1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31
32 #include <trace/events/block.h>
33
34 #include <linux/blk-mq.h>
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-mq-tag.h"
40 #include "blk-pm.h"
41 #include "blk-stat.h"
42 #include "blk-mq-sched.h"
43 #include "blk-rq-qos.h"
44
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46
47 static void blk_mq_poll_stats_start(struct request_queue *q);
48 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
49
blk_mq_poll_stats_bkt(const struct request * rq)50 static int blk_mq_poll_stats_bkt(const struct request *rq)
51 {
52 int ddir, sectors, bucket;
53
54 ddir = rq_data_dir(rq);
55 sectors = blk_rq_stats_sectors(rq);
56
57 bucket = ddir + 2 * ilog2(sectors);
58
59 if (bucket < 0)
60 return -1;
61 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
62 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
63
64 return bucket;
65 }
66
67 #define BLK_QC_T_SHIFT 16
68 #define BLK_QC_T_INTERNAL (1U << 31)
69
blk_qc_to_hctx(struct request_queue * q,blk_qc_t qc)70 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
71 blk_qc_t qc)
72 {
73 return q->queue_hw_ctx[(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT];
74 }
75
blk_qc_to_rq(struct blk_mq_hw_ctx * hctx,blk_qc_t qc)76 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
77 blk_qc_t qc)
78 {
79 unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
80
81 if (qc & BLK_QC_T_INTERNAL)
82 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
83 return blk_mq_tag_to_rq(hctx->tags, tag);
84 }
85
blk_rq_to_qc(struct request * rq)86 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
87 {
88 return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
89 (rq->tag != -1 ?
90 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
91 }
92
93 /*
94 * Check if any of the ctx, dispatch list or elevator
95 * have pending work in this hardware queue.
96 */
blk_mq_hctx_has_pending(struct blk_mq_hw_ctx * hctx)97 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
98 {
99 return !list_empty_careful(&hctx->dispatch) ||
100 sbitmap_any_bit_set(&hctx->ctx_map) ||
101 blk_mq_sched_has_work(hctx);
102 }
103
104 /*
105 * Mark this ctx as having pending work in this hardware queue
106 */
blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)107 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
108 struct blk_mq_ctx *ctx)
109 {
110 const int bit = ctx->index_hw[hctx->type];
111
112 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
113 sbitmap_set_bit(&hctx->ctx_map, bit);
114 }
115
blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)116 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
117 struct blk_mq_ctx *ctx)
118 {
119 const int bit = ctx->index_hw[hctx->type];
120
121 sbitmap_clear_bit(&hctx->ctx_map, bit);
122 }
123
124 struct mq_inflight {
125 struct block_device *part;
126 unsigned int inflight[2];
127 };
128
blk_mq_check_inflight(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)129 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
130 struct request *rq, void *priv,
131 bool reserved)
132 {
133 struct mq_inflight *mi = priv;
134
135 if ((!mi->part->bd_partno || rq->part == mi->part) &&
136 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
137 mi->inflight[rq_data_dir(rq)]++;
138
139 return true;
140 }
141
blk_mq_in_flight(struct request_queue * q,struct block_device * part)142 unsigned int blk_mq_in_flight(struct request_queue *q,
143 struct block_device *part)
144 {
145 struct mq_inflight mi = { .part = part };
146
147 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
148
149 return mi.inflight[0] + mi.inflight[1];
150 }
151
blk_mq_in_flight_rw(struct request_queue * q,struct block_device * part,unsigned int inflight[2])152 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
153 unsigned int inflight[2])
154 {
155 struct mq_inflight mi = { .part = part };
156
157 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
158 inflight[0] = mi.inflight[0];
159 inflight[1] = mi.inflight[1];
160 }
161
blk_freeze_queue_start(struct request_queue * q)162 void blk_freeze_queue_start(struct request_queue *q)
163 {
164 mutex_lock(&q->mq_freeze_lock);
165 if (++q->mq_freeze_depth == 1) {
166 percpu_ref_kill(&q->q_usage_counter);
167 mutex_unlock(&q->mq_freeze_lock);
168 if (queue_is_mq(q))
169 blk_mq_run_hw_queues(q, false);
170 } else {
171 mutex_unlock(&q->mq_freeze_lock);
172 }
173 }
174 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
175
blk_mq_freeze_queue_wait(struct request_queue * q)176 void blk_mq_freeze_queue_wait(struct request_queue *q)
177 {
178 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
179 }
180 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
181
blk_mq_freeze_queue_wait_timeout(struct request_queue * q,unsigned long timeout)182 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
183 unsigned long timeout)
184 {
185 return wait_event_timeout(q->mq_freeze_wq,
186 percpu_ref_is_zero(&q->q_usage_counter),
187 timeout);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
190
191 /*
192 * Guarantee no request is in use, so we can change any data structure of
193 * the queue afterward.
194 */
blk_freeze_queue(struct request_queue * q)195 void blk_freeze_queue(struct request_queue *q)
196 {
197 /*
198 * In the !blk_mq case we are only calling this to kill the
199 * q_usage_counter, otherwise this increases the freeze depth
200 * and waits for it to return to zero. For this reason there is
201 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
202 * exported to drivers as the only user for unfreeze is blk_mq.
203 */
204 blk_freeze_queue_start(q);
205 blk_mq_freeze_queue_wait(q);
206 }
207
blk_mq_freeze_queue(struct request_queue * q)208 void blk_mq_freeze_queue(struct request_queue *q)
209 {
210 /*
211 * ...just an alias to keep freeze and unfreeze actions balanced
212 * in the blk_mq_* namespace
213 */
214 blk_freeze_queue(q);
215 }
216 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
217
__blk_mq_unfreeze_queue(struct request_queue * q,bool force_atomic)218 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
219 {
220 mutex_lock(&q->mq_freeze_lock);
221 if (force_atomic)
222 q->q_usage_counter.data->force_atomic = true;
223 q->mq_freeze_depth--;
224 WARN_ON_ONCE(q->mq_freeze_depth < 0);
225 if (!q->mq_freeze_depth) {
226 percpu_ref_resurrect(&q->q_usage_counter);
227 wake_up_all(&q->mq_freeze_wq);
228 }
229 mutex_unlock(&q->mq_freeze_lock);
230 }
231
blk_mq_unfreeze_queue(struct request_queue * q)232 void blk_mq_unfreeze_queue(struct request_queue *q)
233 {
234 __blk_mq_unfreeze_queue(q, false);
235 }
236 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
237
238 /*
239 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
240 * mpt3sas driver such that this function can be removed.
241 */
blk_mq_quiesce_queue_nowait(struct request_queue * q)242 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
243 {
244 unsigned long flags;
245
246 spin_lock_irqsave(&q->queue_lock, flags);
247 if (!q->quiesce_depth++)
248 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
249 spin_unlock_irqrestore(&q->queue_lock, flags);
250 }
251 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
252
253 /**
254 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
255 * @q: request queue.
256 *
257 * Note: it is driver's responsibility for making sure that quiesce has
258 * been started.
259 */
blk_mq_wait_quiesce_done(struct request_queue * q)260 void blk_mq_wait_quiesce_done(struct request_queue *q)
261 {
262 struct blk_mq_hw_ctx *hctx;
263 unsigned int i;
264 bool rcu = false;
265
266 queue_for_each_hw_ctx(q, hctx, i) {
267 if (hctx->flags & BLK_MQ_F_BLOCKING)
268 synchronize_srcu(hctx->srcu);
269 else
270 rcu = true;
271 }
272 if (rcu)
273 synchronize_rcu();
274 }
275 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
276
277 /**
278 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
279 * @q: request queue.
280 *
281 * Note: this function does not prevent that the struct request end_io()
282 * callback function is invoked. Once this function is returned, we make
283 * sure no dispatch can happen until the queue is unquiesced via
284 * blk_mq_unquiesce_queue().
285 */
blk_mq_quiesce_queue(struct request_queue * q)286 void blk_mq_quiesce_queue(struct request_queue *q)
287 {
288 blk_mq_quiesce_queue_nowait(q);
289 blk_mq_wait_quiesce_done(q);
290 }
291 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
292
293 /*
294 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
295 * @q: request queue.
296 *
297 * This function recovers queue into the state before quiescing
298 * which is done by blk_mq_quiesce_queue.
299 */
blk_mq_unquiesce_queue(struct request_queue * q)300 void blk_mq_unquiesce_queue(struct request_queue *q)
301 {
302 unsigned long flags;
303 bool run_queue = false;
304
305 spin_lock_irqsave(&q->queue_lock, flags);
306 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
307 ;
308 } else if (!--q->quiesce_depth) {
309 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
310 run_queue = true;
311 }
312 spin_unlock_irqrestore(&q->queue_lock, flags);
313
314 /* dispatch requests which are inserted during quiescing */
315 if (run_queue)
316 blk_mq_run_hw_queues(q, true);
317 }
318 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
319
blk_mq_wake_waiters(struct request_queue * q)320 void blk_mq_wake_waiters(struct request_queue *q)
321 {
322 struct blk_mq_hw_ctx *hctx;
323 unsigned int i;
324
325 queue_for_each_hw_ctx(q, hctx, i)
326 if (blk_mq_hw_queue_mapped(hctx))
327 blk_mq_tag_wakeup_all(hctx->tags, true);
328 }
329
blk_mq_rq_ctx_init(struct blk_mq_alloc_data * data,struct blk_mq_tags * tags,unsigned int tag,u64 alloc_time_ns)330 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
331 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
332 {
333 struct blk_mq_ctx *ctx = data->ctx;
334 struct blk_mq_hw_ctx *hctx = data->hctx;
335 struct request_queue *q = data->q;
336 struct request *rq = tags->static_rqs[tag];
337
338 rq->q = q;
339 rq->mq_ctx = ctx;
340 rq->mq_hctx = hctx;
341 rq->cmd_flags = data->cmd_flags;
342
343 if (data->flags & BLK_MQ_REQ_PM)
344 data->rq_flags |= RQF_PM;
345 if (blk_queue_io_stat(q))
346 data->rq_flags |= RQF_IO_STAT;
347 rq->rq_flags = data->rq_flags;
348
349 if (!(data->rq_flags & RQF_ELV)) {
350 rq->tag = tag;
351 rq->internal_tag = BLK_MQ_NO_TAG;
352 } else {
353 rq->tag = BLK_MQ_NO_TAG;
354 rq->internal_tag = tag;
355 }
356 rq->timeout = 0;
357
358 if (blk_mq_need_time_stamp(rq))
359 rq->start_time_ns = ktime_get_ns();
360 else
361 rq->start_time_ns = 0;
362 rq->rq_disk = NULL;
363 rq->part = NULL;
364 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
365 rq->alloc_time_ns = alloc_time_ns;
366 #endif
367 rq->io_start_time_ns = 0;
368 rq->stats_sectors = 0;
369 rq->nr_phys_segments = 0;
370 #if defined(CONFIG_BLK_DEV_INTEGRITY)
371 rq->nr_integrity_segments = 0;
372 #endif
373 rq->end_io = NULL;
374 rq->end_io_data = NULL;
375
376 blk_crypto_rq_set_defaults(rq);
377 INIT_LIST_HEAD(&rq->queuelist);
378 /* tag was already set */
379 WRITE_ONCE(rq->deadline, 0);
380 refcount_set(&rq->ref, 1);
381
382 if (rq->rq_flags & RQF_ELV) {
383 struct elevator_queue *e = data->q->elevator;
384
385 rq->elv.icq = NULL;
386 INIT_HLIST_NODE(&rq->hash);
387 RB_CLEAR_NODE(&rq->rb_node);
388
389 if (!op_is_flush(data->cmd_flags) &&
390 e->type->ops.prepare_request) {
391 if (e->type->icq_cache)
392 blk_mq_sched_assign_ioc(rq);
393
394 e->type->ops.prepare_request(rq);
395 rq->rq_flags |= RQF_ELVPRIV;
396 }
397 }
398
399 return rq;
400 }
401
402 static inline struct request *
__blk_mq_alloc_requests_batch(struct blk_mq_alloc_data * data,u64 alloc_time_ns)403 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
404 u64 alloc_time_ns)
405 {
406 unsigned int tag, tag_offset;
407 struct blk_mq_tags *tags;
408 struct request *rq;
409 unsigned long tag_mask;
410 int i, nr = 0;
411
412 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
413 if (unlikely(!tag_mask))
414 return NULL;
415
416 tags = blk_mq_tags_from_data(data);
417 for (i = 0; tag_mask; i++) {
418 if (!(tag_mask & (1UL << i)))
419 continue;
420 tag = tag_offset + i;
421 prefetch(tags->static_rqs[tag]);
422 tag_mask &= ~(1UL << i);
423 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
424 rq_list_add(data->cached_rq, rq);
425 nr++;
426 }
427 /* caller already holds a reference, add for remainder */
428 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
429 data->nr_tags -= nr;
430
431 return rq_list_pop(data->cached_rq);
432 }
433
__blk_mq_alloc_requests(struct blk_mq_alloc_data * data)434 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
435 {
436 struct request_queue *q = data->q;
437 u64 alloc_time_ns = 0;
438 struct request *rq;
439 unsigned int tag;
440
441 /* alloc_time includes depth and tag waits */
442 if (blk_queue_rq_alloc_time(q))
443 alloc_time_ns = ktime_get_ns();
444
445 if (data->cmd_flags & REQ_NOWAIT)
446 data->flags |= BLK_MQ_REQ_NOWAIT;
447
448 if (q->elevator) {
449 struct elevator_queue *e = q->elevator;
450
451 data->rq_flags |= RQF_ELV;
452
453 /*
454 * Flush/passthrough requests are special and go directly to the
455 * dispatch list. Don't include reserved tags in the
456 * limiting, as it isn't useful.
457 */
458 if (!op_is_flush(data->cmd_flags) &&
459 !blk_op_is_passthrough(data->cmd_flags) &&
460 e->type->ops.limit_depth &&
461 !(data->flags & BLK_MQ_REQ_RESERVED))
462 e->type->ops.limit_depth(data->cmd_flags, data);
463 }
464
465 retry:
466 data->ctx = blk_mq_get_ctx(q);
467 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
468 if (!(data->rq_flags & RQF_ELV))
469 blk_mq_tag_busy(data->hctx);
470
471 /*
472 * Try batched alloc if we want more than 1 tag.
473 */
474 if (data->nr_tags > 1) {
475 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
476 if (rq)
477 return rq;
478 data->nr_tags = 1;
479 }
480
481 /*
482 * Waiting allocations only fail because of an inactive hctx. In that
483 * case just retry the hctx assignment and tag allocation as CPU hotplug
484 * should have migrated us to an online CPU by now.
485 */
486 tag = blk_mq_get_tag(data);
487 if (tag == BLK_MQ_NO_TAG) {
488 if (data->flags & BLK_MQ_REQ_NOWAIT)
489 return NULL;
490 /*
491 * Give up the CPU and sleep for a random short time to
492 * ensure that thread using a realtime scheduling class
493 * are migrated off the CPU, and thus off the hctx that
494 * is going away.
495 */
496 msleep(3);
497 goto retry;
498 }
499
500 return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
501 alloc_time_ns);
502 }
503
blk_mq_alloc_request(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags)504 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
505 blk_mq_req_flags_t flags)
506 {
507 struct blk_mq_alloc_data data = {
508 .q = q,
509 .flags = flags,
510 .cmd_flags = op,
511 .nr_tags = 1,
512 };
513 struct request *rq;
514 int ret;
515
516 ret = blk_queue_enter(q, flags);
517 if (ret)
518 return ERR_PTR(ret);
519
520 rq = __blk_mq_alloc_requests(&data);
521 if (!rq)
522 goto out_queue_exit;
523 rq->__data_len = 0;
524 rq->__sector = (sector_t) -1;
525 rq->bio = rq->biotail = NULL;
526 return rq;
527 out_queue_exit:
528 blk_queue_exit(q);
529 return ERR_PTR(-EWOULDBLOCK);
530 }
531 EXPORT_SYMBOL(blk_mq_alloc_request);
532
blk_mq_alloc_request_hctx(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags,unsigned int hctx_idx)533 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
534 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
535 {
536 struct blk_mq_alloc_data data = {
537 .q = q,
538 .flags = flags,
539 .cmd_flags = op,
540 .nr_tags = 1,
541 };
542 u64 alloc_time_ns = 0;
543 unsigned int cpu;
544 unsigned int tag;
545 int ret;
546
547 /* alloc_time includes depth and tag waits */
548 if (blk_queue_rq_alloc_time(q))
549 alloc_time_ns = ktime_get_ns();
550
551 /*
552 * If the tag allocator sleeps we could get an allocation for a
553 * different hardware context. No need to complicate the low level
554 * allocator for this for the rare use case of a command tied to
555 * a specific queue.
556 */
557 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
558 return ERR_PTR(-EINVAL);
559
560 if (hctx_idx >= q->nr_hw_queues)
561 return ERR_PTR(-EIO);
562
563 ret = blk_queue_enter(q, flags);
564 if (ret)
565 return ERR_PTR(ret);
566
567 /*
568 * Check if the hardware context is actually mapped to anything.
569 * If not tell the caller that it should skip this queue.
