF000) | MAS2_I | MAS2_G;
343 tlbe->mas7_3 = (0xe0004500 & 0xFFFFF000) | E500_TLB_SUPER_PERM_MASK;
344 }
345
kvmppc_core_vcpu_setup(struct kvm_vcpu * vcpu)346 int kvmppc_core_vcpu_setup(struct kvm_vcpu *vcpu)
347 {
348 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
349
350 kvmppc_e500_tlb_setup(vcpu_e500);
351
352 /* Registers init */
353 vcpu->arch.pvr = mfspr(SPRN_PVR);
354 vcpu_e500->svr = mfspr(SPRN_SVR);
355
356 vcpu->arch.cpu_type = KVM_CPU_E500V2;
357
358 return 0;
359 }
360
kvmppc_core_get_sregs_e500(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)361 static int kvmppc_core_get_sregs_e500(struct kvm_vcpu *vcpu,
362 struct kvm_sregs *sregs)
363 {
364 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
365
366 sregs->u.e.features |= KVM_SREGS_E_ARCH206_MMU | KVM_SREGS_E_SPE |
367 KVM_SREGS_E_PM;
368 sregs->u.e.impl_id = KVM_SREGS_E_IMPL_FSL;
369
370 sregs->u.e.impl.fsl.features = 0;
371 sregs->u.e.impl.fsl.svr = vcpu_e500->svr;
372 sregs->u.e.impl.fsl.hid0 = vcpu_e500->hid0;
373 sregs->u.e.impl.fsl.mcar = vcpu_e500->mcar;
374
375 sregs->u.e.ivor_high[0] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL];
376 sregs->u.e.ivor_high[1] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA];
377 sregs->u.e.ivor_high[2] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND];
378 sregs->u.e.ivor_high[3] =
379 vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR];
380
381 kvmppc_get_sregs_ivor(vcpu, sregs);
382 kvmppc_get_sregs_e500_tlb(vcpu, sregs);
383 return 0;
384 }
385
kvmppc_core_set_sregs_e500(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)386 static int kvmppc_core_set_sregs_e500(struct kvm_vcpu *vcpu,
387 struct kvm_sregs *sregs)
388 {
389 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
390 int ret;
391
392 if (sregs->u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
393 vcpu_e500->svr = sregs->u.e.impl.fsl.svr;
394 vcpu_e500->hid0 = sregs->u.e.impl.fsl.hid0;
395 vcpu_e500->mcar = sregs->u.e.impl.fsl.mcar;
396 }
397
398 ret = kvmppc_set_sregs_e500_tlb(vcpu, sregs);
399 if (ret < 0)
400 return ret;
401
402 if (!(sregs->u.e.features & KVM_SREGS_E_IVOR))
403 return 0;
404
405 if (sregs->u.e.features & KVM_SREGS_E_SPE) {
406 vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL] =
407 sregs->u.e.ivor_high[0];
408 vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA] =
409 sregs->u.e.ivor_high[1];
410 vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND] =
411 sregs->u.e.ivor_high[2];
412 }
413
414 if (sregs->u.e.features & KVM_SREGS_E_PM) {
415 vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR] =
416 sregs->u.e.ivor_high[3];
417 }
418
419 return kvmppc_set_sregs_ivor(vcpu, sregs);
420 }
421
kvmppc_get_one_reg_e500(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)422 static int kvmppc_get_one_reg_e500(struct kvm_vcpu *vcpu, u64 id,
423 union kvmppc_one_reg *val)
424 {
425 int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val);
426 return r;
427 }
428
kvmppc_set_one_reg_e500(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)429 static int kvmppc_set_one_reg_e500(struct kvm_vcpu *vcpu, u64 id,
430 union kvmppc_one_reg *val)
431 {
432 int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val);
433 return r;
434 }
435
kvmppc_core_vcpu_create_e500(struct kvm_vcpu * vcpu)436 static int kvmppc_core_vcpu_create_e500(struct kvm_vcpu *vcpu)
