1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef BLK_MQ_H
3 #define BLK_MQ_H
4
5 #include <linux/blkdev.h>
6 #include <linux/sbitmap.h>
7 #include <linux/srcu.h>
8 #include <linux/lockdep.h>
9 #include <linux/scatterlist.h>
10 #include <linux/prefetch.h>
11
12 struct blk_mq_tags;
13 struct blk_flush_queue;
14
15 #define BLKDEV_MIN_RQ 4
16 #define BLKDEV_DEFAULT_RQ 128
17
18 typedef void (rq_end_io_fn)(struct request *, blk_status_t);
19
20 /*
21 * request flags */
22 typedef __u32 __bitwise req_flags_t;
23
24 /* drive already may have started this one */
25 #define RQF_STARTED ((__force req_flags_t)(1 << 1))
26 /* may not be passed by ioscheduler */
27 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3))
28 /* request for flush sequence */
29 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4))
30 /* merge of different types, fail separately */
31 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5))
32 /* track inflight for MQ */
33 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6))
34 /* don't call prep for this one */
35 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7))
36 /* vaguely specified driver internal error. Ignored by the block layer */
37 #define RQF_FAILED ((__force req_flags_t)(1 << 10))
38 /* don't warn about errors */
39 #define RQF_QUIET ((__force req_flags_t)(1 << 11))
40 /* elevator private data attached */
41 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12))
42 /* account into disk and partition IO statistics */
43 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13))
44 /* runtime pm request */
45 #define RQF_PM ((__force req_flags_t)(1 << 15))
46 /* on IO scheduler merge hash */
47 #define RQF_HASHED ((__force req_flags_t)(1 << 16))
48 /* track IO completion time */
49 #define RQF_STATS ((__force req_flags_t)(1 << 17))
50 /* Look at ->special_vec for the actual data payload instead of the
51 bio chain. */
52 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18))
53 /* The per-zone write lock is held for this request */
54 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19))
55 /* already slept for hybrid poll */
56 #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20))
57 /* ->timeout has been called, don't expire again */
58 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21))
59 /* queue has elevator attached */
60 #define RQF_ELV ((__force req_flags_t)(1 << 22))
61
62 /* flags that prevent us from merging requests: */
63 #define RQF_NOMERGE_FLAGS \
64 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
65
66 enum mq_rq_state {
67 MQ_RQ_IDLE = 0,
68 MQ_RQ_IN_FLIGHT = 1,
69 MQ_RQ_COMPLETE = 2,
70 };
71
72 /*
73 * Try to put the fields that are referenced together in the same cacheline.
74 *
75 * If you modify this structure, make sure to update blk_rq_init() and
76 * especially blk_mq_rq_ctx_init() to take care of the added fields.
77 */
78 struct request {
79 struct request_queue *q;
80 struct blk_mq_ctx *mq_ctx;
81 struct blk_mq_hw_ctx *mq_hctx;
82
83 unsigned int cmd_flags; /* op and common flags */
84 req_flags_t rq_flags;
85
86 int tag;
87 int internal_tag;
88
89 unsigned int timeout;
90
91 /* the following two fields are internal, NEVER access directly */
92 unsigned int __data_len; /* total data len */
93 sector_t __sector; /* sector cursor */
94
95 struct bio *bio;
96 struct bio *biotail;
97
98 union {
99 struct list_head queuelist;
100 struct request *rq_next;
101 };
102
103 struct gendisk *rq_disk;
104 struct block_device *part;
105 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
106 /* Time that the first bio started allocating this request. */
107 u64 alloc_time_ns;
108 #endif
109 /* Time that this request was allocated for this IO. */
110 u64 start_time_ns;
111 /* Time that I/O was submitted to the device. */
112 u64 io_start_time_ns;
113
114 #ifdef CONFIG_BLK_WBT
115 unsigned short wbt_flags;
116 #endif
117 /*
118 * rq sectors used for blk stats. It has the same value
119 * with blk_rq_sectors(rq), except that it never be zeroed
120 * by completion.
121 */
122 unsigned short stats_sectors;
123
124 /*
125 * Number of scatter-gather DMA addr+len pairs after
126 * physical address coalescing is performed.