570 */
571 ret = -EXDEV;
572 data.hctx = q->queue_hw_ctx[hctx_idx];
573 if (!blk_mq_hw_queue_mapped(data.hctx))
574 goto out_queue_exit;
575 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
576 data.ctx = __blk_mq_get_ctx(q, cpu);
577
578 if (!q->elevator)
579 blk_mq_tag_busy(data.hctx);
580 else
581 data.rq_flags |= RQF_ELV;
582
583 ret = -EWOULDBLOCK;
584 tag = blk_mq_get_tag(&data);
585 if (tag == BLK_MQ_NO_TAG)
586 goto out_queue_exit;
587 return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
588 alloc_time_ns);
589
590 out_queue_exit:
591 blk_queue_exit(q);
592 return ERR_PTR(ret);
593 }
594 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
595
__blk_mq_free_request(struct request * rq)596 static void __blk_mq_free_request(struct request *rq)
597 {
598 struct request_queue *q = rq->q;
599 struct blk_mq_ctx *ctx = rq->mq_ctx;
600 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
601 const int sched_tag = rq->internal_tag;
602
603 blk_crypto_free_request(rq);
604 blk_pm_mark_last_busy(rq);
605 rq->mq_hctx = NULL;
606 if (rq->tag != BLK_MQ_NO_TAG)
607 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
608 if (sched_tag != BLK_MQ_NO_TAG)
609 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
610 blk_mq_sched_restart(hctx);
611 blk_queue_exit(q);
612 }
613
blk_mq_free_request(struct request * rq)614 void blk_mq_free_request(struct request *rq)
615 {
616 struct request_queue *q = rq->q;
617 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
618
619 if (rq->rq_flags & RQF_ELVPRIV) {
620 struct elevator_queue *e = q->elevator;
621
622 if (e->type->ops.finish_request)
623 e->type->ops.finish_request(rq);
624 if (rq->elv.icq) {
625 put_io_context(rq->elv.icq->ioc);
626 rq->elv.icq = NULL;
627 }
628 }
629
630 if (rq->rq_flags & RQF_MQ_INFLIGHT)
631 __blk_mq_dec_active_requests(hctx);
632
633 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
634 laptop_io_completion(q->disk->bdi);
635
636 rq_qos_done(q, rq);
637
638 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
639 if (refcount_dec_and_test(&rq->ref))
640 __blk_mq_free_request(rq);
641 }
642 EXPORT_SYMBOL_GPL(blk_mq_free_request);
643
blk_mq_free_plug_rqs(struct blk_plug * plug)644 void blk_mq_free_plug_rqs(struct blk_plug *plug)
645 {
646 struct request *rq;
647
648 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
649 blk_mq_free_request(rq);
650 }
651
req_bio_endio(struct request * rq,struct bio * bio,unsigned int nbytes,blk_status_t error)652 static void req_bio_endio(struct request *rq, struct bio *bio,
653 unsigned int nbytes, blk_status_t error)
654 {
655 if (unlikely(error)) {
656 bio->bi_status = error;
657 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
658 /*
659 * Partial zone append completions cannot be supported as the
660 * BIO fragments may end up not being written sequentially.
661 */
662 if (bio->bi_iter.bi_size != nbytes)
663 bio->bi_status = BLK_STS_IOERR;
664 else
665 bio->bi_iter.bi_sector = rq->__sector;
666 }
667
668 bio_advance(bio, nbytes);
669
670 if (unlikely(rq->rq_flags & RQF_QUIET))
671 bio_set_flag(bio, BIO_QUIET);
672 /* don't actually finish bio if it's part of flush sequence */
673 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
674 bio_endio(bio);
675 }
676
blk_account_io_completion(struct request * req,unsigned int bytes)677 static void blk_account_io_completion(struct request *req, unsigned int bytes)
678 {
679 if (req->part && blk_do_io_stat(req)) {
680 const int sgrp = op_stat_group(req_op(req));
681
682 part_stat_lock();
683 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
684 part_stat_unlock();
685 }
686 }
687
688 /**
689 * blk_update_request - Complete multiple bytes without completing the request
690 * @req: the request being processed
691 * @error: block status code
692 * @nr_bytes: number of bytes to complete for @req
693 *
694 * Description:
695 * Ends I/O on a number of bytes attached to @req, but doesn't complete
696 * the request structure even if @req doesn't have leftover.
697 * If @req has leftover, sets it up for the next range of segments.
698 *
699 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
700 * %false return from this function.
701 *
702 * Note:
703 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
704 * except in the consistency check at the end of this function.
705 *
706 * Return:
707 * %false - this request doesn't have any more data
708 * %true - this request has more data
709 **/
blk_update_request(struct request * req,blk_status_t error,unsigned int nr_bytes)710 bool blk_update_request(struct request *req, blk_status_t error,
711 unsigned int nr_bytes)
712 {
713 int total_bytes;
714
715 trace_block_rq_complete(req, error, nr_bytes);
716
717 if (!req->bio)
718 return false;
719
720 #ifdef CONFIG_BLK_DEV_INTEGRITY
721 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
722 error == BLK_STS_OK)
723 req->q->integrity.profile->complete_fn(req, nr_bytes);
724 #endif
725
726 if (unlikely(error && !blk_rq_is_passthrough(req) &&
727 !(req->rq_flags & RQF_QUIET)))
728 blk_print_req_error(req, error);
729
730 blk_account_io_completion(req, nr_bytes);
731
732 total_bytes = 0;
733 while (req->bio) {
734 struct bio *bio = req->bio;
735 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
736
737 if (bio_bytes == bio->bi_iter.bi_size)
738 req->bio = bio->bi_next;
739
740 /* Completion has already been traced */
741 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
742 req_bio_endio(req, bio, bio_bytes, error);
743
744 total_bytes += bio_bytes;
745 nr_bytes -= bio_bytes;
746
747 if (!nr_bytes)
748 break;
749 }
750
751 /*
752 * completely done
753 */
754 if (!req->bio) {
755 /*
756 * Reset counters so that the request stacking driver
757 * can find how many bytes remain in the request
758 * later.
759 */
760 req->__data_len = 0;
761 return false;
762 }
763
764 req->__data_len -= total_bytes;
765
766 /* update sector only for requests with clear definition of sector */
767 if (!blk_rq_is_passthrough(req))
768 req->__sector += total_bytes >> 9;
769
770 /* mixed attributes always follow the first bio */
771 if (req->rq_flags & RQF_MIXED_MERGE) {
772 req->cmd_flags &= ~REQ_FAILFAST_MASK;
773 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
774 }
775
776 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
777 /*
778 * If total number of sectors is less than the first segment
779 * size, something has gone terribly wrong.
780 */
781 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
782 blk_dump_rq_flags(req, "request botched");
783 req->__data_len = blk_rq_cur_bytes(req);
784 }
785
786 /* recalculate the number of segments */
787 req->nr_phys_segments = blk_recalc_rq_segments(req);
788 }
789
790 return true;
791 }
792 EXPORT_SYMBOL_GPL(blk_update_request);
793
__blk_mq_end_request_acct(struct request * rq,u64 now)794 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
795 {
796 if (rq->rq_flags & RQF_STATS) {
797 blk_mq_poll_stats_start(rq->q);
798 blk_stat_add(rq, now);
799 }
800
801 blk_mq_sched_completed_request(rq, now);
802 blk_account_io_done(rq, now);
803 }
804
__blk_mq_end_request(struct request * rq,blk_status_t error)805 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
806 {
807 if (blk_mq_need_time_stamp(rq))
808 __blk_mq_end_request_acct(rq, ktime_get_ns());
809
810 if (rq->end_io) {
811 rq_qos_done(rq->q, rq);
812 rq->end_io(rq, error);
813 } else {
814 blk_mq_free_request(rq);
815 }
816 }
817 EXPORT_SYMBOL(__blk_mq_end_request);
818
blk_mq_end_request(struct request * rq,blk_status_t error)819 void blk_mq_end_request(struct request *rq, blk_status_t error)
820 {
821 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
822 BUG();
823 __blk_mq_end_request(rq, error);
824 }
825 EXPORT_SYMBOL(blk_mq_end_request);
826
827 #define TAG_COMP_BATCH 32
828
blk_mq_flush_tag_batch(struct blk_mq_hw_ctx * hctx,int * tag_array,int nr_tags)829 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
830 int *tag_array, int nr_tags)
831 {
832 struct request_queue *q = hctx->queue;
833
834 /*
835 * All requests should have been marked as RQF_MQ_INFLIGHT, so
836 * update hctx->nr_active in batch
837 */
838 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
839 __blk_mq_sub_active_requests(hctx, nr_tags);
840
841 blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
842 percpu_ref_put_many(&q->q_usage_counter, nr_tags);
843 }
844
blk_mq_end_request_batch(struct io_comp_batch * iob)845 void blk_mq_end_request_batch(struct io_comp_batch *iob)
846 {
847 int tags[TAG_COMP_BATCH], nr_tags = 0;
848 struct blk_mq_hw_ctx *cur_hctx = NULL;
849 struct request *rq;
850 u64 now = 0;
851
852 if (iob->need_ts)
853 now = ktime_get_ns();
854
855 while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
856 prefetch(rq->bio);
857 prefetch(rq->rq_next);
858
859 blk_update_request(rq, BLK_STS_OK, blk_rq_bytes(rq));
860 if (iob->need_ts)
861 __blk_mq_end_request_acct(rq, now);
862
863 rq_qos_done(rq->q, rq);
864
865 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
866 if (!refcount_dec_and_test(&rq->ref))
867 continue;
868
869 blk_crypto_free_request(rq);
870 blk_pm_mark_last_busy(rq);
871
872 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
873 if (cur_hctx)
874 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
875 nr_tags = 0;
876 cur_hctx = rq->mq_hctx;
877 }
878 tags[nr_tags++] = rq->tag;
879 }
880
881 if (nr_tags)
882 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
883 }
884 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
885
blk_complete_reqs(struct llist_head * list)886 static void blk_complete_reqs(struct llist_head *list)
887 {
888 struct llist_node *entry = llist_reverse_order(llist_del_all(list));
889 struct request *rq, *next;
890
891 llist_for_each_entry_safe(rq, next, entry, ipi_list)
892 rq->q->mq_ops->complete(rq);
893 }
894
blk_done_softirq(struct softirq_action * h)895 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
896 {
897 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
898 }
899
blk_softirq_cpu_dead(unsigned int cpu)900 static int blk_softirq_cpu_dead(unsigned int cpu)
901 {
902 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
903 return 0;
904 }
905
__blk_mq_complete_request_remote(void * data)906 static void __blk_mq_complete_request_remote(void *data)
907 {
908 __raise_softirq_irqoff(BLOCK_SOFTIRQ);
909 }
910
blk_mq_complete_need_ipi(struct request * rq)911 static inline bool blk_mq_complete_need_ipi(struct request *rq)
912 {
913 int cpu = raw_smp_processor_id();
914
915 if (!IS_ENABLED(CONFIG_SMP) ||
916 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
917 return false;
918 /*
919 * With force threaded interrupts enabled, raising softirq from an SMP
920 * function call will always result in waking the ksoftirqd thread.
921 * This is probably worse than completing the request on a different
922 * cache domain.
923 */
924 if (force_irqthreads())
925 return false;
926
927 /* same CPU or cache domain? Complete locally */
928 if (cpu == rq->mq_ctx->cpu ||
929 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
930 cpus_share_cache(cpu, rq->mq_ctx->cpu)))
931 return false;
932
933 /* don't try to IPI to an offline CPU */
934 return cpu_online(rq->mq_ctx->cpu);
935 }
936
blk_mq_complete_send_ipi(struct request * rq)937 static void blk_mq_complete_send_ipi(struct request *rq)
938 {
939 struct llist_head *list;
940 unsigned int cpu;
941
942 cpu = rq->mq_ctx->cpu;
943 list = &per_cpu(blk_cpu_done, cpu);
944 if (llist_add(&rq->ipi_list, list)) {
945 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
946 smp_call_function_single_async(cpu, &rq->csd);
947 }
948 }
949
blk_mq_raise_softirq(struct request * rq)950 static void blk_mq_raise_softirq(struct request *rq)
951 {
952 struct llist_head *list;
953
954 preempt_disable();
955 list = this_cpu_ptr(&blk_cpu_done);
956 if (llist_add(&rq->ipi_list, list))
957 raise_softirq(BLOCK_SOFTIRQ);
958 preempt_enable();
959 }
960
blk_mq_complete_request_remote(struct request * rq)961 bool blk_mq_complete_request_remote(struct request *rq)
962 {
963 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
964
965 /*
966 * For a polled request, always complete locallly, it's pointless
967 * to redirect the completion.
968 */
969 if (rq->cmd_flags & REQ_POLLED)
970 return false;
971
972 if (blk_mq_complete_need_ipi(rq)) {
973 blk_mq_complete_send_ipi(rq);
974 return true;
975 }
976
977 if (rq->q->nr_hw_queues == 1) {
978 blk_mq_raise_softirq(rq);
979 return true;
980 }
981 return false;
982 }
983 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
984
985 /**
986 * blk_mq_complete_request - end I/O on a request
987 * @rq: the request being processed
988 *
989 * Description:
990 * Complete a request by scheduling the ->complete_rq operation.
991 **/
blk_mq_complete_request(struct request * rq)992 void blk_mq_complete_request(struct request *rq)
993 {
994 if (!blk_mq_complete_request_remote(rq))
995 rq->q->mq_ops->complete(rq);
996 }
997 EXPORT_SYMBOL(blk_mq_complete_request);
998
hctx_unlock(struct blk_mq_hw_ctx * hctx,int srcu_idx)999 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
1000 __releases(hctx->srcu)
1001 {
1002 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
1003 rcu_read_unlock();
1004 else
1005 srcu_read_unlock(hctx->srcu, srcu_idx);
1006 }
1007
hctx_lock(struct blk_mq_hw_ctx * hctx,int * srcu_idx)1008 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
1009 __acquires(hctx->srcu)
1010 {
1011 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1012 /* shut up gcc false positive */
1013 *srcu_idx = 0;
1014 rcu_read_lock();
1015 } else
1016 *srcu_idx = srcu_read_lock(hctx->srcu);
1017 }
1018
1019 /**
1020 * blk_mq_start_request - Start processing a request
1021 * @rq: Pointer to request to be started
1022 *
1023 * Function used by device drivers to notify the block layer that a request
1024 * is going to be processed now, so blk layer can do proper initializations
1025 * such as starting the timeout timer.
1026 */
blk_mq_start_request(struct request * rq)1027 void blk_mq_start_request(struct request *rq)
1028 {
1029 struct request_queue *q = rq->q;
1030
1031 trace_block_rq_issue(rq);
1032
1033 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1034 u64 start_time;
1035 #ifdef CONFIG_BLK_CGROUP
1036 if (rq->bio)
1037 start_time = bio_issue_time(&rq->bio->bi_issue);
1038 else
1039 #endif
1040 start_time = ktime_get_ns();
1041 rq->io_start_time_ns = start_time;
1042 rq->stats_sectors = blk_rq_sectors(rq);
1043 rq->rq_flags |= RQF_STATS;
1044 rq_qos_issue(q, rq);
1045 }
1046
1047 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1048
1049 blk_add_timer(rq);
1050 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1051
1052 #ifdef CONFIG_BLK_DEV_INTEGRITY
1053 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1054 q->integrity.profile->prepare_fn(rq);
1055 #endif
1056 if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1057 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1058 }
1059 EXPORT_SYMBOL(blk_mq_start_request);
1060
__blk_mq_requeue_request(struct request * rq)1061 static void __blk_mq_requeue_request(struct request *rq)
1062 {
1063 struct request_queue *q = rq->q;
1064
1065 blk_mq_put_driver_tag(rq);
1066
1067 trace_block_rq_requeue(rq);
1068 rq_qos_requeue(q, rq);
1069
1070 if (blk_mq_request_started(rq)) {
1071 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1072 rq->rq_flags &= ~RQF_TIMED_OUT;
1073 }
1074 }
1075
blk_mq_requeue_request(struct request * rq,bool kick_requeue_list)1076 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1077 {
1078 __blk_mq_requeue_request(rq);
1079
1080 /* this request will be re-inserted to io scheduler queue */
1081 blk_mq_sched_requeue_request(rq);
1082
1083 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1084 }
1085 EXPORT_SYMBOL(blk_mq_requeue_request);
1086
blk_mq_requeue_work(struct work_struct * work)1087 static void blk_mq_requeue_work(struct work_struct *work)
1088 {
1089 struct request_queue *q =
1090 container_of(work, struct request_queue, requeue_work.work);
1091 LIST_HEAD(rq_list);
1092 struct request *rq, *next;
1093
1094 spin_lock_irq(&q->requeue_lock);
1095 list_splice_init(&q->requeue_list, &rq_list);
1096 spin_unlock_irq(&q->requeue_lock);
1097
1098 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1099 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1100 continue;
1101
1102 rq->rq_flags &= ~RQF_SOFTBARRIER;
1103 list_del_init(&rq->queuelist);
1104 /*
1105 * If RQF_DONTPREP, rq has contained some driver specific
1106 * data, so insert it to hctx dispatch list to avoid any
1107 * merge.
1108 */
1109 if (rq->rq_flags & RQF_DONTPREP)
1110 blk_mq_request_bypass_insert(rq, false, false);
1111 else
1112 blk_mq_sched_insert_request(rq, true, false, false);
1113 }
1114
1115 while (!list_empty(&rq_list)) {
1116 rq = list_entry(rq_list.next, struct request, queuelist);
1117 list_del_init(&rq->queuelist);
1118 blk_mq_sched_insert_request(rq, false, false, false);
1119 }
1120
1121 blk_mq_run_hw_queues(q, false);
1122 }
1123
blk_mq_add_to_requeue_list(struct request * rq,bool at_head,bool kick_requeue_list)1124 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1125 bool kick_requeue_list)
1126 {
1127 struct request_queue *q = rq->q;
1128 unsigned long flags;
1129
1130 /*
1131 * We abuse this flag that is otherwise used by the I/O scheduler to
1132 * request head insertion from the workqueue.