437 {
438 struct kvmppc_vcpu_e500 *vcpu_e500;
439 int err;
440
441 BUILD_BUG_ON(offsetof(struct kvmppc_vcpu_e500, vcpu) != 0);
442 vcpu_e500 = to_e500(vcpu);
443
444 if (kvmppc_e500_id_table_alloc(vcpu_e500) == NULL)
445 return -ENOMEM;
446
447 err = kvmppc_e500_tlb_init(vcpu_e500);
448 if (err)
449 goto uninit_id;
450
451 vcpu->arch.shared = (void*)__get_free_page(GFP_KERNEL|__GFP_ZERO);
452 if (!vcpu->arch.shared) {
453 err = -ENOMEM;
454 goto uninit_tlb;
455 }
456
457 return 0;
458
459 uninit_tlb:
460 kvmppc_e500_tlb_uninit(vcpu_e500);
461 uninit_id:
462 kvmppc_e500_id_table_free(vcpu_e500);
463 return err;
464 }
465
kvmppc_core_vcpu_free_e500(struct kvm_vcpu * vcpu)466 static void kvmppc_core_vcpu_free_e500(struct kvm_vcpu *vcpu)
467 {
468 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
469
470 free_page((unsigned long)vcpu->arch.shared);
471 kvmppc_e500_tlb_uninit(vcpu_e500);
472 kvmppc_e500_id_table_free(vcpu_e500);
473 }
474
kvmppc_core_init_vm_e500(struct kvm * kvm)475 static int kvmppc_core_init_vm_e500(struct kvm *kvm)
476 {
477 return 0;
478 }
479
kvmppc_core_destroy_vm_e500(struct kvm * kvm)480 static void kvmppc_core_destroy_vm_e500(struct kvm *kvm)
481 {
482 }
483
484 static struct kvmppc_ops kvm_ops_e500 = {
485 .get_sregs = kvmppc_core_get_sregs_e500,
486 .set_sregs = kvmppc_core_set_sregs_e500,
487 .get_one_reg = kvmppc_get_one_reg_e500,
488 .set_one_reg = kvmppc_set_one_reg_e500,
489 .vcpu_load = kvmppc_core_vcpu_load_e500,
490 .vcpu_put = kvmppc_core_vcpu_put_e500,
491 .vcpu_create = kvmppc_core_vcpu_create_e500,
492 .vcpu_free = kvmppc_core_vcpu_free_e500,
493 .init_vm = kvmppc_core_init_vm_e500,
494 .destroy_vm = kvmppc_core_destroy_vm_e500,
495 .emulate_op = kvmppc_core_emulate_op_e500,
496 .emulate_mtspr = kvmppc_core_emulate_mtspr_e500,
497 .emulate_mfspr = kvmppc_core_emulate_mfspr_e500,
498 };
499
kvmppc_e500_init(void)500 static int __init kvmppc_e500_init(void)
501 {
502 int r, i;
503 unsigned long ivor[3];
504 /* Process remaining handlers above the generic first 16 */
505 unsigned long *handler = &kvmppc_booke_handler_addr[16];
506 unsigned long handler_len;
507 unsigned long max_ivor = 0;
508
509 r = kvmppc_core_check_processor_compat();
510 if (r)
511 goto err_out;
512
513 r = kvmppc_booke_init();
514 if (r)
515 goto err_out;
516
517 /* copy extra E500 exception handlers */
518 ivor[0] = mfspr(SPRN_IVOR32);
519 ivor[1] = mfspr(SPRN_IVOR33);
520 ivor[2] = mfspr(SPRN_IVOR34);
521 for (i = 0; i < 3; i++) {
522 if (ivor[i] > ivor[max_ivor])
523 max_ivor = i;
524
525 handler_len = handler[i + 1] - handler[i];
526 memcpy((void *)kvmppc_booke_handlers + ivor[i],
527 (void *)handler[i], handler_len);
528 }
529 handler_len = handler[max_ivor + 1] - handler[max_ivor];
530 flush_icache_range(kvmppc_booke_handlers, kvmppc_booke_handlers +
531 ivor[max_ivor] + handler_len);
532
533 r = kvm_init(NULL, sizeof(struct kvmppc_vcpu_e500), 0, THIS_MODULE);
534 if (r)
535 goto err_out;
536 kvm_ops_e500.owner = THIS_MODULE;
537 kvmppc_pr_ops = &kvm_ops_e500;
538
539 err_out:
540 return r;
541 }
542
kvmppc_e500_exit(void)543 static void __exit kvmppc_e500_exit(void)
544 {
545 kvmppc_pr_ops = NULL;
546 kvmppc_booke_exit();
547 }
548
549 module_init(kvmppc_e500_init);
550 module_exit(kvmppc_e500_exit);
551 MODULE_ALIAS_MISCDEV(KVM_MINOR);
552 MODULE_ALIAS("devname:kvm");
553