127 */
128 unsigned short nr_phys_segments;
129
130 #ifdef CONFIG_BLK_DEV_INTEGRITY
131 unsigned short nr_integrity_segments;
132 #endif
133
134 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
135 struct bio_crypt_ctx *crypt_ctx;
136 struct blk_crypto_keyslot *crypt_keyslot;
137 #endif
138
139 unsigned short write_hint;
140 unsigned short ioprio;
141
142 enum mq_rq_state state;
143 refcount_t ref;
144
145 unsigned long deadline;
146
147 /*
148 * The hash is used inside the scheduler, and killed once the
149 * request reaches the dispatch list. The ipi_list is only used
150 * to queue the request for softirq completion, which is long
151 * after the request has been unhashed (and even removed from
152 * the dispatch list).
153 */
154 union {
155 struct hlist_node hash; /* merge hash */
156 struct llist_node ipi_list;
157 };
158
159 /*
160 * The rb_node is only used inside the io scheduler, requests
161 * are pruned when moved to the dispatch queue. So let the
162 * completion_data share space with the rb_node.
163 */
164 union {
165 struct rb_node rb_node; /* sort/lookup */
166 struct bio_vec special_vec;
167 void *completion_data;
168 int error_count; /* for legacy drivers, don't use */
169 };
170
171
172 /*
173 * Three pointers are available for the IO schedulers, if they need
174 * more they have to dynamically allocate it. Flush requests are
175 * never put on the IO scheduler. So let the flush fields share
176 * space with the elevator data.
177 */
178 union {
179 struct {
180 struct io_cq *icq;
181 void *priv[2];
182 } elv;
183
184 struct {
185 unsigned int seq;
186 struct list_head list;
187 rq_end_io_fn *saved_end_io;
188 } flush;
189 };
190
191 union {
192 struct __call_single_data csd;
193 u64 fifo_time;
194 };
195
196 /*
197 * completion callback.
198 */
199 rq_end_io_fn *end_io;
200 void *end_io_data;
201 };
202
203 #define req_op(req) \
204 ((req)->cmd_flags & REQ_OP_MASK)
205
blk_rq_is_passthrough(struct request * rq)206 static inline bool blk_rq_is_passthrough(struct request *rq)
207 {
208 return blk_op_is_passthrough(req_op(rq));
209 }
210
req_get_ioprio(struct request * req)211 static inline unsigned short req_get_ioprio(struct request *req)
212 {
213 return req->ioprio;
214 }
215
216 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ)
217
218 #define rq_dma_dir(rq) \
219 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
220
221 enum blk_eh_timer_return {
222 BLK_EH_DONE, /* drivers has completed the command */
223 BLK_EH_RESET_TIMER, /* reset timer and try again */
224 };
225
226 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
227 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
228
229 /**
230 * struct blk_mq_hw_ctx - State for a hardware queue facing the hardware
231 * block device
232 */
233 struct blk_mq_hw_ctx {
234 struct {
235 /** @lock: Protects the dispatch list. */
236 spinlock_t lock;
237 /**
238 * @dispatch: Used for requests that are ready to be
239 * dispatched to the hardware but for some reason (e.g. lack of
240 * resources) could not be sent to the hardware. As soon as the
241 * driver can send new requests, requests at this list will
242 * be sent first for a fairer dispatch.
243 */
244 struct list_head dispatch;
245 /**
246 * @state: BLK_MQ_S_* flags. Defines the state of the hw
247 * queue (active, scheduled to restart, stopped).
248 */
249 unsigned long state;
250 } ____cacheline_aligned_in_smp;
251
252 /**
253 * @run_work: Used for scheduling a hardware queue run at a later time.
254 */
255 struct delayed_work run_work;
256 /** @cpumask: Map of available CPUs where this hctx can run. */
257 cpumask_var_t cpumask;
258 /**
259 * @next_cpu: Used by blk_mq_hctx_next_cpu() for round-robin CPU
260 * selection from @cpumask.
261 */
262 int next_cpu;
263 /**
264 * @next_cpu_batch: Counter of how many works left in the batch before
265 * changing to the next CPU.
266 */
267 int next_cpu_batch;
268
269 /** @flags: BLK_MQ_F_* flags. Defines the behaviour of the queue. */
270 unsigned long flags;
271
272 /**
273 * @sched_data: Pointer owned by the IO scheduler attached to a request
274 * queue. It's up to the IO scheduler how to use this pointer.
275 */
276 void *sched_data;
277 /**
278 * @queue: Pointer to the request queue that owns this hardware context.