1133 */
1134 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1135
1136 spin_lock_irqsave(&q->requeue_lock, flags);
1137 if (at_head) {
1138 rq->rq_flags |= RQF_SOFTBARRIER;
1139 list_add(&rq->queuelist, &q->requeue_list);
1140 } else {
1141 list_add_tail(&rq->queuelist, &q->requeue_list);
1142 }
1143 spin_unlock_irqrestore(&q->requeue_lock, flags);
1144
1145 if (kick_requeue_list)
1146 blk_mq_kick_requeue_list(q);
1147 }
1148
blk_mq_kick_requeue_list(struct request_queue * q)1149 void blk_mq_kick_requeue_list(struct request_queue *q)
1150 {
1151 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1152 }
1153 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1154
blk_mq_delay_kick_requeue_list(struct request_queue * q,unsigned long msecs)1155 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1156 unsigned long msecs)
1157 {
1158 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1159 msecs_to_jiffies(msecs));
1160 }
1161 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1162
blk_mq_rq_inflight(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)1163 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
1164 void *priv, bool reserved)
1165 {
1166 /*
1167 * If we find a request that isn't idle and the queue matches,
1168 * we know the queue is busy. Return false to stop the iteration.
1169 */
1170 if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
1171 bool *busy = priv;
1172
1173 *busy = true;
1174 return false;
1175 }
1176
1177 return true;
1178 }
1179
blk_mq_queue_inflight(struct request_queue * q)1180 bool blk_mq_queue_inflight(struct request_queue *q)
1181 {
1182 bool busy = false;
1183
1184 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1185 return busy;
1186 }
1187 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1188
blk_mq_rq_timed_out(struct request * req,bool reserved)1189 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
1190 {
1191 req->rq_flags |= RQF_TIMED_OUT;
1192 if (req->q->mq_ops->timeout) {
1193 enum blk_eh_timer_return ret;
1194
1195 ret = req->q->mq_ops->timeout(req, reserved);
1196 if (ret == BLK_EH_DONE)
1197 return;
1198 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1199 }
1200
1201 blk_add_timer(req);
1202 }
1203
blk_mq_req_expired(struct request * rq,unsigned long * next)1204 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1205 {
1206 unsigned long deadline;
1207
1208 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1209 return false;
1210 if (rq->rq_flags & RQF_TIMED_OUT)
1211 return false;
1212
1213 deadline = READ_ONCE(rq->deadline);
1214 if (time_after_eq(jiffies, deadline))
1215 return true;
1216
1217 if (*next == 0)
1218 *next = deadline;
1219 else if (time_after(*next, deadline))
1220 *next = deadline;
1221 return false;
1222 }
1223
blk_mq_put_rq_ref(struct request * rq)1224 void blk_mq_put_rq_ref(struct request *rq)
1225 {
1226 if (is_flush_rq(rq))
1227 rq->end_io(rq, 0);
1228 else if (refcount_dec_and_test(&rq->ref))
1229 __blk_mq_free_request(rq);
1230 }
1231
blk_mq_check_expired(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)1232 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
1233 struct request *rq, void *priv, bool reserved)
1234 {
1235 unsigned long *next = priv;
1236
1237 /*
1238 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1239 * be reallocated underneath the timeout handler's processing, then
1240 * the expire check is reliable. If the request is not expired, then
1241 * it was completed and reallocated as a new request after returning
1242 * from blk_mq_check_expired().
1243 */
1244 if (blk_mq_req_expired(rq, next))
1245 blk_mq_rq_timed_out(rq, reserved);
1246 return true;
1247 }
1248
blk_mq_timeout_work(struct work_struct * work)1249 static void blk_mq_timeout_work(struct work_struct *work)
1250 {
1251 struct request_queue *q =
1252 container_of(work, struct request_queue, timeout_work);
1253 unsigned long next = 0;
1254 struct blk_mq_hw_ctx *hctx;
1255 int i;
1256
1257 /* A deadlock might occur if a request is stuck requiring a
1258 * timeout at the same time a queue freeze is waiting
1259 * completion, since the timeout code would not be able to
1260 * acquire the queue reference here.
1261 *
1262 * That's why we don't use blk_queue_enter here; instead, we use
1263 * percpu_ref_tryget directly, because we need to be able to
1264 * obtain a reference even in the short window between the queue
1265 * starting to freeze, by dropping the first reference in
1266 * blk_freeze_queue_start, and the moment the last request is
1267 * consumed, marked by the instant q_usage_counter reaches
1268 * zero.
1269 */
1270 if (!percpu_ref_tryget(&q->q_usage_counter))
1271 return;
1272
1273 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1274
1275 if (next != 0) {
1276 mod_timer(&q->timeout, next);
1277 } else {
1278 /*
1279 * Request timeouts are handled as a forward rolling timer. If
1280 * we end up here it means that no requests are pending and
1281 * also that no request has been pending for a while. Mark
1282 * each hctx as idle.
1283 */
1284 queue_for_each_hw_ctx(q, hctx, i) {
1285 /* the hctx may be unmapped, so check it here */
1286 if (blk_mq_hw_queue_mapped(hctx))
1287 blk_mq_tag_idle(hctx);
1288 }
1289 }
1290 blk_queue_exit(q);
1291 }
1292
1293 struct flush_busy_ctx_data {
1294 struct blk_mq_hw_ctx *hctx;
1295 struct list_head *list;
1296 };
1297
flush_busy_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1298 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1299 {
1300 struct flush_busy_ctx_data *flush_data = data;
1301 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1302 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1303 enum hctx_type type = hctx->type;
1304
1305 spin_lock(&ctx->lock);
1306 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1307 sbitmap_clear_bit(sb, bitnr);
1308 spin_unlock(&ctx->lock);
1309 return true;
1310 }
1311
1312 /*
1313 * Process software queues that have been marked busy, splicing them
1314 * to the for-dispatch
1315 */
blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx * hctx,struct list_head * list)1316 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1317 {
1318 struct flush_busy_ctx_data data = {
1319 .hctx = hctx,
1320 .list = list,
1321 };
1322
1323 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1324 }
1325 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1326
1327 struct dispatch_rq_data {
1328 struct blk_mq_hw_ctx *hctx;
1329 struct request *rq;
1330 };
1331
dispatch_rq_from_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1332 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1333 void *data)
1334 {
1335 struct dispatch_rq_data *dispatch_data = data;
1336 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1337 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1338 enum hctx_type type = hctx->type;
1339
1340 spin_lock(&ctx->lock);
1341 if (!list_empty(&ctx->rq_lists[type])) {
1342 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1343 list_del_init(&dispatch_data->rq->queuelist);
1344 if (list_empty(&ctx->rq_lists[type]))
1345 sbitmap_clear_bit(sb, bitnr);
1346 }
1347 spin_unlock(&ctx->lock);
1348
1349 return !dispatch_data->rq;
1350 }
1351
blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * start)1352 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1353 struct blk_mq_ctx *start)
1354 {
1355 unsigned off = start ? start->index_hw[hctx->type] : 0;
1356 struct dispatch_rq_data data = {
1357 .hctx = hctx,
1358 .rq = NULL,
1359 };
1360
1361 __sbitmap_for_each_set(&hctx->ctx_map, off,
1362 dispatch_rq_from_ctx, &data);
1363
1364 return data.rq;
1365 }
1366
__blk_mq_alloc_driver_tag(struct request * rq)1367 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1368 {
1369 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1370 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1371 int tag;
1372
1373 blk_mq_tag_busy(rq->mq_hctx);
1374
1375 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1376 bt = &rq->mq_hctx->tags->breserved_tags;
1377 tag_offset = 0;
1378 } else {
1379 if (!hctx_may_queue(rq->mq_hctx, bt))
1380 return false;
1381 }
1382
1383 tag = __sbitmap_queue_get(bt);
1384 if (tag == BLK_MQ_NO_TAG)
1385 return false;
1386
1387 rq->tag = tag + tag_offset;
1388 return true;
1389 }
1390
__blk_mq_get_driver_tag(struct blk_mq_hw_ctx * hctx,struct request * rq)1391 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1392 {
1393 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1394 return false;
1395
1396 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1397 !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1398 rq->rq_flags |= RQF_MQ_INFLIGHT;
1399 __blk_mq_inc_active_requests(hctx);
1400 }
1401 hctx->tags->rqs[rq->tag] = rq;
1402 return true;
1403 }
1404
blk_mq_dispatch_wake(wait_queue_entry_t * wait,unsigned mode,int flags,void * key)1405 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1406 int flags, void *key)
1407 {
1408 struct blk_mq_hw_ctx *hctx;
1409
1410 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1411
1412 spin_lock(&hctx->dispatch_wait_lock);
1413 if (!list_empty(&wait->entry)) {
1414 struct sbitmap_queue *sbq;
1415
1416 list_del_init(&wait->entry);
1417 sbq = &hctx->tags->bitmap_tags;
1418 atomic_dec(&sbq->ws_active);
1419 }
1420 spin_unlock(&hctx->dispatch_wait_lock);
1421
1422 blk_mq_run_hw_queue(hctx, true);
1423 return 1;
1424 }
1425
1426 /*
1427 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1428 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1429 * restart. For both cases, take care to check the condition again after
1430 * marking us as waiting.
1431 */
blk_mq_mark_tag_wait(struct blk_mq_hw_ctx * hctx,struct request * rq)1432 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1433 struct request *rq)
1434 {
1435 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1436 struct wait_queue_head *wq;
1437 wait_queue_entry_t *wait;
1438 bool ret;
1439
1440 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1441 blk_mq_sched_mark_restart_hctx(hctx);
1442
1443 /*
1444 * It's possible that a tag was freed in the window between the
1445 * allocation failure and adding the hardware queue to the wait
1446 * queue.
1447 *
1448 * Don't clear RESTART here, someone else could have set it.
1449 * At most this will cost an extra queue run.
1450 */
1451 return blk_mq_get_driver_tag(rq);
1452 }
1453
1454 wait = &hctx->dispatch_wait;
1455 if (!list_empty_careful(&wait->entry))
1456 return false;
1457
1458 wq = &bt_wait_ptr(sbq, hctx)->wait;
1459
1460 spin_lock_irq(&wq->lock);
1461 spin_lock(&hctx->dispatch_wait_lock);
1462 if (!list_empty(&wait->entry)) {
1463 spin_unlock(&hctx->dispatch_wait_lock);
1464 spin_unlock_irq(&wq->lock);
1465 return false;
1466 }
1467
1468 atomic_inc(&sbq->ws_active);
1469 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1470 __add_wait_queue(wq, wait);
1471
1472 /*
1473 * It's possible that a tag was freed in the window between the
1474 * allocation failure and adding the hardware queue to the wait
1475 * queue.
1476 */
1477 ret = blk_mq_get_driver_tag(rq);
1478 if (!ret) {
1479 spin_unlock(&hctx->dispatch_wait_lock);
1480 spin_unlock_irq(&wq->lock);
1481 return false;
1482 }
1483
1484 /*
1485 * We got a tag, remove ourselves from the wait queue to ensure
1486 * someone else gets the wakeup.
1487 */
1488 list_del_init(&wait->entry);
1489 atomic_dec(&sbq->ws_active);
1490 spin_unlock(&hctx->dispatch_wait_lock);
1491 spin_unlock_irq(&wq->lock);
1492
1493 return true;
1494 }
1495
1496 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1497 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1498 /*
1499 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1500 * - EWMA is one simple way to compute running average value
1501 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1502 * - take 4 as factor for avoiding to get too small(0) result, and this
1503 * factor doesn't matter because EWMA decreases exponentially
1504 */
blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx * hctx,bool busy)1505 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1506 {
1507 unsigned int ewma;
1508
1509 ewma = hctx->dispatch_busy;
1510
1511 if (!ewma && !busy)
1512 return;
1513
1514 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1515 if (busy)
1516 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1517 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1518
1519 hctx->dispatch_busy = ewma;
1520 }
1521
1522 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1523
blk_mq_handle_dev_resource(struct request * rq,struct list_head * list)1524 static void blk_mq_handle_dev_resource(struct request *rq,
1525 struct list_head *list)
1526 {
1527 struct request *next =
1528 list_first_entry_or_null(list, struct request, queuelist);
1529
1530 /*
1531 * If an I/O scheduler has been configured and we got a driver tag for
1532 * the next request already, free it.
1533 */
1534 if (next)
1535 blk_mq_put_driver_tag(next);
1536
1537 list_add(&rq->queuelist, list);
1538 __blk_mq_requeue_request(rq);
1539 }
1540
blk_mq_handle_zone_resource(struct request * rq,struct list_head * zone_list)1541 static void blk_mq_handle_zone_resource(struct request *rq,
1542 struct list_head *zone_list)
1543 {
1544 /*
1545 * If we end up here it is because we cannot dispatch a request to a
1546 * specific zone due to LLD level zone-write locking or other zone
1547 * related resource not being available. In this case, set the request
1548 * aside in zone_list for retrying it later.
1549 */
1550 list_add(&rq->queuelist, zone_list);
1551 __blk_mq_requeue_request(rq);
1552 }
1553
1554 enum prep_dispatch {
1555 PREP_DISPATCH_OK,
1556 PREP_DISPATCH_NO_TAG,
1557 PREP_DISPATCH_NO_BUDGET,
1558 };
1559
blk_mq_prep_dispatch_rq(struct request * rq,bool need_budget)1560 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1561 bool need_budget)
1562 {
1563 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1564 int budget_token = -1;
1565
1566 if (need_budget) {
1567 budget_token = blk_mq_get_dispatch_budget(rq->q);
1568 if (budget_token < 0) {
1569 blk_mq_put_driver_tag(rq);
1570 return PREP_DISPATCH_NO_BUDGET;
1571 }
1572 blk_mq_set_rq_budget_token(rq, budget_token);
1573 }
1574
1575 if (!blk_mq_get_driver_tag(rq)) {
1576 /*
1577 * The initial allocation attempt failed, so we need to
1578 * rerun the hardware queue when a tag is freed. The
1579 * waitqueue takes care of that. If the queue is run
1580 * before we add this entry back on the dispatch list,
1581 * we'll re-run it below.
1582 */
1583 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1584 /*
1585 * All budgets not got from this function will be put
1586 * together during handling partial dispatch
1587 */
1588 if (need_budget)
1589 blk_mq_put_dispatch_budget(rq->q, budget_token);
1590 return PREP_DISPATCH_NO_TAG;
1591 }
1592 }
1593
1594 return PREP_DISPATCH_OK;
1595 }
1596
1597 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
blk_mq_release_budgets(struct request_queue * q,struct list_head * list)1598 static void blk_mq_release_budgets(struct request_queue *q,
1599 struct list_head *list)
1600 {
1601 struct request *rq;
1602
1603 list_for_each_entry(rq, list, queuelist) {
1604 int budget_token = blk_mq_get_rq_budget_token(rq);
1605
1606 if (budget_token >= 0)
1607 blk_mq_put_dispatch_budget(q, budget_token);
1608 }
1609 }
1610
1611 /*
1612 * Returns true if we did some work AND can potentially do more.
1613 */
blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx * hctx,struct list_head * list,unsigned int nr_budgets)1614 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1615 unsigned int nr_budgets)
1616 {
1617 enum prep_dispatch prep;
1618 struct request_queue *q = hctx->queue;
1619 struct request *rq, *nxt;
1620 int errors, queued;
1621 blk_status_t ret = BLK_STS_OK;
1622 LIST_HEAD(zone_list);
1623 bool needs_resource = false;
1624
1625 if (list_empty(list))
1626 return false;
1627
1628 /*
1629 * Now process all the entries, sending them to the driver.
1630 */
1631 errors = queued = 0;
1632 do {
1633 struct blk_mq_queue_data bd;
1634
1635 rq = list_first_entry(list, struct request, queuelist);
1636
1637 WARN_ON_ONCE(hctx != rq->mq_hctx);
1638 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1639 if (prep != PREP_DISPATCH_OK)
1640 break;
1641
1642 list_del_init(&rq->queuelist);
1643
1644 bd.rq = rq;
1645
1646 /*
1647 * Flag last if we have no more requests, or if we have more
1648 * but can't assign a driver tag to it.
1649 */
1650 if (list_empty(list))
1651 bd.last = true;
1652 else {
1653 nxt = list_first_entry(list, struct request, queuelist);
1654 bd.last = !blk_mq_get_driver_tag(nxt);
1655 }
1656
1657 /*
1658 * once the request is queued to lld, no need to cover the
1659 * budget any more
1660 */
1661 if (nr_budgets)
1662 nr_budgets--;
1663 ret = q->mq_ops->queue_rq(hctx, &bd);
1664 switch (ret) {
1665 case BLK_STS_OK:
1666 queued++;
1667 break;
1668 case BLK_STS_RESOURCE:
1669 needs_resource = true;
1670 fallthrough;
1671 case BLK_STS_DEV_RESOURCE:
1672 blk_mq_handle_dev_resource(rq, list);
1673 goto out;
1674 case BLK_STS_ZONE_RESOURCE:
1675 /*
1676 * Move the request to zone_list and keep going through
1677 * the dispatch list to find more requests the drive can
1678 * accept.
1679 */
1680 blk_mq_handle_zone_resource(rq, &zone_list);
1681 needs_resource = true;
1682 break;
1683 default:
1684 errors++;
1685 blk_mq_end_request(rq, ret);
1686 }
1687 } while (!list_empty(list));
1688 out:
1689 if (!list_empty(&zone_list))
1690 list_splice_tail_init(&zone_list, list);
1691
1692 /* If we didn't flush the entire list, we could have told the driver
1693 * there was more coming, but that turned out to be a lie.
1694 */
1695 if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1696 q->mq_ops->commit_rqs(hctx);
1697 /*
1698 * Any items that need requeuing? Stuff them into hctx->dispatch,
1699 * that is where we will continue on next queue run.