279 */
280 struct request_queue *queue;
281 /** @fq: Queue of requests that need to perform a flush operation. */
282 struct blk_flush_queue *fq;
283
284 /**
285 * @driver_data: Pointer to data owned by the block driver that created
286 * this hctx
287 */
288 void *driver_data;
289
290 /**
291 * @ctx_map: Bitmap for each software queue. If bit is on, there is a
292 * pending request in that software queue.
293 */
294 struct sbitmap ctx_map;
295
296 /**
297 * @dispatch_from: Software queue to be used when no scheduler was
298 * selected.
299 */
300 struct blk_mq_ctx *dispatch_from;
301 /**
302 * @dispatch_busy: Number used by blk_mq_update_dispatch_busy() to
303 * decide if the hw_queue is busy using Exponential Weighted Moving
304 * Average algorithm.
305 */
306 unsigned int dispatch_busy;
307
308 /** @type: HCTX_TYPE_* flags. Type of hardware queue. */
309 unsigned short type;
310 /** @nr_ctx: Number of software queues. */
311 unsigned short nr_ctx;
312 /** @ctxs: Array of software queues. */
313 struct blk_mq_ctx **ctxs;
314
315 /** @dispatch_wait_lock: Lock for dispatch_wait queue. */
316 spinlock_t dispatch_wait_lock;
317 /**
318 * @dispatch_wait: Waitqueue to put requests when there is no tag
319 * available at the moment, to wait for another try in the future.
320 */
321 wait_queue_entry_t dispatch_wait;
322
323 /**
324 * @wait_index: Index of next available dispatch_wait queue to insert
325 * requests.
326 */
327 atomic_t wait_index;
328
329 /**
330 * @tags: Tags owned by the block driver. A tag at this set is only
331 * assigned when a request is dispatched from a hardware queue.
332 */
333 struct blk_mq_tags *tags;
334 /**
335 * @sched_tags: Tags owned by I/O scheduler. If there is an I/O
336 * scheduler associated with a request queue, a tag is assigned when
337 * that request is allocated. Else, this member is not used.
338 */
339 struct blk_mq_tags *sched_tags;
340
341 /** @queued: Number of queued requests. */
342 unsigned long queued;
343 /** @run: Number of dispatched requests. */
344 unsigned long run;
345
346 /** @numa_node: NUMA node the storage adapter has been connected to. */
347 unsigned int numa_node;
348 /** @queue_num: Index of this hardware queue. */
349 unsigned int queue_num;
350
351 /**
352 * @nr_active: Number of active requests. Only used when a tag set is
353 * shared across request queues.
354 */
355 atomic_t nr_active;
356
357 /** @cpuhp_online: List to store request if CPU is going to die */
358 struct hlist_node cpuhp_online;
359 /** @cpuhp_dead: List to store request if some CPU die. */
360 struct hlist_node cpuhp_dead;
361 /** @kobj: Kernel object for sysfs. */
362 struct kobject kobj;
363
364 #ifdef CONFIG_BLK_DEBUG_FS
365 /**
366 * @debugfs_dir: debugfs directory for this hardware queue. Named
367 * as cpu<cpu_number>.
368 */
369 struct dentry *debugfs_dir;
370 /** @sched_debugfs_dir: debugfs directory for the scheduler. */
371 struct dentry *sched_debugfs_dir;
372 #endif
373
374 /**
375 * @hctx_list: if this hctx is not in use, this is an entry in
376 * q->unused_hctx_list.
377 */
378 struct list_head hctx_list;
379
380 /**
381 * @srcu: Sleepable RCU. Use as lock when type of the hardware queue is
382 * blocking (BLK_MQ_F_BLOCKING). Must be the last member - see also
383 * blk_mq_hw_ctx_size().
384 */
385 struct srcu_struct srcu[];
386 };
387
388 /**
389 * struct blk_mq_queue_map - Map software queues to hardware queues
390 * @mq_map: CPU ID to hardware queue index map. This is an array
391 * with nr_cpu_ids elements. Each element has a value in the range
392 * [@queue_offset, @queue_offset + @nr_queues).
393 * @nr_queues: Number of hardware queues to map CPU IDs onto.
394 * @queue_offset: First hardware queue to map onto. Used by the PCIe NVMe
395 * driver to map each hardware queue type (enum hctx_type) onto a distinct
396 * set of hardware queues.
397 */
398 struct blk_mq_queue_map {
399 unsigned int *mq_map;
400 unsigned int nr_queues;
401 unsigned int queue_offset;
402 };
403
404 /**
405 * enum hctx_type - Type of hardware queue
406 * @HCTX_TYPE_DEFAULT: All I/O not otherwise accounted for.
407 * @HCTX_TYPE_READ: Just for READ I/O.
408 * @HCTX_TYPE_POLL: Polled I/O of any kind.
409 * @HCTX_MAX_TYPES: Number of types of hctx.
410 */
411 enum hctx_type {
412 HCTX_TYPE_DEFAULT,
413 HCTX_TYPE_READ,
414 HCTX_TYPE_POLL,
415
416 HCTX_MAX_TYPES,
417 };
418
419 /**
420 * struct blk_mq_tag_set - tag set that can be shared between request queues
421 * @map: One or more ctx -> hctx mappings. One map exists for each
422 * hardware queue type (enum hctx_type) that the driver wishes
423 * to support. There are no restrictions on maps being of the
424 * same size, and it's perfectly legal to share maps between
425 * types.
426 * @nr_maps: Number of elements in the @map array. A number in the range
427 * [1, HCTX_MAX_TYPES].
428 * @ops: Pointers to functions that implement block driver behavior.
429 * @nr_hw_queues: Number of hardware queues supported by the block driver that
430 * owns this data structure.
431 * @queue_depth: Number of tags per hardware queue, reserved tags included.
432 * @reserved_tags: Number of tags to set aside for BLK_MQ_REQ_RESERVED tag
433 * allocations.
434 * @cmd_size: Number of additional bytes to allocate per request. The block
435 * driver owns these additional bytes.
436 * @numa_node: NUMA node the storage adapter has been connected to.
437 * @timeout: Request processing timeout in jiffies.
438 * @flags: Zero or more BLK_MQ_F_* flags.
439 * @driver_data: Pointer to data owned by the block driver that created this
440 * tag set.
441 * @tags: Tag sets. One tag set per hardware queue. Has @nr_hw_queues
442 * elements.
443 * @shared_tags:
444 * Shared set of tags. Has @nr_hw_queues elements. If set,
445 * shared by all @tags.
446 * @tag_list_lock: Serializes tag_list accesses.
447 * @tag_list: List of the request queues that use this tag set. See also
448 * request_queue.tag_set_list.
449 */
450 struct blk_mq_tag_set {
451 struct blk_mq_queue_map map[HCTX_MAX_TYPES];
452 unsigned int nr_maps;
453 const struct blk_mq_ops *ops;
454 unsigned int nr_hw_queues;
455 unsigned int queue_depth;
456 unsigned int reserved_tags;
457 unsigned int cmd_size;
458 int numa_node;
459 unsigned int timeout;
460 unsigned int flags;
461 void *driver_data;
462
463 struct blk_mq_tags **tags;
464
465 struct blk_mq_tags *shared_tags;
466
467 struct mutex tag_list_lock;
468 struct list_head tag_list;
469 };
470
471 /**
472 * struct blk_mq_queue_data - Data about a request inserted in a queue
473 *
474 * @rq: Request pointer.
475 * @last: If it is the last request in the queue.
476 */
477 struct blk_mq_queue_data {
478 struct request *rq;
479 bool last;
480 };
481
482 typedef bool (busy_iter_fn)(struct blk_mq_hw_ctx *, struct request *, void *,
483 bool);
484 typedef bool (busy_tag_iter_fn)(struct request *, void *, bool);
485
486 /**
487 * struct blk_mq_ops - Callback functions that implements block driver
488 * behaviour.
489 */
490 struct blk_mq_ops {
491 /**
492 * @queue_rq: Queue a new request from block IO.
493 */
494 blk_status_t (*queue_rq)(struct blk_mq_hw_ctx *,
495 const struct blk_mq_queue_data *);
496
497 /**
498 * @commit_rqs: If a driver uses bd->last to judge when to submit
499 * requests to hardware, it must define this function. In case of errors
500 * that make us stop issuing further requests, this hook serves the
501 * purpose of kicking the hardware (which the last request otherwise
502 * would have done).
503 */
504 void (*commit_rqs)(struct blk_mq_hw_ctx *);
505
506 /**
507 * @get_budget: Reserve budget before queue request, once .queue_rq is
508 * run, it is driver's responsibility to release the
509 * reserved budget. Also we have to handle failure case
510 * of .get_budget for avoiding I/O deadlock.