1700 */
1701 if (!list_empty(list)) {
1702 bool needs_restart;
1703 /* For non-shared tags, the RESTART check will suffice */
1704 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1705 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1706
1707 if (nr_budgets)
1708 blk_mq_release_budgets(q, list);
1709
1710 spin_lock(&hctx->lock);
1711 list_splice_tail_init(list, &hctx->dispatch);
1712 spin_unlock(&hctx->lock);
1713
1714 /*
1715 * Order adding requests to hctx->dispatch and checking
1716 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1717 * in blk_mq_sched_restart(). Avoid restart code path to
1718 * miss the new added requests to hctx->dispatch, meantime
1719 * SCHED_RESTART is observed here.
1720 */
1721 smp_mb();
1722
1723 /*
1724 * If SCHED_RESTART was set by the caller of this function and
1725 * it is no longer set that means that it was cleared by another
1726 * thread and hence that a queue rerun is needed.
1727 *
1728 * If 'no_tag' is set, that means that we failed getting
1729 * a driver tag with an I/O scheduler attached. If our dispatch
1730 * waitqueue is no longer active, ensure that we run the queue
1731 * AFTER adding our entries back to the list.
1732 *
1733 * If no I/O scheduler has been configured it is possible that
1734 * the hardware queue got stopped and restarted before requests
1735 * were pushed back onto the dispatch list. Rerun the queue to
1736 * avoid starvation. Notes:
1737 * - blk_mq_run_hw_queue() checks whether or not a queue has
1738 * been stopped before rerunning a queue.
1739 * - Some but not all block drivers stop a queue before
1740 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1741 * and dm-rq.
1742 *
1743 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1744 * bit is set, run queue after a delay to avoid IO stalls
1745 * that could otherwise occur if the queue is idle. We'll do
1746 * similar if we couldn't get budget or couldn't lock a zone
1747 * and SCHED_RESTART is set.
1748 */
1749 needs_restart = blk_mq_sched_needs_restart(hctx);
1750 if (prep == PREP_DISPATCH_NO_BUDGET)
1751 needs_resource = true;
1752 if (!needs_restart ||
1753 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1754 blk_mq_run_hw_queue(hctx, true);
1755 else if (needs_restart && needs_resource)
1756 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1757
1758 blk_mq_update_dispatch_busy(hctx, true);
1759 return false;
1760 } else
1761 blk_mq_update_dispatch_busy(hctx, false);
1762
1763 return (queued + errors) != 0;
1764 }
1765
1766 /**
1767 * __blk_mq_run_hw_queue - Run a hardware queue.
1768 * @hctx: Pointer to the hardware queue to run.
1769 *
1770 * Send pending requests to the hardware.
1771 */
__blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx)1772 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1773 {
1774 int srcu_idx;
1775
1776 /*
1777 * We can't run the queue inline with ints disabled. Ensure that
1778 * we catch bad users of this early.
1779 */
1780 WARN_ON_ONCE(in_interrupt());
1781
1782 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1783
1784 hctx_lock(hctx, &srcu_idx);
1785 blk_mq_sched_dispatch_requests(hctx);
1786 hctx_unlock(hctx, srcu_idx);
1787 }
1788
blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx * hctx)1789 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1790 {
1791 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1792
1793 if (cpu >= nr_cpu_ids)
1794 cpu = cpumask_first(hctx->cpumask);
1795 return cpu;
1796 }
1797
1798 /*
1799 * It'd be great if the workqueue API had a way to pass
1800 * in a mask and had some smarts for more clever placement.
1801 * For now we just round-robin here, switching for every
1802 * BLK_MQ_CPU_WORK_BATCH queued items.
1803 */
blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx * hctx)1804 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1805 {
1806 bool tried = false;
1807 int next_cpu = hctx->next_cpu;
1808
1809 if (hctx->queue->nr_hw_queues == 1)
1810 return WORK_CPU_UNBOUND;
1811
1812 if (--hctx->next_cpu_batch <= 0) {
1813 select_cpu:
1814 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1815 cpu_online_mask);
1816 if (next_cpu >= nr_cpu_ids)
1817 next_cpu = blk_mq_first_mapped_cpu(hctx);
1818 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1819 }
1820
1821 /*
1822 * Do unbound schedule if we can't find a online CPU for this hctx,
1823 * and it should only happen in the path of handling CPU DEAD.
1824 */
1825 if (!cpu_online(next_cpu)) {
1826 if (!tried) {
1827 tried = true;
1828 goto select_cpu;
1829 }
1830
1831 /*
1832 * Make sure to re-select CPU next time once after CPUs
1833 * in hctx->cpumask become online again.
1834 */
1835 hctx->next_cpu = next_cpu;
1836 hctx->next_cpu_batch = 1;
1837 return WORK_CPU_UNBOUND;
1838 }
1839
1840 hctx->next_cpu = next_cpu;
1841 return next_cpu;
1842 }
1843
1844 /**
1845 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1846 * @hctx: Pointer to the hardware queue to run.
1847 * @async: If we want to run the queue asynchronously.
1848 * @msecs: Milliseconds of delay to wait before running the queue.
1849 *
1850 * If !@async, try to run the queue now. Else, run the queue asynchronously and
1851 * with a delay of @msecs.
1852 */
__blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async,unsigned long msecs)1853 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1854 unsigned long msecs)
1855 {
1856 if (unlikely(blk_mq_hctx_stopped(hctx)))
1857 return;
1858
1859 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1860 int cpu = get_cpu();
1861 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1862 __blk_mq_run_hw_queue(hctx);
1863 put_cpu();
1864 return;
1865 }
1866
1867 put_cpu();
1868 }
1869
1870 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1871 msecs_to_jiffies(msecs));
1872 }
1873
1874 /**
1875 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1876 * @hctx: Pointer to the hardware queue to run.
1877 * @msecs: Milliseconds of delay to wait before running the queue.
1878 *
1879 * Run a hardware queue asynchronously with a delay of @msecs.
1880 */
blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,unsigned long msecs)1881 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1882 {
1883 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1884 }
1885 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1886
1887 /**
1888 * blk_mq_run_hw_queue - Start to run a hardware queue.
1889 * @hctx: Pointer to the hardware queue to run.
1890 * @async: If we want to run the queue asynchronously.
1891 *
1892 * Check if the request queue is not in a quiesced state and if there are
1893 * pending requests to be sent. If this is true, run the queue to send requests
1894 * to hardware.
1895 */
blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)1896 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1897 {
1898 int srcu_idx;
1899 bool need_run;
1900
1901 /*
1902 * When queue is quiesced, we may be switching io scheduler, or
1903 * updating nr_hw_queues, or other things, and we can't run queue
1904 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1905 *
1906 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1907 * quiesced.
1908 */
1909 hctx_lock(hctx, &srcu_idx);
1910 need_run = !blk_queue_quiesced(hctx->queue) &&
1911 blk_mq_hctx_has_pending(hctx);
1912 hctx_unlock(hctx, srcu_idx);
1913
1914 if (need_run)
1915 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1916 }
1917 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1918
1919 /*
1920 * Is the request queue handled by an IO scheduler that does not respect
1921 * hardware queues when dispatching?
1922 */
blk_mq_has_sqsched(struct request_queue * q)1923 static bool blk_mq_has_sqsched(struct request_queue *q)
1924 {
1925 struct elevator_queue *e = q->elevator;
1926
1927 if (e && e->type->ops.dispatch_request &&
1928 !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1929 return true;
1930 return false;
1931 }
1932
1933 /*
1934 * Return prefered queue to dispatch from (if any) for non-mq aware IO
1935 * scheduler.
1936 */
blk_mq_get_sq_hctx(struct request_queue * q)1937 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1938 {
1939 struct blk_mq_hw_ctx *hctx;
1940
1941 /*
1942 * If the IO scheduler does not respect hardware queues when
1943 * dispatching, we just don't bother with multiple HW queues and
1944 * dispatch from hctx for the current CPU since running multiple queues
1945 * just causes lock contention inside the scheduler and pointless cache
1946 * bouncing.
1947 */
1948 hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
1949 raw_smp_processor_id());
1950 if (!blk_mq_hctx_stopped(hctx))
1951 return hctx;
1952 return NULL;
1953 }
1954
1955 /**
1956 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1957 * @q: Pointer to the request queue to run.
1958 * @async: If we want to run the queue asynchronously.
1959 */
blk_mq_run_hw_queues(struct request_queue * q,bool async)1960 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1961 {
1962 struct blk_mq_hw_ctx *hctx, *sq_hctx;
1963 int i;
1964
1965 sq_hctx = NULL;
1966 if (blk_mq_has_sqsched(q))
1967 sq_hctx = blk_mq_get_sq_hctx(q);
1968 queue_for_each_hw_ctx(q, hctx, i) {
1969 if (blk_mq_hctx_stopped(hctx))
1970 continue;
1971 /*
1972 * Dispatch from this hctx either if there's no hctx preferred
1973 * by IO scheduler or if it has requests that bypass the
1974 * scheduler.
1975 */
1976 if (!sq_hctx || sq_hctx == hctx ||
1977 !list_empty_careful(&hctx->dispatch))
1978 blk_mq_run_hw_queue(hctx, async);
1979 }
1980 }
1981 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1982
1983 /**
1984 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1985 * @q: Pointer to the request queue to run.
1986 * @msecs: Milliseconds of delay to wait before running the queues.
1987 */
blk_mq_delay_run_hw_queues(struct request_queue * q,unsigned long msecs)1988 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1989 {
1990 struct blk_mq_hw_ctx *hctx, *sq_hctx;
1991 int i;
1992
1993 sq_hctx = NULL;
1994 if (blk_mq_has_sqsched(q))
1995 sq_hctx = blk_mq_get_sq_hctx(q);
1996 queue_for_each_hw_ctx(q, hctx, i) {
1997 if (blk_mq_hctx_stopped(hctx))
1998 continue;
1999 /*
2000 * Dispatch from this hctx either if there's no hctx preferred
2001 * by IO scheduler or if it has requests that bypass the
2002 * scheduler.
2003 */
2004 if (!sq_hctx || sq_hctx == hctx ||
2005 !list_empty_careful(&hctx->dispatch))
2006 blk_mq_delay_run_hw_queue(hctx, msecs);
2007 }
2008 }
2009 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2010
2011 /**
2012 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
2013 * @q: request queue.
2014 *
2015 * The caller is responsible for serializing this function against
2016 * blk_mq_{start,stop}_hw_queue().
2017 */
blk_mq_queue_stopped(struct request_queue * q)2018 bool blk_mq_queue_stopped(struct request_queue *q)
2019 {
2020 struct blk_mq_hw_ctx *hctx;
2021 int i;
2022
2023 queue_for_each_hw_ctx(q, hctx, i)
2024 if (blk_mq_hctx_stopped(hctx))
2025 return true;
2026
2027 return false;
2028 }
2029 EXPORT_SYMBOL(blk_mq_queue_stopped);
2030
2031 /*
2032 * This function is often used for pausing .queue_rq() by driver when
2033 * there isn't enough resource or some conditions aren't satisfied, and
2034 * BLK_STS_RESOURCE is usually returned.
2035 *
2036 * We do not guarantee that dispatch can be drained or blocked
2037 * after blk_mq_stop_hw_queue() returns. Please use
2038 * blk_mq_quiesce_queue() for that requirement.
2039 */
blk_mq_stop_hw_queue(struct blk_mq_hw_ctx * hctx)2040 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2041 {
2042 cancel_delayed_work(&hctx->run_work);
2043
2044 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2045 }
2046 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2047
2048 /*
2049 * This function is often used for pausing .queue_rq() by driver when
2050 * there isn't enough resource or some conditions aren't satisfied, and
2051 * BLK_STS_RESOURCE is usually returned.
2052 *
2053 * We do not guarantee that dispatch can be drained or blocked
2054 * after blk_mq_stop_hw_queues() returns. Please use
2055 * blk_mq_quiesce_queue() for that requirement.
2056 */
blk_mq_stop_hw_queues(struct request_queue * q)2057 void blk_mq_stop_hw_queues(struct request_queue *q)
2058 {
2059 struct blk_mq_hw_ctx *hctx;
2060 int i;
2061
2062 queue_for_each_hw_ctx(q, hctx, i)
2063 blk_mq_stop_hw_queue(hctx);
2064 }
2065 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2066
blk_mq_start_hw_queue(struct blk_mq_hw_ctx * hctx)2067 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2068 {
2069 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2070
2071 blk_mq_run_hw_queue(hctx, false);
2072 }
2073 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2074
blk_mq_start_hw_queues(struct request_queue * q)2075 void blk_mq_start_hw_queues(struct request_queue *q)
2076 {
2077 struct blk_mq_hw_ctx *hctx;
2078 int i;
2079
2080 queue_for_each_hw_ctx(q, hctx, i)
2081 blk_mq_start_hw_queue(hctx);
2082 }
2083 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2084
blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)2085 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2086 {
2087 if (!blk_mq_hctx_stopped(hctx))
2088 return;
2089
2090 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2091 blk_mq_run_hw_queue(hctx, async);
2092 }
2093 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2094
blk_mq_start_stopped_hw_queues(struct request_queue * q,bool async)2095 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2096 {
2097 struct blk_mq_hw_ctx *hctx;
2098 int i;
2099
2100 queue_for_each_hw_ctx(q, hctx, i)
2101 blk_mq_start_stopped_hw_queue(hctx, async);
2102 }
2103 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2104
blk_mq_run_work_fn(struct work_struct * work)2105 static void blk_mq_run_work_fn(struct work_struct *work)
2106 {
2107 struct blk_mq_hw_ctx *hctx;
2108
2109 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2110
2111 /*
2112 * If we are stopped, don't run the queue.
2113 */
2114 if (blk_mq_hctx_stopped(hctx))
2115 return;
2116
2117 __blk_mq_run_hw_queue(hctx);
2118 }
2119
__blk_mq_insert_req_list(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)2120 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2121 struct request *rq,
2122 bool at_head)
2123 {
2124 struct blk_mq_ctx *ctx = rq->mq_ctx;
2125 enum hctx_type type = hctx->type;
2126
2127 lockdep_assert_held(&ctx->lock);
2128
2129 trace_block_rq_insert(rq);
2130
2131 if (at_head)
2132 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2133 else
2134 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2135 }
2136
__blk_mq_insert_request(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)2137 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2138 bool at_head)
2139 {
2140 struct blk_mq_ctx *ctx = rq->mq_ctx;
2141
2142 lockdep_assert_held(&ctx->lock);
2143
2144 __blk_mq_insert_req_list(hctx, rq, at_head);
2145 blk_mq_hctx_mark_pending(hctx, ctx);
2146 }
2147
2148 /**
2149 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2150 * @rq: Pointer to request to be inserted.
2151 * @at_head: true if the request should be inserted at the head of the list.
2152 * @run_queue: If we should run the hardware queue after inserting the request.
2153 *
2154 * Should only be used carefully, when the caller knows we want to
2155 * bypass a potential IO scheduler on the target device.
2156 */
blk_mq_request_bypass_insert(struct request * rq,bool at_head,bool run_queue)2157 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2158 bool run_queue)
2159 {
2160 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2161
2162 spin_lock(&hctx->lock);
2163 if (at_head)
2164 list_add(&rq->queuelist, &hctx->dispatch);
2165 else
2166 list_add_tail(&rq->queuelist, &hctx->dispatch);
2167 spin_unlock(&hctx->lock);
2168
2169 if (run_queue)
2170 blk_mq_run_hw_queue(hctx, false);
2171 }
2172
blk_mq_insert_requests(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct list_head * list)2173 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2174 struct list_head *list)
2175
2176 {
2177 struct request *rq;
2178 enum hctx_type type = hctx->type;
2179
2180 /*
2181 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2182 * offline now
2183 */
2184 list_for_each_entry(rq, list, queuelist) {
2185 BUG_ON(rq->mq_ctx != ctx);
2186 trace_block_rq_insert(rq);
2187 }
2188
2189 spin_lock(&ctx->lock);
2190 list_splice_tail_init(list, &ctx->rq_lists[type]);
2191 blk_mq_hctx_mark_pending(hctx, ctx);
2192 spin_unlock(&ctx->lock);
2193 }
2194
blk_mq_commit_rqs(struct blk_mq_hw_ctx * hctx,int * queued,bool from_schedule)2195 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2196 bool from_schedule)
2197 {
2198 if (hctx->queue->mq_ops->commit_rqs) {
2199 trace_block_unplug(hctx->queue, *queued, !from_schedule);
2200 hctx->queue->mq_ops->commit_rqs(hctx);
2201 }
2202 *queued = 0;
2203 }
2204
blk_mq_plug_issue_direct(struct blk_plug * plug,bool from_schedule)2205 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2206 {
2207 struct blk_mq_hw_ctx *hctx = NULL;
2208 struct request *rq;
2209 int queued = 0;
2210 int errors = 0;
2211
2212 while ((rq = rq_list_pop(&plug->mq_list))) {
2213 bool last = rq_list_empty(plug->mq_list);
2214 blk_status_t ret;
2215
2216 if (hctx != rq->mq_hctx) {
2217 if (hctx)
2218 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2219 hctx = rq->mq_hctx;
2220 }
2221
2222 ret = blk_mq_request_issue_directly(rq, last);
2223 switch (ret) {
2224 case BLK_STS_OK:
2225 queued++;
2226 break;
2227 case BLK_STS_RESOURCE:
2228 case BLK_STS_DEV_RESOURCE:
2229 blk_mq_request_bypass_insert(rq, false, last);
2230 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2231 return;
2232 default:
2233 blk_mq_end_request(rq, ret);
2234 errors++;
2235 break;
2236 }
2237 }
2238
2239 /*
2240 * If we didn't flush the entire list, we could have told the driver
2241 * there was more coming, but that turned out to be a lie.