511 */
512 int (*get_budget)(struct request_queue *);
513
514 /**
515 * @put_budget: Release the reserved budget.
516 */
517 void (*put_budget)(struct request_queue *, int);
518
519 /**
520 * @set_rq_budget_token: store rq's budget token
521 */
522 void (*set_rq_budget_token)(struct request *, int);
523 /**
524 * @get_rq_budget_token: retrieve rq's budget token
525 */
526 int (*get_rq_budget_token)(struct request *);
527
528 /**
529 * @timeout: Called on request timeout.
530 */
531 enum blk_eh_timer_return (*timeout)(struct request *, bool);
532
533 /**
534 * @poll: Called to poll for completion of a specific tag.
535 */
536 int (*poll)(struct blk_mq_hw_ctx *, struct io_comp_batch *);
537
538 /**
539 * @complete: Mark the request as complete.
540 */
541 void (*complete)(struct request *);
542
543 /**
544 * @init_hctx: Called when the block layer side of a hardware queue has
545 * been set up, allowing the driver to allocate/init matching
546 * structures.
547 */
548 int (*init_hctx)(struct blk_mq_hw_ctx *, void *, unsigned int);
549 /**
550 * @exit_hctx: Ditto for exit/teardown.
551 */
552 void (*exit_hctx)(struct blk_mq_hw_ctx *, unsigned int);
553
554 /**
555 * @init_request: Called for every command allocated by the block layer
556 * to allow the driver to set up driver specific data.
557 *
558 * Tag greater than or equal to queue_depth is for setting up
559 * flush request.
560 */
561 int (*init_request)(struct blk_mq_tag_set *set, struct request *,
562 unsigned int, unsigned int);
563 /**
564 * @exit_request: Ditto for exit/teardown.
565 */
566 void (*exit_request)(struct blk_mq_tag_set *set, struct request *,
567 unsigned int);
568
569 /**
570 * @cleanup_rq: Called before freeing one request which isn't completed
571 * yet, and usually for freeing the driver private data.
572 */
573 void (*cleanup_rq)(struct request *);
574
575 /**
576 * @busy: If set, returns whether or not this queue currently is busy.
577 */
578 bool (*busy)(struct request_queue *);
579
580 /**
581 * @map_queues: This allows drivers specify their own queue mapping by
582 * overriding the setup-time function that builds the mq_map.
583 */
584 int (*map_queues)(struct blk_mq_tag_set *set);
585
586 #ifdef CONFIG_BLK_DEBUG_FS
587 /**
588 * @show_rq: Used by the debugfs implementation to show driver-specific
589 * information about a request.
590 */
591 void (*show_rq)(struct seq_file *m, struct request *rq);
592 #endif
593 };
594
595 enum {
596 BLK_MQ_F_SHOULD_MERGE = 1 << 0,
597 BLK_MQ_F_TAG_QUEUE_SHARED = 1 << 1,
598 /*
599 * Set when this device requires underlying blk-mq device for
600 * completing IO:
601 */
602 BLK_MQ_F_STACKING = 1 << 2,
603 BLK_MQ_F_TAG_HCTX_SHARED = 1 << 3,
604 BLK_MQ_F_BLOCKING = 1 << 5,
605 /* Do not allow an I/O scheduler to be configured. */
606 BLK_MQ_F_NO_SCHED = 1 << 6,
607 /*
608 * Select 'none' during queue registration in case of a single hwq
609 * or shared hwqs instead of 'mq-deadline'.
610 */
611 BLK_MQ_F_NO_SCHED_BY_DEFAULT = 1 << 7,
612 BLK_MQ_F_ALLOC_POLICY_START_BIT = 8,
613 BLK_MQ_F_ALLOC_POLICY_BITS = 1,
614
615 BLK_MQ_S_STOPPED = 0,
616 BLK_MQ_S_TAG_ACTIVE = 1,
617 BLK_MQ_S_SCHED_RESTART = 2,
618
619 /* hw queue is inactive after all its CPUs become offline */
620 BLK_MQ_S_INACTIVE = 3,
621
622 BLK_MQ_MAX_DEPTH = 10240,
623
624 BLK_MQ_CPU_WORK_BATCH = 8,
625 };
626 #define BLK_MQ_FLAG_TO_ALLOC_POLICY(flags) \
627 ((flags >> BLK_MQ_F_ALLOC_POLICY_START_BIT) & \
628 ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1))
629 #define BLK_ALLOC_POLICY_TO_MQ_FLAG(policy) \
630 ((policy & ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) \
631 << BLK_MQ_F_ALLOC_POLICY_START_BIT)
632
633 #define BLK_MQ_NO_HCTX_IDX (-1U)
634
635 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
636 struct lock_class_key *lkclass);
637 #define blk_mq_alloc_disk(set, queuedata) \
638 ({ \
639 static struct lock_class_key __key; \
640 \
641 __blk_mq_alloc_disk(set, queuedata, &__key); \
642 })
643 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *);
644 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
645 struct request_queue *q);
646 void blk_mq_unregister_dev(struct device *, struct request_queue *);
647
648 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set);
649 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
650 const struct blk_mq_ops *ops, unsigned int queue_depth,
651 unsigned int set_flags);
652 void blk_mq_free_tag_set(struct blk_mq_tag_set *set);
653
654 void blk_mq_free_request(struct request *rq);
655
656 bool blk_mq_queue_inflight(struct request_queue *q);
657
658 enum {
659 /* return when out of requests */
660 BLK_MQ_REQ_NOWAIT = (__force blk_mq_req_flags_t)(1 << 0),
661 /* allocate from reserved pool */
662 BLK_MQ_REQ_RESERVED = (__force blk_mq_req_flags_t)(1 << 1),
663 /* set RQF_PM */
664 BLK_MQ_REQ_PM = (__force blk_mq_req_flags_t)(1 << 2),
665 };
666
667 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
668 blk_mq_req_flags_t flags);
669 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
670 unsigned int op, blk_mq_req_flags_t flags,
671 unsigned int hctx_idx);
672
673 /*
674 * Tag address space map.
675 */
676 struct blk_mq_tags {
677 unsigned int nr_tags;
678 unsigned int nr_reserved_tags;
679
680 atomic_t active_queues;
681
682 struct sbitmap_queue bitmap_tags;
683 struct sbitmap_queue breserved_tags;
684
685 struct request **rqs;
686 struct request **static_rqs;
687 struct list_head page_list;
688
689 /*
690 * used to clear request reference in rqs[] before freeing one
691 * request pool
692 */
693 spinlock_t lock;
694 };
695
blk_mq_tag_to_rq(struct blk_mq_tags * tags,unsigned int tag)696 static inline struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags,
697 unsigned int tag)
698 {
699 if (tag < tags->nr_tags) {
700 prefetch(tags->rqs[tag]);
701 return tags->rqs[tag];
702 }
703
704 return NULL;
705 }
706
707 enum {
708 BLK_MQ_UNIQUE_TAG_BITS = 16,
709 BLK_MQ_UNIQUE_TAG_MASK = (1 << BLK_MQ_UNIQUE_TAG_BITS) - 1,
710 };
711
712 u32 blk_mq_unique_tag(struct request *rq);
713
blk_mq_unique_tag_to_hwq(u32 unique_tag)714 static inline u16 blk_mq_unique_tag_to_hwq(u32 unique_tag)
715 {
716 return unique_tag >> BLK_MQ_UNIQUE_TAG_BITS;
717 }
718
blk_mq_unique_tag_to_tag(u32 unique_tag)719 static inline u16 blk_mq_unique_tag_to_tag(u32 unique_tag)
720 {
721 return unique_tag & BLK_MQ_UNIQUE_TAG_MASK;
722 }
723
724 /**
725 * blk_mq_rq_state() - read the current MQ_RQ_* state of a request
726 * @rq: target request.
727 */
blk_mq_rq_state(struct request * rq)728 static inline enum mq_rq_state blk_mq_rq_state(struct request *rq)
729 {
730 return READ_ONCE(rq->state);
731 }
732
blk_mq_request_started(struct request * rq)733 static inline int blk_mq_request_started(struct request *rq)
734 {
735 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
736 }
737
blk_mq_request_completed(struct request * rq)738 static inline int blk_mq_request_completed(struct request *rq)
739 {
740 return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE;
741 }
742
743 /*
744 *
745 * Set the state to complete when completing a request from inside ->queue_rq.
746 * This is used by drivers that want to ensure special complete actions that
747 * need access to the request are called on failure, e.g. by nvme for
748 * multipathing.