2242 */
2243 if (errors)
2244 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2245 }
2246
blk_mq_flush_plug_list(struct blk_plug * plug,bool from_schedule)2247 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2248 {
2249 struct blk_mq_hw_ctx *this_hctx;
2250 struct blk_mq_ctx *this_ctx;
2251 unsigned int depth;
2252 LIST_HEAD(list);
2253
2254 if (rq_list_empty(plug->mq_list))
2255 return;
2256 plug->rq_count = 0;
2257
2258 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2259 blk_mq_plug_issue_direct(plug, false);
2260 if (rq_list_empty(plug->mq_list))
2261 return;
2262 }
2263
2264 this_hctx = NULL;
2265 this_ctx = NULL;
2266 depth = 0;
2267 do {
2268 struct request *rq;
2269
2270 rq = rq_list_pop(&plug->mq_list);
2271
2272 if (!this_hctx) {
2273 this_hctx = rq->mq_hctx;
2274 this_ctx = rq->mq_ctx;
2275 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2276 trace_block_unplug(this_hctx->queue, depth,
2277 !from_schedule);
2278 blk_mq_sched_insert_requests(this_hctx, this_ctx,
2279 &list, from_schedule);
2280 depth = 0;
2281 this_hctx = rq->mq_hctx;
2282 this_ctx = rq->mq_ctx;
2283
2284 }
2285
2286 list_add(&rq->queuelist, &list);
2287 depth++;
2288 } while (!rq_list_empty(plug->mq_list));
2289
2290 if (!list_empty(&list)) {
2291 trace_block_unplug(this_hctx->queue, depth, !from_schedule);
2292 blk_mq_sched_insert_requests(this_hctx, this_ctx, &list,
2293 from_schedule);
2294 }
2295 }
2296
blk_mq_bio_to_request(struct request * rq,struct bio * bio,unsigned int nr_segs)2297 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2298 unsigned int nr_segs)
2299 {
2300 int err;
2301
2302 if (bio->bi_opf & REQ_RAHEAD)
2303 rq->cmd_flags |= REQ_FAILFAST_MASK;
2304
2305 rq->__sector = bio->bi_iter.bi_sector;
2306 rq->write_hint = bio->bi_write_hint;
2307 blk_rq_bio_prep(rq, bio, nr_segs);
2308
2309 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2310 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2311 WARN_ON_ONCE(err);
2312
2313 blk_account_io_start(rq);
2314 }
2315
__blk_mq_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,bool last)2316 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2317 struct request *rq, bool last)
2318 {
2319 struct request_queue *q = rq->q;
2320 struct blk_mq_queue_data bd = {
2321 .rq = rq,
2322 .last = last,
2323 };
2324 blk_status_t ret;
2325
2326 /*
2327 * For OK queue, we are done. For error, caller may kill it.
2328 * Any other error (busy), just add it to our list as we
2329 * previously would have done.
2330 */
2331 ret = q->mq_ops->queue_rq(hctx, &bd);
2332 switch (ret) {
2333 case BLK_STS_OK:
2334 blk_mq_update_dispatch_busy(hctx, false);
2335 break;
2336 case BLK_STS_RESOURCE:
2337 case BLK_STS_DEV_RESOURCE:
2338 blk_mq_update_dispatch_busy(hctx, true);
2339 __blk_mq_requeue_request(rq);
2340 break;
2341 default:
2342 blk_mq_update_dispatch_busy(hctx, false);
2343 break;
2344 }
2345
2346 return ret;
2347 }
2348
__blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,bool bypass_insert,bool last)2349 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2350 struct request *rq,
2351 bool bypass_insert, bool last)
2352 {
2353 struct request_queue *q = rq->q;
2354 bool run_queue = true;
2355 int budget_token;
2356
2357 /*
2358 * RCU or SRCU read lock is needed before checking quiesced flag.
2359 *
2360 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2361 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2362 * and avoid driver to try to dispatch again.
2363 */
2364 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2365 run_queue = false;
2366 bypass_insert = false;
2367 goto insert;
2368 }
2369
2370 if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2371 goto insert;
2372
2373 budget_token = blk_mq_get_dispatch_budget(q);
2374 if (budget_token < 0)
2375 goto insert;
2376
2377 blk_mq_set_rq_budget_token(rq, budget_token);
2378
2379 if (!blk_mq_get_driver_tag(rq)) {
2380 blk_mq_put_dispatch_budget(q, budget_token);
2381 goto insert;
2382 }
2383
2384 return __blk_mq_issue_directly(hctx, rq, last);
2385 insert:
2386 if (bypass_insert)
2387 return BLK_STS_RESOURCE;
2388
2389 blk_mq_sched_insert_request(rq, false, run_queue, false);
2390
2391 return BLK_STS_OK;
2392 }
2393
2394 /**
2395 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2396 * @hctx: Pointer of the associated hardware queue.
2397 * @rq: Pointer to request to be sent.
2398 *
2399 * If the device has enough resources to accept a new request now, send the
2400 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2401 * we can try send it another time in the future. Requests inserted at this
2402 * queue have higher priority.
2403 */
blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq)2404 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2405 struct request *rq)
2406 {
2407 blk_status_t ret;
2408 int srcu_idx;
2409
2410 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2411
2412 hctx_lock(hctx, &srcu_idx);
2413
2414 ret = __blk_mq_try_issue_directly(hctx, rq, false, true);
2415 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2416 blk_mq_request_bypass_insert(rq, false, true);
2417 else if (ret != BLK_STS_OK)
2418 blk_mq_end_request(rq, ret);
2419
2420 hctx_unlock(hctx, srcu_idx);
2421 }
2422
blk_mq_request_issue_directly(struct request * rq,bool last)2423 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2424 {
2425 blk_status_t ret;
2426 int srcu_idx;
2427 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2428
2429 hctx_lock(hctx, &srcu_idx);
2430 ret = __blk_mq_try_issue_directly(hctx, rq, true, last);
2431 hctx_unlock(hctx, srcu_idx);
2432
2433 return ret;
2434 }
2435
blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx * hctx,struct list_head * list)2436 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2437 struct list_head *list)
2438 {
2439 int queued = 0;
2440 int errors = 0;
2441
2442 while (!list_empty(list)) {
2443 blk_status_t ret;
2444 struct request *rq = list_first_entry(list, struct request,
2445 queuelist);
2446
2447 list_del_init(&rq->queuelist);
2448 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2449 if (ret != BLK_STS_OK) {
2450 if (ret == BLK_STS_RESOURCE ||
2451 ret == BLK_STS_DEV_RESOURCE) {
2452 blk_mq_request_bypass_insert(rq, false,
2453 list_empty(list));
2454 break;
2455 }
2456 blk_mq_end_request(rq, ret);
2457 errors++;
2458 } else
2459 queued++;
2460 }
2461
2462 /*
2463 * If we didn't flush the entire list, we could have told
2464 * the driver there was more coming, but that turned out to
2465 * be a lie.
2466 */
2467 if ((!list_empty(list) || errors) &&
2468 hctx->queue->mq_ops->commit_rqs && queued)
2469 hctx->queue->mq_ops->commit_rqs(hctx);
2470 }
2471
blk_add_rq_to_plug(struct blk_plug * plug,struct request * rq)2472 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2473 {
2474 if (!plug->multiple_queues) {
2475 struct request *nxt = rq_list_peek(&plug->mq_list);
2476
2477 if (nxt && nxt->q != rq->q)
2478 plug->multiple_queues = true;
2479 }
2480 if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
2481 plug->has_elevator = true;
2482 rq->rq_next = NULL;
2483 rq_list_add(&plug->mq_list, rq);
2484 plug->rq_count++;
2485 }
2486
2487 /*
2488 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2489 * queues. This is important for md arrays to benefit from merging
2490 * requests.
2491 */
blk_plug_max_rq_count(struct blk_plug * plug)2492 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2493 {
2494 if (plug->multiple_queues)
2495 return BLK_MAX_REQUEST_COUNT * 2;
2496 return BLK_MAX_REQUEST_COUNT;
2497 }
2498
blk_mq_attempt_bio_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs,bool * same_queue_rq)2499 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2500 struct bio *bio, unsigned int nr_segs,
2501 bool *same_queue_rq)
2502 {
2503 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2504 if (blk_attempt_plug_merge(q, bio, nr_segs, same_queue_rq))
2505 return true;
2506 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2507 return true;
2508 }
2509 return false;
2510 }
2511
blk_mq_get_new_requests(struct request_queue * q,struct blk_plug * plug,struct bio * bio,unsigned int nsegs,bool * same_queue_rq)2512 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2513 struct blk_plug *plug,
2514 struct bio *bio,
2515 unsigned int nsegs,
2516 bool *same_queue_rq)
2517 {
2518 struct blk_mq_alloc_data data = {
2519 .q = q,
2520 .nr_tags = 1,
2521 .cmd_flags = bio->bi_opf,
2522 };
2523 struct request *rq;
2524
2525 if (blk_mq_attempt_bio_merge(q, bio, nsegs, same_queue_rq))
2526 return NULL;
2527
2528 rq_qos_throttle(q, bio);
2529
2530 if (plug) {
2531 data.nr_tags = plug->nr_ios;
2532 plug->nr_ios = 1;
2533 data.cached_rq = &plug->cached_rq;
2534 }
2535
2536 rq = __blk_mq_alloc_requests(&data);
2537 if (rq)
2538 return rq;
2539
2540 rq_qos_cleanup(q, bio);
2541 if (bio->bi_opf & REQ_NOWAIT)
2542 bio_wouldblock_error(bio);
2543
2544 return NULL;
2545 }
2546
blk_mq_can_use_cached_rq(struct request * rq,struct bio * bio)2547 static inline bool blk_mq_can_use_cached_rq(struct request *rq, struct bio *bio)
2548 {
2549 if (blk_mq_get_hctx_type(bio->bi_opf) != rq->mq_hctx->type)
2550 return false;
2551
2552 if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
2553 return false;
2554
2555 return true;
2556 }
2557
blk_mq_get_request(struct request_queue * q,struct blk_plug * plug,struct bio * bio,unsigned int nsegs,bool * same_queue_rq)2558 static inline struct request *blk_mq_get_request(struct request_queue *q,
2559 struct blk_plug *plug,
2560 struct bio *bio,
2561 unsigned int nsegs,
2562 bool *same_queue_rq)
2563 {
2564 struct request *rq;
2565 bool checked = false;
2566
2567 if (plug) {
2568 rq = rq_list_peek(&plug->cached_rq);
2569 if (rq && rq->q == q) {
2570 if (unlikely(!submit_bio_checks(bio)))
2571 return NULL;
2572 if (blk_mq_attempt_bio_merge(q, bio, nsegs,
2573 same_queue_rq))
2574 return NULL;
2575 checked = true;
2576 if (!blk_mq_can_use_cached_rq(rq, bio))
2577 goto fallback;
2578 rq->cmd_flags = bio->bi_opf;
2579 plug->cached_rq = rq_list_next(rq);
2580 INIT_LIST_HEAD(&rq->queuelist);
2581 rq_qos_throttle(q, bio);
2582 return rq;
2583 }
2584 }
2585
2586 fallback:
2587 if (unlikely(bio_queue_enter(bio)))
2588 return NULL;
2589 if (unlikely(!checked && !submit_bio_checks(bio)))
2590 goto out_put;
2591 rq = blk_mq_get_new_requests(q, plug, bio, nsegs, same_queue_rq);
2592 if (rq)
2593 return rq;
2594 out_put:
2595 blk_queue_exit(q);
2596 return NULL;
2597 }
2598
2599 /**
2600 * blk_mq_submit_bio - Create and send a request to block device.
2601 * @bio: Bio pointer.
2602 *
2603 * Builds up a request structure from @q and @bio and send to the device. The
2604 * request may not be queued directly to hardware if:
2605 * * This request can be merged with another one
2606 * * We want to place request at plug queue for possible future merging
2607 * * There is an IO scheduler active at this queue
2608 *
2609 * It will not queue the request if there is an error with the bio, or at the
2610 * request creation.
2611 */
blk_mq_submit_bio(struct bio * bio)2612 void blk_mq_submit_bio(struct bio *bio)
2613 {
2614 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2615 const int is_sync = op_is_sync(bio->bi_opf);
2616 struct request *rq;
2617 struct blk_plug *plug;
2618 bool same_queue_rq = false;
2619 unsigned int nr_segs = 1;
2620 blk_status_t ret;
2621
2622 if (unlikely(!blk_crypto_bio_prep(&bio)))
2623 return;
2624
2625 blk_queue_bounce(q, &bio);
2626 if (blk_may_split(q, bio))
2627 __blk_queue_split(q, &bio, &nr_segs);
2628
2629 if (!bio_integrity_prep(bio))
2630 return;
2631
2632 plug = blk_mq_plug(q, bio);
2633 rq = blk_mq_get_request(q, plug, bio, nr_segs, &same_queue_rq);
2634 if (unlikely(!rq))
2635 return;
2636
2637 trace_block_getrq(bio);
2638
2639 rq_qos_track(q, rq, bio);
2640
2641 blk_mq_bio_to_request(rq, bio, nr_segs);
2642
2643 ret = blk_crypto_init_request(rq);
2644 if (ret != BLK_STS_OK) {
2645 bio->bi_status = ret;
2646 bio_endio(bio);
2647 blk_mq_free_request(rq);
2648 return;
2649 }
2650
2651 if (op_is_flush(bio->bi_opf)) {
2652 blk_insert_flush(rq);
2653 return;
2654 }
2655
2656 if (plug && (q->nr_hw_queues == 1 ||
2657 blk_mq_is_shared_tags(rq->mq_hctx->flags) ||
2658 q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2659 /*
2660 * Use plugging if we have a ->commit_rqs() hook as well, as
2661 * we know the driver uses bd->last in a smart fashion.
2662 *
2663 * Use normal plugging if this disk is slow HDD, as sequential
2664 * IO may benefit a lot from plug merging.
2665 */
2666 unsigned int request_count = plug->rq_count;
2667 struct request *last = NULL;
2668
2669 if (!request_count) {
2670 trace_block_plug(q);
2671 } else if (!blk_queue_nomerges(q)) {
2672 last = rq_list_peek(&plug->mq_list);
2673 if (blk_rq_bytes(last) < BLK_PLUG_FLUSH_SIZE)
2674 last = NULL;
2675 }
2676
2677 if (request_count >= blk_plug_max_rq_count(plug) || last) {
2678 blk_mq_flush_plug_list(plug, false);
2679 trace_block_plug(q);
2680 }
2681
2682 blk_add_rq_to_plug(plug, rq);
2683 } else if (rq->rq_flags & RQF_ELV) {
2684 /* Insert the request at the IO scheduler queue */
2685 blk_mq_sched_insert_request(rq, false, true, true);
2686 } else if (plug && !blk_queue_nomerges(q)) {
2687 struct request *next_rq = NULL;
2688
2689 /*
2690 * We do limited plugging. If the bio can be merged, do that.
2691 * Otherwise the existing request in the plug list will be
2692 * issued. So the plug list will have one request at most
2693 * The plug list might get flushed before this. If that happens,
2694 * the plug list is empty, and same_queue_rq is invalid.
2695 */
2696 if (same_queue_rq) {
2697 next_rq = rq_list_pop(&plug->mq_list);
2698 plug->rq_count--;
2699 }
2700 blk_add_rq_to_plug(plug, rq);
2701 trace_block_plug(q);
2702
2703 if (next_rq) {
2704 trace_block_unplug(q, 1, true);
2705 blk_mq_try_issue_directly(next_rq->mq_hctx, next_rq);
2706 }
2707 } else if ((q->nr_hw_queues > 1 && is_sync) ||
2708 !rq->mq_hctx->dispatch_busy) {
2709 /*
2710 * There is no scheduler and we can try to send directly
2711 * to the hardware.
2712 */
2713 blk_mq_try_issue_directly(rq->mq_hctx, rq);
2714 } else {
2715 /* Default case. */
2716 blk_mq_sched_insert_request(rq, false, true, true);
2717 }
2718 }
2719
order_to_size(unsigned int order)2720 static size_t order_to_size(unsigned int order)
2721 {
2722 return (size_t)PAGE_SIZE << order;
2723 }
2724
2725 /* called before freeing request pool in @tags */
blk_mq_clear_rq_mapping(struct blk_mq_tags * drv_tags,struct blk_mq_tags * tags)2726 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
2727 struct blk_mq_tags *tags)
2728 {
2729 struct page *page;
2730 unsigned long flags;
2731
2732 /* There is no need to clear a driver tags own mapping */
2733 if (drv_tags == tags)
2734 return;
2735
2736 list_for_each_entry(page, &tags->page_list, lru) {
2737 unsigned long start = (unsigned long)page_address(page);
2738 unsigned long end = start + order_to_size(page->private);
2739 int i;
2740
2741 for (i = 0; i < drv_tags->nr_tags; i++) {
2742 struct request *rq = drv_tags->rqs[i];
2743 unsigned long rq_addr = (unsigned long)rq;
2744
2745 if (rq_addr >= start && rq_addr < end) {
2746 WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
2747 cmpxchg(&drv_tags->rqs[i], rq, NULL);
2748 }
2749 }
2750 }
2751
2752 /*
2753 * Wait until all pending iteration is done.
2754 *
2755 * Request reference is cleared and it is guaranteed to be observed
2756 * after the ->lock is released.
2757 */
2758 spin_lock_irqsave(&drv_tags->lock, flags);
2759 spin_unlock_irqrestore(&drv_tags->lock, flags);
2760 }
2761
blk_mq_free_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)2762 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2763 unsigned int hctx_idx)
2764 {
2765 struct blk_mq_tags *drv_tags;
2766 struct page *page;
2767
2768 if (blk_mq_is_shared_tags(set->flags))
2769 drv_tags = set->shared_tags;
2770 else
2771 drv_tags = set->tags[hctx_idx];
2772
2773 if (tags->static_rqs && set->ops->exit_request) {
2774 int i;
2775
2776 for (i = 0; i < tags->nr_tags; i++) {
2777 struct request *rq = tags->static_rqs[i];
2778
2779 if (!rq)
2780 continue;
2781 set->ops->exit_request(set, rq, hctx_idx);
2782 tags->static_rqs[i] = NULL;
2783 }
2784 }
2785
2786 blk_mq_clear_rq_mapping(drv_tags, tags);
2787
2788 while (!list_empty(&tags->page_list)) {
2789 page = list_first_entry(&tags->page_list, struct page, lru);
2790 list_del_init(&page->lru);
2791 /*
2792 * Remove kmemleak object previously allocated in
2793 * blk_mq_alloc_rqs().
2794 */
2795 kmemleak_free(page_address(page));
2796 __free_pages(page, page->private);
2797 }
2798 }
2799
blk_mq_free_rq_map(struct blk_mq_tags * tags)2800 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2801 {
2802 kfree(tags->rqs);
2803 tags->rqs = NULL;
2804 kfree(tags->static_rqs);
2805 tags->static_rqs = NULL;
2806
2807 blk_mq_free_tags(tags);
2808 }
2809
blk_mq_alloc_rq_map(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int nr_tags,unsigned int reserved_tags)2810 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2811 unsigned int hctx_idx,
2812 unsigned int nr_tags,
2813 unsigned int reserved_tags)
2814 {
2815 struct blk_mq_tags *tags;
2816 int node;
2817
2818 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2819 if (node == NUMA_NO_NODE)
2820 node = set->numa_node;
2821
2822 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2823 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2824 if (!tags)
2825 return NULL;
2826
2827 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2828 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2829 node);
2830 if (!tags->rqs) {
2831 blk_mq_free_tags(tags);
2832 return NULL;
2833 }
2834
2835 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2836 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2837 node);
2838 if (!tags->static_rqs) {
2839 kfree(tags->rqs);
2840 blk_mq_free_tags(tags);
2841 return NULL;
2842 }
2843
2844 return tags;
2845 }
2846
blk_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,int node)2847 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2848 unsigned int hctx_idx, int node)
2849 {
2850 int ret;
2851
2852 if (set->ops->init_request) {
2853 ret = set->ops->init_request(set, rq, hctx_idx, node);
2854 if (ret)
2855 return ret;
2856 }
2857
2858 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2859 return 0;
2860 }
2861
blk_mq_alloc_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx,unsigned int depth)2862 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
2863 struct blk_mq_tags *tags,
2864 unsigned int hctx_idx, unsigned int depth)
2865 {
2866 unsigned int i, j, entries_per_page, max_order = 4;
2867 size_t rq_size, left;
2868 int node;
2869
2870 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2871 if (node == NUMA_NO_NODE)
2872 node = set->numa_node;
2873
2874 INIT_LIST_HEAD(&tags->page_list);
2875
2876 /*
2877 * rq_size is the size of the request plus driver payload, rounded
2878 * to the cacheline size
2879 */
2880 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2881 cache_line_size());
2882 left = rq_size * depth;
2883
2884 for (i = 0; i < depth; ) {
2885 int this_order = max_order;
2886 struct page *page;
2887 int to_do;
2888 void *p;
2889
2890 while (this_order && left < order_to_size(this_order - 1))
2891 this_order--;
2892
2893 do {
2894 page = alloc_pages_node(node,
2895 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2896 this_order);
2897 if (page)
2898 break;
2899 if (!this_order--)
2900 break;
2901 if (order_to_size(this_order) < rq_size)
2902 break;
2903 } while (1);
2904
2905 if (!page)
2906 goto fail;
2907
2908 page->private = this_order;
2909 list_add_tail(&page->lru, &tags->page_list);
2910
2911 p = page_address(page);
2912 /*
2913 * Allow kmemleak to scan these pages as they contain pointers
2914 * to additional allocations like via ops->init_request().
2915 */
2916 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2917 entries_per_page = order_to_size(this_order) / rq_size;
2918 to_do = min(entries_per_page, depth - i);
2919 left -= to_do * rq_size;
2920 for (j = 0; j < to_do; j++) {
2921 struct request *rq = p;
2922
2923 tags->static_rqs[i] = rq;
2924 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2925 tags->static_rqs[i] = NULL;
2926 goto fail;
2927 }
2928
2929 p += rq_size;
2930 i++;
2931 }
2932 }
2933 return 0;
2934
2935 fail:
2936 blk_mq_free_rqs(set, tags, hctx_idx);
2937 return -ENOMEM;
2938 }
2939
2940 struct rq_iter_data {
2941 struct blk_mq_hw_ctx *hctx;
2942 bool has_rq;
2943 };
2944
blk_mq_has_request(struct request * rq,void * data,bool reserved)2945 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2946 {
2947 struct rq_iter_data *iter_data = data;
2948
2949 if (rq->mq_hctx != iter_data->hctx)
2950 return true;
2951 iter_data->has_rq = true;
2952 return false;
2953 }
2954
blk_mq_hctx_has_requests(struct blk_mq_hw_ctx * hctx)2955 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2956 {
2957 struct blk_mq_tags *tags = hctx->sched_tags ?
2958 hctx->sched_tags : hctx->tags;
2959 struct rq_iter_data data = {
2960 .hctx = hctx,
2961 };
2962
2963 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2964 return data.has_rq;
2965 }
2966
blk_mq_last_cpu_in_hctx(unsigned int cpu,struct blk_mq_hw_ctx * hctx)2967 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2968 struct blk_mq_hw_ctx *hctx)
2969 {
2970 if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2971 return false;
2972 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2973 return false;
2974 return true;
2975 }
2976
blk_mq_hctx_notify_offline(unsigned int cpu,struct hlist_node * node)2977 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2978 {
2979 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2980 struct blk_mq_hw_ctx, cpuhp_online);
2981
2982 if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2983 !blk_mq_last_cpu_in_hctx(cpu, hctx))
2984 return 0;
2985
2986 /*
2987 * Prevent new request from being allocated on the current hctx.
2988 *
2989 * The smp_mb__after_atomic() Pairs with the implied barrier in
2990 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
2991 * seen once we return from the tag allocator.
2992 */
2993 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2994 smp_mb__after_atomic();
2995
2996 /*
2997 * Try to grab a reference to the queue and wait for any outstanding
2998 * requests. If we could not grab a reference the queue has been
2999 * frozen and there are no requests.
3000 */
3001 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3002 while (blk_mq_hctx_has_requests(hctx))
3003 msleep(5);
3004 percpu_ref_put(&hctx->queue->q_usage_counter);
3005 }
3006
3007 return 0;
3008 }
3009
blk_mq_hctx_notify_online(unsigned int cpu,struct hlist_node * node)3010 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3011 {
3012 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3013 struct blk_mq_hw_ctx, cpuhp_online);
3014
3015 if (cpumask_test_cpu(cpu, hctx->cpumask))
3016 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3017 return 0;
3018 }
3019
3020 /*
3021 * 'cpu' is going away. splice any existing rq_list entries from this
3022 * software queue to the hw queue dispatch list, and ensure that it
3023 * gets run.
3024 */
blk_mq_hctx_notify_dead(unsigned int cpu,struct hlist_node * node)3025 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3026 {
3027 struct blk_mq_hw_ctx *hctx;
3028 struct blk_mq_ctx *ctx;
3029 LIST_HEAD(tmp);
3030 enum hctx_type type;
3031
3032 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3033 if (!cpumask_test_cpu(cpu, hctx->cpumask))
3034 return 0;
3035
3036 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3037 type = hctx->type;
3038
3039 spin_lock(&ctx->lock);
3040 if (!list_empty(&ctx->rq_lists[type])) {
3041 list_splice_init(&ctx->rq_lists[type], &tmp);
3042 blk_mq_hctx_clear_pending(hctx, ctx);
3043 }
3044 spin_unlock(&ctx->lock);
3045
3046 if (list_empty(&tmp))
3047 return 0;
3048
3049 spin_lock(&hctx->lock);
3050 list_splice_tail_init(&tmp, &hctx->dispatch);
3051 spin_unlock(&hctx->lock);
3052
3053 blk_mq_run_hw_queue(hctx, true);
3054 return 0;
3055 }
3056
blk_mq_remove_cpuhp(struct blk_mq_hw_ctx * hctx)3057 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3058 {
3059 if (!(hctx->flags & BLK_MQ_F_STACKING))
3060 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3061 &hctx->cpuhp_online);
3062 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3063 &hctx->cpuhp_dead);
3064 }
3065
3066 /*
3067 * Before freeing hw queue, clearing the flush request reference in
3068 * tags->rqs[] for avoiding potential UAF.
3069 */
blk_mq_clear_flush_rq_mapping(struct blk_mq_tags * tags,unsigned int queue_depth,struct request * flush_rq)3070 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3071 unsigned int queue_depth, struct request *flush_rq)
3072 {
3073 int i;
3074 unsigned long flags;
3075
3076 /* The hw queue may not be mapped yet */
3077 if (!tags)
3078 return;
3079
3080 WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);
3081
3082 for (i = 0; i < queue_depth; i++)
3083 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3084
3085 /*
3086 * Wait until all pending iteration is done.
3087 *
3088 * Request reference is cleared and it is guaranteed to be observed
3089 * after the ->lock is released.
3090 */
3091 spin_lock_irqsave(&tags->lock, flags);
3092 spin_unlock_irqrestore(&tags->lock, flags);
3093 }
3094
3095 /* hctx->ctxs will be freed in queue's release handler */
blk_mq_exit_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)3096 static void blk_mq_exit_hctx(struct request_queue *q,
3097 struct blk_mq_tag_set *set,
3098 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3099 {
3100 struct request *flush_rq = hctx->fq->flush_rq;
3101
3102 if (blk_mq_hw_queue_mapped(hctx))
3103 blk_mq_tag_idle(hctx);
3104
3105 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3106 set->queue_depth, flush_rq);
3107 if (set->ops->exit_request)
3108 set->ops->exit_request(set, flush_rq, hctx_idx);
3109
3110 if (set->ops->exit_hctx)
3111 set->ops->exit_hctx(hctx, hctx_idx);
3112
3113 blk_mq_remove_cpuhp(hctx);
3114
3115 spin_lock(&q->unused_hctx_lock);
3116 list_add(&hctx->hctx_list, &q->unused_hctx_list);
3117 spin_unlock(&q->unused_hctx_lock);
3118 }
3119
blk_mq_exit_hw_queues(struct request_queue * q,struct blk_mq_tag_set * set,int nr_queue)3120 static void blk_mq_exit_hw_queues(struct request_queue *q,
3121 struct blk_mq_tag_set *set, int nr_queue)
3122 {
3123 struct blk_mq_hw_ctx *hctx;
3124 unsigned int i;
3125
3126 queue_for_each_hw_ctx(q, hctx, i) {
3127 if (i == nr_queue)
3128 break;
3129 blk_mq_debugfs_unregister_hctx(hctx);
3130 blk_mq_exit_hctx(q, set, hctx, i);
3131 }
3132 }
3133
blk_mq_hw_ctx_size(struct blk_mq_tag_set * tag_set)3134 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
3135 {
3136 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
3137
3138 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
3139 __alignof__(struct blk_mq_hw_ctx)) !=
3140 sizeof(struct blk_mq_hw_ctx));
3141
3142 if (tag_set->flags & BLK_MQ_F_BLOCKING)
3143 hw_ctx_size += sizeof(struct srcu_struct);
3144
3145 return hw_ctx_size;
3146 }
3147
blk_mq_init_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned hctx_idx)3148 static int blk_mq_init_hctx(struct request_queue *q,
3149 struct blk_mq_tag_set *set,
3150 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3151 {
3152 hctx->queue_num = hctx_idx;
3153
3154 if (!(hctx->flags & BLK_MQ_F_STACKING))
3155 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3156 &hctx->cpuhp_online);
3157 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3158
3159 hctx->tags = set->tags[hctx_idx];
3160
3161 if (set->ops->init_hctx &&
3162 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3163 goto unregister_cpu_notifier;
3164
3165 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3166 hctx->numa_node))
3167 goto exit_hctx;
3168 return 0;
3169
3170 exit_hctx:
3171 if (set->ops->exit_hctx)
3172 set->ops->exit_hctx(hctx, hctx_idx);
3173 unregister_cpu_notifier:
3174 blk_mq_remove_cpuhp(hctx);
3175 return -1;
3176 }
3177
3178 static struct blk_mq_hw_ctx *
blk_mq_alloc_hctx(struct request_queue * q,struct blk_mq_tag_set * set,int node)3179 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3180 int node)
3181 {
3182 struct blk_mq_hw_ctx *hctx;
3183 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3184
3185 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
3186 if (!hctx)
3187 goto fail_alloc_hctx;
3188
3189 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3190 goto free_hctx;
3191
3192 atomic_set(&hctx->nr_active, 0);
3193 if (node == NUMA_NO_NODE)
3194 node = set->numa_node;
3195 hctx->numa_node = node;
3196
3197 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3198 spin_lock_init(&hctx->lock);
3199 INIT_LIST_HEAD(&hctx->dispatch);
3200 hctx->queue = q;
3201 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3202
3203 INIT_LIST_HEAD(&hctx->hctx_list);
3204
3205 /*
3206 * Allocate space for all possible cpus to avoid allocation at
3207 * runtime
3208 */
3209 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3210 gfp, node);
3211 if (!hctx->ctxs)
3212 goto free_cpumask;
3213
3214 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3215 gfp, node, false, false))
3216 goto free_ctxs;
3217 hctx->nr_ctx = 0;
3218
3219 spin_lock_init(&hctx->dispatch_wait_lock);
3220 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3221 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3222
3223 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3224 if (!hctx->fq)
3225 goto free_bitmap;
3226
3227 if (hctx->flags & BLK_MQ_F_BLOCKING)
3228 init_srcu_struct(hctx->srcu);
3229 blk_mq_hctx_kobj_init(hctx);
3230
3231 return hctx;
3232
3233 free_bitmap:
3234 sbitmap_free(&hctx->ctx_map);
3235 free_ctxs:
3236 kfree(hctx->ctxs);
3237 free_cpumask:
3238 free_cpumask_var(hctx->cpumask);
3239 free_hctx:
3240 kfree(hctx);
3241 fail_alloc_hctx:
3242 return NULL;
3243 }
3244
blk_mq_init_cpu_queues(struct request_queue * q,unsigned int nr_hw_queues)3245 static void blk_mq_init_cpu_queues(struct request_queue *q,
3246 unsigned int nr_hw_queues)
3247 {
3248 struct blk_mq_tag_set *set = q->tag_set;
3249 unsigned int i, j;
3250
3251 for_each_possible_cpu(i) {
3252 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3253 struct blk_mq_hw_ctx *hctx;
3254 int k;
3255
3256 __ctx->cpu = i;
3257 spin_lock_init(&__ctx->lock);
3258 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3259 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3260
3261 __ctx->queue = q;
3262
3263 /*
3264 * Set local node, IFF we have more than one hw queue. If
3265 * not, we remain on the home node of the device
3266 */
3267 for (j = 0; j < set->nr_maps; j++) {
3268 hctx = blk_mq_map_queue_type(q, j, i);
3269 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3270 hctx->numa_node = cpu_to_node(i);
3271 }
3272 }
3273 }
3274
blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int depth)3275 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3276 unsigned int hctx_idx,
3277 unsigned int depth)
3278 {
3279 struct blk_mq_tags *tags;
3280 int ret;
3281
3282 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3283 if (!tags)
3284 return NULL;
3285
3286 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3287 if (ret) {
3288 blk_mq_free_rq_map(tags);
3289 return NULL;
3290 }
3291
3292 return tags;
3293 }
3294
__blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set * set,int hctx_idx)3295 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3296 int hctx_idx)
3297 {
3298 if (blk_mq_is_shared_tags(set->flags)) {
3299 set->tags[hctx_idx] = set->shared_tags;
3300
3301 return true;
3302 }
3303
3304 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3305 set->queue_depth);
3306
3307 return set->tags[hctx_idx];
3308 }
3309
blk_mq_free_map_and_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)3310 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3311 struct blk_mq_tags *tags,
3312 unsigned int hctx_idx)
3313 {
3314 if (tags) {
3315 blk_mq_free_rqs(set, tags, hctx_idx);
3316 blk_mq_free_rq_map(tags);
3317 }
3318 }
3319
__blk_mq_free_map_and_rqs(struct blk_mq_tag_set * set,unsigned int hctx_idx)3320 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3321 unsigned int hctx_idx)
3322 {
3323 if (!blk_mq_is_shared_tags(set->flags))
3324 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3325
3326 set->tags[hctx_idx] = NULL;
3327 }
3328
blk_mq_map_swqueue(struct request_queue * q)3329 static void blk_mq_map_swqueue(struct request_queue *q)
3330 {
3331 unsigned int i, j, hctx_idx;
3332 struct blk_mq_hw_ctx *hctx;
3333 struct blk_mq_ctx *ctx;
3334 struct blk_mq_tag_set *set = q->tag_set;
3335
3336 queue_for_each_hw_ctx(q, hctx, i) {
3337 cpumask_clear(hctx->cpumask);
3338 hctx->nr_ctx = 0;
3339 hctx->dispatch_from = NULL;
3340 }
3341
3342 /*
3343 * Map software to hardware queues.