749 */
blk_mq_set_request_complete(struct request * rq)750 static inline void blk_mq_set_request_complete(struct request *rq)
751 {
752 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
753 }
754
755 void blk_mq_start_request(struct request *rq);
756 void blk_mq_end_request(struct request *rq, blk_status_t error);
757 void __blk_mq_end_request(struct request *rq, blk_status_t error);
758 void blk_mq_end_request_batch(struct io_comp_batch *ib);
759
760 /*
761 * Only need start/end time stamping if we have iostat or
762 * blk stats enabled, or using an IO scheduler.
763 */
blk_mq_need_time_stamp(struct request * rq)764 static inline bool blk_mq_need_time_stamp(struct request *rq)
765 {
766 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS | RQF_ELV));
767 }
768
769 /*
770 * Batched completions only work when there is no I/O error and no special
771 * ->end_io handler.
772 */
blk_mq_add_to_batch(struct request * req,struct io_comp_batch * iob,int ioerror,void (* complete)(struct io_comp_batch *))773 static inline bool blk_mq_add_to_batch(struct request *req,
774 struct io_comp_batch *iob, int ioerror,
775 void (*complete)(struct io_comp_batch *))
776 {
777 if (!iob || (req->rq_flags & RQF_ELV) || req->end_io || ioerror)
778 return false;
779 if (!iob->complete)
780 iob->complete = complete;
781 else if (iob->complete != complete)
782 return false;
783 iob->need_ts |= blk_mq_need_time_stamp(req);
784 rq_list_add(&iob->req_list, req);
785 return true;
786 }
787
788 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list);
789 void blk_mq_kick_requeue_list(struct request_queue *q);
790 void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs);
791 void blk_mq_complete_request(struct request *rq);
792 bool blk_mq_complete_request_remote(struct request *rq);
793 bool blk_mq_queue_stopped(struct request_queue *q);
794 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx);
795 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx);
796 void blk_mq_stop_hw_queues(struct request_queue *q);
797 void blk_mq_start_hw_queues(struct request_queue *q);
798 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
799 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async);
800 void blk_mq_quiesce_queue(struct request_queue *q);
801 void blk_mq_wait_quiesce_done(struct request_queue *q);
802 void blk_mq_unquiesce_queue(struct request_queue *q);
803 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs);
804 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
805 void blk_mq_run_hw_queues(struct request_queue *q, bool async);
806 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs);
807 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
808 busy_tag_iter_fn *fn, void *priv);
809 void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset);
810 void blk_mq_freeze_queue(struct request_queue *q);
811 void blk_mq_unfreeze_queue(struct request_queue *q);
812 void blk_freeze_queue_start(struct request_queue *q);
813 void blk_mq_freeze_queue_wait(struct request_queue *q);
814 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
815 unsigned long timeout);
816
817 int blk_mq_map_queues(struct blk_mq_queue_map *qmap);
818 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues);
819
820 void blk_mq_quiesce_queue_nowait(struct request_queue *q);
821
822 unsigned int blk_mq_rq_cpu(struct request *rq);
823
824 bool __blk_should_fake_timeout(struct request_queue *q);
blk_should_fake_timeout(struct request_queue * q)825 static inline bool blk_should_fake_timeout(struct request_queue *q)
826 {
827 if (IS_ENABLED(CONFIG_FAIL_IO_TIMEOUT) &&
828 test_bit(QUEUE_FLAG_FAIL_IO, &q->queue_flags))
829 return __blk_should_fake_timeout(q);
830 return false;
831 }
832
833 /**
834 * blk_mq_rq_from_pdu - cast a PDU to a request
835 * @pdu: the PDU (Protocol Data Unit) to be casted
836 *
837 * Return: request
838 *
839 * Driver command data is immediately after the request. So subtract request
840 * size to get back to the original request.
841 */
blk_mq_rq_from_pdu(void * pdu)842 static inline struct request *blk_mq_rq_from_pdu(void *pdu)
843 {
844 return pdu - sizeof(struct request);
845 }
846
847 /**
848 * blk_mq_rq_to_pdu - cast a request to a PDU
849 * @rq: the request to be casted
850 *
851 * Return: pointer to the PDU
852 *
853 * Driver command data is immediately after the request. So add request to get
854 * the PDU.