3344 *
3345 * If the cpu isn't present, the cpu is mapped to first hctx.
3346 */
3347 for_each_possible_cpu(i) {
3348
3349 ctx = per_cpu_ptr(q->queue_ctx, i);
3350 for (j = 0; j < set->nr_maps; j++) {
3351 if (!set->map[j].nr_queues) {
3352 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3353 HCTX_TYPE_DEFAULT, i);
3354 continue;
3355 }
3356 hctx_idx = set->map[j].mq_map[i];
3357 /* unmapped hw queue can be remapped after CPU topo changed */
3358 if (!set->tags[hctx_idx] &&
3359 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3360 /*
3361 * If tags initialization fail for some hctx,
3362 * that hctx won't be brought online. In this
3363 * case, remap the current ctx to hctx[0] which
3364 * is guaranteed to always have tags allocated
3365 */
3366 set->map[j].mq_map[i] = 0;
3367 }
3368
3369 hctx = blk_mq_map_queue_type(q, j, i);
3370 ctx->hctxs[j] = hctx;
3371 /*
3372 * If the CPU is already set in the mask, then we've
3373 * mapped this one already. This can happen if
3374 * devices share queues across queue maps.
3375 */
3376 if (cpumask_test_cpu(i, hctx->cpumask))
3377 continue;
3378
3379 cpumask_set_cpu(i, hctx->cpumask);
3380 hctx->type = j;
3381 ctx->index_hw[hctx->type] = hctx->nr_ctx;
3382 hctx->ctxs[hctx->nr_ctx++] = ctx;
3383
3384 /*
3385 * If the nr_ctx type overflows, we have exceeded the
3386 * amount of sw queues we can support.
3387 */
3388 BUG_ON(!hctx->nr_ctx);
3389 }
3390
3391 for (; j < HCTX_MAX_TYPES; j++)
3392 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3393 HCTX_TYPE_DEFAULT, i);
3394 }
3395
3396 queue_for_each_hw_ctx(q, hctx, i) {
3397 /*
3398 * If no software queues are mapped to this hardware queue,
3399 * disable it and free the request entries.
3400 */
3401 if (!hctx->nr_ctx) {
3402 /* Never unmap queue 0. We need it as a
3403 * fallback in case of a new remap fails
3404 * allocation
3405 */
3406 if (i)
3407 __blk_mq_free_map_and_rqs(set, i);
3408
3409 hctx->tags = NULL;
3410 continue;
3411 }
3412
3413 hctx->tags = set->tags[i];
3414 WARN_ON(!hctx->tags);
3415
3416 /*
3417 * Set the map size to the number of mapped software queues.
3418 * This is more accurate and more efficient than looping
3419 * over all possibly mapped software queues.
3420 */
3421 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3422
3423 /*
3424 * Initialize batch roundrobin counts
3425 */
3426 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3427 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3428 }
3429 }
3430
3431 /*
3432 * Caller needs to ensure that we're either frozen/quiesced, or that
3433 * the queue isn't live yet.
3434 */
queue_set_hctx_shared(struct request_queue * q,bool shared)3435 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3436 {
3437 struct blk_mq_hw_ctx *hctx;
3438 int i;
3439
3440 queue_for_each_hw_ctx(q, hctx, i) {
3441 if (shared) {
3442 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3443 } else {
3444 blk_mq_tag_idle(hctx);
3445 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3446 }
3447 }
3448 }
3449
blk_mq_update_tag_set_shared(struct blk_mq_tag_set * set,bool shared)3450 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3451 bool shared)
3452 {
3453 struct request_queue *q;
3454
3455 lockdep_assert_held(&set->tag_list_lock);
3456
3457 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3458 blk_mq_freeze_queue(q);
3459 queue_set_hctx_shared(q, shared);
3460 blk_mq_unfreeze_queue(q);
3461 }
3462 }
3463
blk_mq_del_queue_tag_set(struct request_queue * q)3464 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3465 {
3466 struct blk_mq_tag_set *set = q->tag_set;
3467
3468 mutex_lock(&set->tag_list_lock);
3469 list_del(&q->tag_set_list);
3470 if (list_is_singular(&set->tag_list)) {
3471 /* just transitioned to unshared */
3472 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3473 /* update existing queue */
3474 blk_mq_update_tag_set_shared(set, false);
3475 }
3476 mutex_unlock(&set->tag_list_lock);
3477 INIT_LIST_HEAD(&q->tag_set_list);
3478 }
3479
blk_mq_add_queue_tag_set(struct blk_mq_tag_set * set,struct request_queue * q)3480 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3481 struct request_queue *q)
3482 {
3483 mutex_lock(&set->tag_list_lock);
3484
3485 /*
3486 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3487 */
3488 if (!list_empty(&set->tag_list) &&
3489 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3490 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3491 /* update existing queue */
3492 blk_mq_update_tag_set_shared(set, true);
3493 }
3494 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3495 queue_set_hctx_shared(q, true);
3496 list_add_tail(&q->tag_set_list, &set->tag_list);
3497
3498 mutex_unlock(&set->tag_list_lock);
3499 }
3500
3501 /* All allocations will be freed in release handler of q->mq_kobj */
blk_mq_alloc_ctxs(struct request_queue * q)3502 static int blk_mq_alloc_ctxs(struct request_queue *q)
3503 {
3504 struct blk_mq_ctxs *ctxs;
3505 int cpu;
3506
3507 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3508 if (!ctxs)
3509 return -ENOMEM;
3510
3511 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3512 if (!ctxs->queue_ctx)
3513 goto fail;
3514
3515 for_each_possible_cpu(cpu) {
3516 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3517 ctx->ctxs = ctxs;
3518 }
3519
3520 q->mq_kobj = &ctxs->kobj;
3521 q->queue_ctx = ctxs->queue_ctx;
3522
3523 return 0;
3524 fail:
3525 kfree(ctxs);
3526 return -ENOMEM;
3527 }
3528
3529 /*
3530 * It is the actual release handler for mq, but we do it from
3531 * request queue's release handler for avoiding use-after-free
3532 * and headache because q->mq_kobj shouldn't have been introduced,
3533 * but we can't group ctx/kctx kobj without it.
3534 */
blk_mq_release(struct request_queue * q)3535 void blk_mq_release(struct request_queue *q)
3536 {
3537 struct blk_mq_hw_ctx *hctx, *next;
3538 int i;
3539
3540 queue_for_each_hw_ctx(q, hctx, i)
3541 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3542
3543 /* all hctx are in .unused_hctx_list now */
3544 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3545 list_del_init(&hctx->hctx_list);
3546 kobject_put(&hctx->kobj);
3547 }
3548
3549 kfree(q->queue_hw_ctx);
3550
3551 /*
3552 * release .mq_kobj and sw queue's kobject now because
3553 * both share lifetime with request queue.
3554 */
3555 blk_mq_sysfs_deinit(q);
3556 }
3557
blk_mq_init_queue_data(struct blk_mq_tag_set * set,void * queuedata)3558 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3559 void *queuedata)
3560 {
3561 struct request_queue *q;
3562 int ret;
3563
3564 q = blk_alloc_queue(set->numa_node);
3565 if (!q)
3566 return ERR_PTR(-ENOMEM);
3567 q->queuedata = queuedata;
3568 ret = blk_mq_init_allocated_queue(set, q);
3569 if (ret) {
3570 blk_cleanup_queue(q);
3571 return ERR_PTR(ret);
3572 }
3573 return q;
3574 }
3575
blk_mq_init_queue(struct blk_mq_tag_set * set)3576 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3577 {
3578 return blk_mq_init_queue_data(set, NULL);
3579 }
3580 EXPORT_SYMBOL(blk_mq_init_queue);
3581
__blk_mq_alloc_disk(struct blk_mq_tag_set * set,void * queuedata,struct lock_class_key * lkclass)3582 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3583 struct lock_class_key *lkclass)
3584 {
3585 struct request_queue *q;
3586 struct gendisk *disk;
3587
3588 q = blk_mq_init_queue_data(set, queuedata);
3589 if (IS_ERR(q))
3590 return ERR_CAST(q);
3591
3592 disk = __alloc_disk_node(q, set->numa_node, lkclass);
3593 if (!disk) {
3594 blk_cleanup_queue(q);
3595 return ERR_PTR(-ENOMEM);
3596 }
3597 return disk;
3598 }
3599 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3600
blk_mq_alloc_and_init_hctx(struct blk_mq_tag_set * set,struct request_queue * q,int hctx_idx,int node)3601 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3602 struct blk_mq_tag_set *set, struct request_queue *q,
3603 int hctx_idx, int node)
3604 {
3605 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3606
3607 /* reuse dead hctx first */
3608 spin_lock(&q->unused_hctx_lock);
3609 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3610 if (tmp->numa_node == node) {
3611 hctx = tmp;
3612 break;
3613 }
3614 }
3615 if (hctx)
3616 list_del_init(&hctx->hctx_list);
3617 spin_unlock(&q->unused_hctx_lock);
3618
3619 if (!hctx)
3620 hctx = blk_mq_alloc_hctx(q, set, node);
3621 if (!hctx)
3622 goto fail;
3623
3624 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3625 goto free_hctx;
3626
3627 return hctx;
3628
3629 free_hctx:
3630 kobject_put(&hctx->kobj);
3631 fail:
3632 return NULL;
3633 }
3634
blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set * set,struct request_queue * q)3635 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3636 struct request_queue *q)
3637 {
3638 int i, j, end;
3639 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3640
3641 if (q->nr_hw_queues < set->nr_hw_queues) {
3642 struct blk_mq_hw_ctx **new_hctxs;
3643
3644 new_hctxs = kcalloc_node(set->nr_hw_queues,
3645 sizeof(*new_hctxs), GFP_KERNEL,
3646 set->numa_node);
3647 if (!new_hctxs)
3648 return;
3649 if (hctxs)
3650 memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3651 sizeof(*hctxs));
3652 q->queue_hw_ctx = new_hctxs;
3653 kfree(hctxs);
3654 hctxs = new_hctxs;
3655 }
3656
3657 /* protect against switching io scheduler */
3658 mutex_lock(&q->sysfs_lock);
3659 for (i = 0; i < set->nr_hw_queues; i++) {
3660 int node;
3661 struct blk_mq_hw_ctx *hctx;
3662
3663 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3664 /*
3665 * If the hw queue has been mapped to another numa node,
3666 * we need to realloc the hctx. If allocation fails, fallback
3667 * to use the previous one.
3668 */
3669 if (hctxs[i] && (hctxs[i]->numa_node == node))
3670 continue;
3671
3672 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3673 if (hctx) {
3674 if (hctxs[i])
3675 blk_mq_exit_hctx(q, set, hctxs[i], i);
3676 hctxs[i] = hctx;
3677 } else {
3678 if (hctxs[i])
3679 pr_warn("Allocate new hctx on node %d fails,\
3680 fallback to previous one on node %d\n",
3681 node, hctxs[i]->numa_node);
3682 else
3683 break;
3684 }
3685 }
3686 /*
3687 * Increasing nr_hw_queues fails. Free the newly allocated
3688 * hctxs and keep the previous q->nr_hw_queues.
3689 */
3690 if (i != set->nr_hw_queues) {
3691 j = q->nr_hw_queues;
3692 end = i;
3693 } else {
3694 j = i;
3695 end = q->nr_hw_queues;
3696 q->nr_hw_queues = set->nr_hw_queues;
3697 }
3698
3699 for (; j < end; j++) {
3700 struct blk_mq_hw_ctx *hctx = hctxs[j];
3701
3702 if (hctx) {
3703 blk_mq_exit_hctx(q, set, hctx, j);
3704 hctxs[j] = NULL;
3705 }
3706 }
3707 mutex_unlock(&q->sysfs_lock);
3708 }
3709
blk_mq_init_allocated_queue(struct blk_mq_tag_set * set,struct request_queue * q)3710 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3711 struct request_queue *q)
3712 {
3713 /* mark the queue as mq asap */
3714 q->mq_ops = set->ops;
3715
3716 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3717 blk_mq_poll_stats_bkt,
3718 BLK_MQ_POLL_STATS_BKTS, q);
3719 if (!q->poll_cb)
3720 goto err_exit;
3721
3722 if (blk_mq_alloc_ctxs(q))
3723 goto err_poll;
3724
3725 /* init q->mq_kobj and sw queues' kobjects */
3726 blk_mq_sysfs_init(q);
3727
3728 INIT_LIST_HEAD(&q->unused_hctx_list);
3729 spin_lock_init(&q->unused_hctx_lock);
3730
3731 blk_mq_realloc_hw_ctxs(set, q);
3732 if (!q->nr_hw_queues)
3733 goto err_hctxs;
3734
3735 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3736 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3737
3738 q->tag_set = set;
3739
3740 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3741 if (set->nr_maps > HCTX_TYPE_POLL &&
3742 set->map[HCTX_TYPE_POLL].nr_queues)
3743 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3744
3745 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3746 INIT_LIST_HEAD(&q->requeue_list);
3747 spin_lock_init(&q->requeue_lock);
3748
3749 q->nr_requests = set->queue_depth;
3750
3751 /*
3752 * Default to classic polling
3753 */
3754 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3755
3756 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3757 blk_mq_add_queue_tag_set(set, q);
3758 blk_mq_map_swqueue(q);
3759 return 0;
3760
3761 err_hctxs:
3762 kfree(q->queue_hw_ctx);
3763 q->nr_hw_queues = 0;
3764 blk_mq_sysfs_deinit(q);
3765 err_poll:
3766 blk_stat_free_callback(q->poll_cb);
3767 q->poll_cb = NULL;
3768 err_exit:
3769 q->mq_ops = NULL;
3770 return -ENOMEM;
3771 }
3772 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3773
3774 /* tags can _not_ be used after returning from blk_mq_exit_queue */
blk_mq_exit_queue(struct request_queue * q)3775 void blk_mq_exit_queue(struct request_queue *q)
3776 {
3777 struct blk_mq_tag_set *set = q->tag_set;
3778
3779 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3780 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3781 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3782 blk_mq_del_queue_tag_set(q);
3783 }
3784
__blk_mq_alloc_rq_maps(struct blk_mq_tag_set * set)3785 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3786 {
3787 int i;
3788
3789 if (blk_mq_is_shared_tags(set->flags)) {
3790 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
3791 BLK_MQ_NO_HCTX_IDX,
3792 set->queue_depth);
3793 if (!set->shared_tags)
3794 return -ENOMEM;
3795 }
3796
3797 for (i = 0; i < set->nr_hw_queues; i++) {
3798 if (!__blk_mq_alloc_map_and_rqs(set, i))
3799 goto out_unwind;
3800 cond_resched();
3801 }
3802
3803 return 0;
3804
3805 out_unwind:
3806 while (--i >= 0)
3807 __blk_mq_free_map_and_rqs(set, i);
3808
3809 if (blk_mq_is_shared_tags(set->flags)) {
3810 blk_mq_free_map_and_rqs(set, set->shared_tags,
3811 BLK_MQ_NO_HCTX_IDX);
3812 }
3813
3814 return -ENOMEM;
3815 }
3816
3817 /*
3818 * Allocate the request maps associated with this tag_set. Note that this
3819 * may reduce the depth asked for, if memory is tight. set->queue_depth
3820 * will be updated to reflect the allocated depth.
3821 */
blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set * set)3822 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
3823 {
3824 unsigned int depth;
3825 int err;
3826
3827 depth = set->queue_depth;
3828 do {
3829 err = __blk_mq_alloc_rq_maps(set);
3830 if (!err)
3831 break;
3832
3833 set->queue_depth >>= 1;
3834 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3835 err = -ENOMEM;
3836 break;
3837 }
3838 } while (set->queue_depth);
3839
3840 if (!set->queue_depth || err) {
3841 pr_err("blk-mq: failed to allocate request map\n");
3842 return -ENOMEM;
3843 }
3844
3845 if (depth != set->queue_depth)
3846 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3847 depth, set->queue_depth);
3848
3849 return 0;
3850 }
3851
blk_mq_update_queue_map(struct blk_mq_tag_set * set)3852 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3853 {
3854 /*
3855 * blk_mq_map_queues() and multiple .map_queues() implementations
3856 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3857 * number of hardware queues.
3858 */
3859 if (set->nr_maps == 1)
3860 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3861
3862 if (set->ops->map_queues && !is_kdump_kernel()) {
3863 int i;
3864
3865 /*
3866 * transport .map_queues is usually done in the following
3867 * way:
3868 *
3869 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3870 * mask = get_cpu_mask(queue)
3871 * for_each_cpu(cpu, mask)
3872 * set->map[x].mq_map[cpu] = queue;
3873 * }
3874 *
3875 * When we need to remap, the table has to be cleared for
3876 * killing stale mapping since one CPU may not be mapped
3877 * to any hw queue.
3878 */
3879 for (i = 0; i < set->nr_maps; i++)
3880 blk_mq_clear_mq_map(&set->map[i]);
3881
3882 return set->ops->map_queues(set);
3883 } else {
3884 BUG_ON(set->nr_maps > 1);
3885 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3886 }
3887 }
3888
blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set * set,int cur_nr_hw_queues,int new_nr_hw_queues)3889 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3890 int cur_nr_hw_queues, int new_nr_hw_queues)
3891 {
3892 struct blk_mq_tags **new_tags;
3893
3894 if (cur_nr_hw_queues >= new_nr_hw_queues)
3895 return 0;
3896
3897 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3898 GFP_KERNEL, set->numa_node);
3899 if (!new_tags)
3900 return -ENOMEM;
3901
3902 if (set->tags)
3903 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3904 sizeof(*set->tags));
3905 kfree(set->tags);
3906 set->tags = new_tags;
3907 set->nr_hw_queues = new_nr_hw_queues;
3908
3909 return 0;
3910 }
3911
blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set * set,int new_nr_hw_queues)3912 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3913 int new_nr_hw_queues)
3914 {
3915 return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3916 }
3917
3918 /*
3919 * Alloc a tag set to be associated with one or more request queues.
3920 * May fail with EINVAL for various error conditions. May adjust the
3921 * requested depth down, if it's too large. In that case, the set
3922 * value will be stored in set->queue_depth.
3923 */
blk_mq_alloc_tag_set(struct blk_mq_tag_set * set)3924 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3925 {
3926 int i, ret;
3927
3928 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3929
3930 if (!set->nr_hw_queues)
3931 return -EINVAL;
3932 if (!set->queue_depth)
3933 return -EINVAL;
3934 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3935 return -EINVAL;
3936
3937 if (!set->ops->queue_rq)
3938 return -EINVAL;
3939
3940 if (!set->ops->get_budget ^ !set->ops->put_budget)
3941 return -EINVAL;
3942
3943 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3944 pr_info("blk-mq: reduced tag depth to %u\n",
3945 BLK_MQ_MAX_DEPTH);
3946 set->queue_depth = BLK_MQ_MAX_DEPTH;
3947 }
3948
3949 if (!set->nr_maps)
3950 set->nr_maps = 1;
3951 else if (set->nr_maps > HCTX_MAX_TYPES)
3952 return -EINVAL;
3953
3954 /*
3955 * If a crashdump is active, then we are potentially in a very
3956 * memory constrained environment. Limit us to 1 queue and
3957 * 64 tags to prevent using too much memory.
3958 */
3959 if (is_kdump_kernel()) {
3960 set->nr_hw_queues = 1;
3961 set->nr_maps = 1;
3962 set->queue_depth = min(64U, set->queue_depth);
3963 }
3964 /*
3965 * There is no use for more h/w queues than cpus if we just have
3966 * a single map
3967 */
3968 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3969 set->nr_hw_queues = nr_cpu_ids;
3970
3971 if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3972 return -ENOMEM;
3973
3974 ret = -ENOMEM;
3975 for (i = 0; i < set->nr_maps; i++) {
3976 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3977 sizeof(set->map[i].mq_map[0]),
3978 GFP_KERNEL, set->numa_node);
3979 if (!set->map[i].mq_map)
3980 goto out_free_mq_map;
3981 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3982 }
3983
3984 ret = blk_mq_update_queue_map(set);
3985 if (ret)
3986 goto out_free_mq_map;
3987
3988 ret = blk_mq_alloc_set_map_and_rqs(set);
3989 if (ret)
3990 goto out_free_mq_map;
3991
3992 mutex_init(&set->tag_list_lock);
3993 INIT_LIST_HEAD(&set->tag_list);
3994
3995 return 0;
3996
3997 out_free_mq_map:
3998 for (i = 0; i < set->nr_maps; i++) {
3999 kfree(set->map[i].mq_map);
4000 set->map[i].mq_map = NULL;
4001 }
4002 kfree(set->tags);
4003 set->tags = NULL;
4004 return ret;
4005 }
4006 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4007
4008 /* allocate and initialize a tagset for a simple single-queue device */
blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int queue_depth,unsigned int set_flags)4009 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4010 const struct blk_mq_ops *ops, unsigned int queue_depth,
4011 unsigned int set_flags)
4012 {
4013 memset(set, 0, sizeof(*set));
4014 set->ops = ops;
4015 set->nr_hw_queues = 1;
4016 set->nr_maps = 1;
4017 set->queue_depth = queue_depth;
4018 set->numa_node = NUMA_NO_NODE;
4019 set->flags = set_flags;
4020 return blk_mq_alloc_tag_set(set);
4021 }
4022 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4023
blk_mq_free_tag_set(struct blk_mq_tag_set * set)4024 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4025 {
4026 int i, j;
4027
4028 for (i = 0; i < set->nr_hw_queues; i++)
4029 __blk_mq_free_map_and_rqs(set, i);
4030
4031 if (blk_mq_is_shared_tags(set->flags)) {
4032 blk_mq_free_map_and_rqs(set, set->shared_tags,
4033 BLK_MQ_NO_HCTX_IDX);
4034 }
4035
4036 for (j = 0; j < set->nr_maps; j++) {
4037 kfree(set->map[j].mq_map);
4038 set->map[j].mq_map = NULL;
4039 }
4040
4041 kfree(set->tags);
4042 set->tags = NULL;
4043 }
4044 EXPORT_SYMBOL(blk_mq_free_tag_set);
4045
blk_mq_update_nr_requests(struct request_queue * q,unsigned int nr)4046 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4047 {
4048 struct blk_mq_tag_set *set = q->tag_set;
4049 struct blk_mq_hw_ctx *hctx;
4050 int i, ret;
4051
4052 if (!set)
4053 return -EINVAL;
4054
4055 if (q->nr_requests == nr)
4056 return 0;
4057
4058 blk_mq_freeze_queue(q);
4059 blk_mq_quiesce_queue(q);
4060
4061 ret = 0;
4062 queue_for_each_hw_ctx(q, hctx, i) {
4063 if (!hctx->tags)
4064 continue;
4065 /*
4066 * If we're using an MQ scheduler, just update the scheduler
4067 * queue depth. This is similar to what the old code would do.
4068 */
4069 if (hctx->sched_tags) {
4070 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4071 nr, true);
4072 } else {
4073 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4074 false);
4075 }
4076 if (ret)
4077 break;
4078 if (q->elevator && q->elevator->type->ops.depth_updated)
4079 q->elevator->type->ops.depth_updated(hctx);
4080 }
4081 if (!ret) {
4082 q->nr_requests = nr;
4083 if (blk_mq_is_shared_tags(set->flags)) {
4084 if (q->elevator)
4085 blk_mq_tag_update_sched_shared_tags(q);
4086 else
4087 blk_mq_tag_resize_shared_tags(set, nr);
4088 }
4089 }
4090
4091 blk_mq_unquiesce_queue(q);
4092 blk_mq_unfreeze_queue(q);
4093
4094 return ret;
4095 }
4096
4097 /*
4098 * request_queue and elevator_type pair.
4099 * It is just used by __blk_mq_update_nr_hw_queues to cache
4100 * the elevator_type associated with a request_queue.
4101 */
4102 struct blk_mq_qe_pair {
4103 struct list_head node;
4104 struct request_queue *q;
4105 struct elevator_type *type;
4106 };
4107
4108 /*
4109 * Cache the elevator_type in qe pair list and switch the
4110 * io scheduler to 'none'
4111 */
blk_mq_elv_switch_none(struct list_head * head,struct request_queue * q)4112 static bool blk_mq_elv_switch_none(struct list_head *head,
4113 struct request_queue *q)
4114 {
4115 struct blk_mq_qe_pair *qe;
4116
4117 if (!q->elevator)
4118 return true;
4119
4120 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4121 if (!qe)
4122 return false;
4123
4124 INIT_LIST_HEAD(&qe->node);
4125 qe->q = q;
4126 qe->type = q->elevator->type;
4127 list_add(&qe->node, head);
4128
4129 mutex_lock(&q->sysfs_lock);
4130 /*
4131 * After elevator_switch_mq, the previous elevator_queue will be
4132 * released by elevator_release. The reference of the io scheduler
4133 * module get by elevator_get will also be put. So we need to get
4134 * a reference of the io scheduler module here to prevent it to be
4135 * removed.
4136 */
4137 __module_get(qe->type->elevator_owner);
4138 elevator_switch_mq(q, NULL);
4139 mutex_unlock(&q->sysfs_lock);
4140
4141 return true;
4142 }
4143
blk_mq_elv_switch_back(struct list_head * head,struct request_queue * q)4144 static void blk_mq_elv_switch_back(struct list_head *head,
4145 struct request_queue *q)
4146 {
4147 struct blk_mq_qe_pair *qe;
4148 struct elevator_type *t = NULL;
4149
4150 list_for_each_entry(qe, head, node)
4151 if (qe->q == q) {
4152 t = qe->type;
4153 break;
4154 }
4155
4156 if (!t)
4157 return;
4158
4159 list_del(&qe->node);
4160 kfree(qe);
4161
4162 mutex_lock(&q->sysfs_lock);
4163 elevator_switch_mq(q, t);
4164 mutex_unlock(&q->sysfs_lock);
4165 }
4166
__blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)4167 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4168 int nr_hw_queues)
4169 {
4170 struct request_queue *q;
4171 LIST_HEAD(head);
4172 int prev_nr_hw_queues;
4173
4174 lockdep_assert_held(&set->tag_list_lock);
4175
4176 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4177 nr_hw_queues = nr_cpu_ids;
4178 if (nr_hw_queues < 1)
4179 return;
4180 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4181 return;
4182
4183 list_for_each_entry(q, &set->tag_list, tag_set_list)
4184 blk_mq_freeze_queue(q);
4185 /*
4186 * Switch IO scheduler to 'none', cleaning up the data associated
4187 * with the previous scheduler. We will switch back once we are done
4188 * updating the new sw to hw queue mappings.
4189 */
4190 list_for_each_entry(q, &set->tag_list, tag_set_list)
4191 if (!blk_mq_elv_switch_none(&head, q))
4192 goto switch_back;
4193
4194 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4195 blk_mq_debugfs_unregister_hctxs(q);
4196 blk_mq_sysfs_unregister(q);
4197 }
4198
4199 prev_nr_hw_queues = set->nr_hw_queues;
4200 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4201 0)
4202 goto reregister;
4203
4204 set->nr_hw_queues = nr_hw_queues;
4205 fallback:
4206 blk_mq_update_queue_map(set);
4207 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4208 blk_mq_realloc_hw_ctxs(set, q);
4209 if (q->nr_hw_queues != set->nr_hw_queues) {
4210 int i = prev_nr_hw_queues;
4211
4212 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4213 nr_hw_queues, prev_nr_hw_queues);
4214 for (; i < set->nr_hw_queues; i++)
4215 __blk_mq_free_map_and_rqs(set, i);
4216
4217 set->nr_hw_queues = prev_nr_hw_queues;
4218 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4219 goto fallback;
4220 }
4221 blk_mq_map_swqueue(q);
4222 }
4223
4224 reregister:
4225 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4226 blk_mq_sysfs_register(q);
4227 blk_mq_debugfs_register_hctxs(q);
4228 }
4229
4230 switch_back:
4231 list_for_each_entry(q, &set->tag_list, tag_set_list)
4232 blk_mq_elv_switch_back(&head, q);
4233
4234 list_for_each_entry(q, &set->tag_list, tag_set_list)
4235 blk_mq_unfreeze_queue(q);
4236 }
4237
blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)4238 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4239 {
4240 mutex_lock(&set->tag_list_lock);
4241 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4242 mutex_unlock(&set->tag_list_lock);
4243 }
4244 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4245
4246 /* Enable polling stats and return whether they were already enabled. */
blk_poll_stats_enable(struct request_queue * q)4247 static bool blk_poll_stats_enable(struct request_queue *q)
4248 {
4249 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
4250 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
4251 return true;
4252 blk_stat_add_callback(q, q->poll_cb);
4253 return false;
4254 }
4255
blk_mq_poll_stats_start(struct request_queue * q)4256 static void blk_mq_poll_stats_start(struct request_queue *q)
4257 {
4258 /*
4259 * We don't arm the callback if polling stats are not enabled or the
4260 * callback is already active.
4261 */
4262 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
4263 blk_stat_is_active(q->poll_cb))
4264 return;
4265
4266 blk_stat_activate_msecs(q->poll_cb, 100);
4267 }
4268
blk_mq_poll_stats_fn(struct blk_stat_callback * cb)4269 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4270 {
4271 struct request_queue *q = cb->data;
4272 int bucket;
4273
4274 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4275 if (cb->stat[bucket].nr_samples)
4276 q->poll_stat[bucket] = cb->stat[bucket];
4277 }
4278 }
4279
blk_mq_poll_nsecs(struct request_queue * q,struct request * rq)4280 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4281 struct request *rq)
4282 {
4283 unsigned long ret = 0;
4284 int bucket;
4285
4286 /*
4287 * If stats collection isn't on, don't sleep but turn it on for
4288 * future users
4289 */
4290 if (!blk_poll_stats_enable(q))
4291 return 0;
4292
4293 /*
4294 * As an optimistic guess, use half of the mean service time
4295 * for this type of request. We can (and should) make this smarter.
4296 * For instance, if the completion latencies are tight, we can
4297 * get closer than just half the mean. This is especially
4298 * important on devices where the completion latencies are longer
4299 * than ~10 usec. We do use the stats for the relevant IO size
4300 * if available which does lead to better estimates.
4301 */
4302 bucket = blk_mq_poll_stats_bkt(rq);
4303 if (bucket < 0)
4304 return ret;
4305
4306 if (q->poll_stat[bucket].nr_samples)
4307 ret = (q->poll_stat[bucket].mean + 1) / 2;
4308
4309 return ret;
4310 }
4311
blk_mq_poll_hybrid(struct request_queue * q,blk_qc_t qc)4312 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4313 {
4314 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4315 struct request *rq = blk_qc_to_rq(hctx, qc);
4316 struct hrtimer_sleeper hs;
4317 enum hrtimer_mode mode;
4318 unsigned int nsecs;
4319 ktime_t kt;
4320
4321 /*
4322 * If a request has completed on queue that uses an I/O scheduler, we
4323 * won't get back a request from blk_qc_to_rq.
4324 */
4325 if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4326 return false;
4327
4328 /*
4329 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4330 *
4331 * 0: use half of prev avg
4332 * >0: use this specific value
4333 */
4334 if (q->poll_nsec > 0)
4335 nsecs = q->poll_nsec;
4336 else
4337 nsecs = blk_mq_poll_nsecs(q, rq);
4338
4339 if (!nsecs)
4340 return false;
4341
4342 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4343
4344 /*
4345 * This will be replaced with the stats tracking code, using
4346 * 'avg_completion_time / 2' as the pre-sleep target.
4347 */
4348 kt = nsecs;
4349
4350 mode = HRTIMER_MODE_REL;
4351 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4352 hrtimer_set_expires(&hs.timer, kt);
4353
4354 do {
4355 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4356 break;
4357 set_current_state(TASK_UNINTERRUPTIBLE);
4358 hrtimer_sleeper_start_expires(&hs, mode);
4359 if (hs.task)
4360 io_schedule();
4361 hrtimer_cancel(&hs.timer);
4362 mode = HRTIMER_MODE_ABS;
4363 } while (hs.task && !signal_pending(current));
4364
4365 __set_current_state(TASK_RUNNING);
4366 destroy_hrtimer_on_stack(&hs.timer);
4367
4368 /*
4369 * If we sleep, have the caller restart the poll loop to reset the
4370 * state. Like for the other success return cases, the caller is
4371 * responsible for checking if the IO completed. If the IO isn't
4372 * complete, we'll get called again and will go straight to the busy
4373 * poll loop.
4374 */
4375 return true;
4376 }
4377
blk_mq_poll_classic(struct request_queue * q,blk_qc_t cookie,struct io_comp_batch * iob,unsigned int flags)4378 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4379 struct io_comp_batch *iob, unsigned int flags)
4380 {
4381 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4382 long state = get_current_state();
4383 int ret;
4384
4385 do {
4386 ret = q->mq_ops->poll(hctx, iob);
4387 if (ret > 0) {
4388 __set_current_state(TASK_RUNNING);
4389 return ret;
4390 }
4391
4392 if (signal_pending_state(state, current))
4393 __set_current_state(TASK_RUNNING);
4394 if (task_is_running(current))
4395 return 1;
4396
4397 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4398 break;
4399 cpu_relax();
4400 } while (!need_resched());
4401
4402 __set_current_state(TASK_RUNNING);
4403 return 0;
4404 }
4405
blk_mq_poll(struct request_queue * q,blk_qc_t cookie,struct io_comp_batch * iob,unsigned int flags)4406 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4407 unsigned int flags)
4408 {
4409 if (!(flags & BLK_POLL_NOSLEEP) &&
4410 q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4411 if (blk_mq_poll_hybrid(q, cookie))
4412 return 1;
4413 }
4414 return blk_mq_poll_classic(q, cookie, iob, flags);
4415 }
4416
blk_mq_rq_cpu(struct request * rq)4417 unsigned int blk_mq_rq_cpu(struct request *rq)
4418 {
4419 return rq->mq_ctx->cpu;
4420 }
4421 EXPORT_SYMBOL(blk_mq_rq_cpu);
4422
blk_mq_cancel_work_sync(struct request_queue * q)4423 void blk_mq_cancel_work_sync(struct request_queue *q)
4424 {
4425 if (queue_is_mq(q)) {
4426 struct blk_mq_hw_ctx *hctx;
4427 int i;
4428
4429 cancel_delayed_work_sync(&q->requeue_work);
4430
4431 queue_for_each_hw_ctx(q, hctx, i)
4432 cancel_delayed_work_sync(&hctx->run_work);
4433 }
4434 }
4435
blk_mq_init(void)4436 static int __init blk_mq_init(void)
4437 {
4438 int i;
4439
4440 for_each_possible_cpu(i)
4441 init_llist_head(&per_cpu(blk_cpu_done, i));
4442 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4443
4444 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4445 "block/softirq:dead", NULL,
4446 blk_softirq_cpu_dead);
4447 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4448 blk_mq_hctx_notify_dead);
4449 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4450 blk_mq_hctx_notify_online,
4451 blk_mq_hctx_notify_offline);
4452 return 0;
4453 }
4454 subsys_initcall(blk_mq_init);
4455