855 */
blk_mq_rq_to_pdu(struct request * rq)856 static inline void *blk_mq_rq_to_pdu(struct request *rq)
857 {
858 return rq + 1;
859 }
860
861 #define queue_for_each_hw_ctx(q, hctx, i) \
862 for ((i) = 0; (i) < (q)->nr_hw_queues && \
863 ({ hctx = (q)->queue_hw_ctx[i]; 1; }); (i)++)
864
865 #define hctx_for_each_ctx(hctx, ctx, i) \
866 for ((i) = 0; (i) < (hctx)->nr_ctx && \
867 ({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++)
868
blk_mq_cleanup_rq(struct request * rq)869 static inline void blk_mq_cleanup_rq(struct request *rq)
870 {
871 if (rq->q->mq_ops->cleanup_rq)
872 rq->q->mq_ops->cleanup_rq(rq);
873 }
874
blk_rq_bio_prep(struct request * rq,struct bio * bio,unsigned int nr_segs)875 static inline void blk_rq_bio_prep(struct request *rq, struct bio *bio,
876 unsigned int nr_segs)
877 {
878 rq->nr_phys_segments = nr_segs;
879 rq->__data_len = bio->bi_iter.bi_size;
880 rq->bio = rq->biotail = bio;
881 rq->ioprio = bio_prio(bio);
882
883 if (bio->bi_bdev)
884 rq->rq_disk = bio->bi_bdev->bd_disk;
885 }
886
887 void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx,
888 struct lock_class_key *key);
889
rq_is_sync(struct request * rq)890 static inline bool rq_is_sync(struct request *rq)
891 {
892 return op_is_sync(rq->cmd_flags);
893 }
894
895 void blk_rq_init(struct request_queue *q, struct request *rq);
896 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
897 struct bio_set *bs, gfp_t gfp_mask,
898 int (*bio_ctr)(struct bio *, struct bio *, void *), void *data);
899 void blk_rq_unprep_clone(struct request *rq);
900 blk_status_t blk_insert_cloned_request(struct request_queue *q,
901 struct request *rq);
902
903 struct rq_map_data {
904 struct page **pages;
905 int page_order;
906 int nr_entries;
907 unsigned long offset;
908 int null_mapped;
909 int from_user;
910 };
911
912 int blk_rq_map_user(struct request_queue *, struct request *,
913 struct rq_map_data *, void __user *, unsigned long, gfp_t);
914 int blk_rq_map_user_iov(struct request_queue *, struct request *,
915 struct rq_map_data *, const struct iov_iter *, gfp_t);
916 int blk_rq_unmap_user(struct bio *);
917 int blk_rq_map_kern(struct request_queue *, struct request *, void *,
918 unsigned int, gfp_t);
919 int blk_rq_append_bio(struct request *rq, struct bio *bio);
920 void blk_execute_rq_nowait(struct gendisk *, struct request *, int,
921 rq_end_io_fn *);
922 blk_status_t blk_execute_rq(struct gendisk *bd_disk, struct request *rq,
923 int at_head);
924
925 struct req_iterator {
926 struct bvec_iter iter;
927 struct bio *bio;
928 };
929
930 #define __rq_for_each_bio(_bio, rq) \
931 if ((rq->bio)) \
932 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
933
934 #define rq_for_each_segment(bvl, _rq, _iter) \
935 __rq_for_each_bio(_iter.bio, _rq) \
936 bio_for_each_segment(bvl, _iter.bio, _iter.iter)
937
938 #define rq_for_each_bvec(bvl, _rq, _iter) \
939 __rq_for_each_bio(_iter.bio, _rq) \
940 bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
941
942 #define rq_iter_last(bvec, _iter) \
943 (_iter.bio->bi_next == NULL && \
944 bio_iter_last(bvec, _iter.iter))
945
946 /*
947 * blk_rq_pos() : the current sector
948 * blk_rq_bytes() : bytes left in the entire request
949 * blk_rq_cur_bytes() : bytes left in the current segment
950 * blk_rq_err_bytes() : bytes left till the next error boundary
951 * blk_rq_sectors() : sectors left in the entire request
952 * blk_rq_cur_sectors() : sectors left in the current segment
953 * blk_rq_stats_sectors() : sectors of the entire request used for stats
954 */
blk_rq_pos(const struct request * rq)955 static inline sector_t blk_rq_pos(const struct request *rq)
956 {
957 return rq->__sector;
958 }
959
blk_rq_bytes(const struct request * rq)960 static inline unsigned int blk_rq_bytes(const struct request *rq)
961 {
962 return rq->__data_len;
963 }
964
blk_rq_cur_bytes(const struct request * rq)965 static inline int blk_rq_cur_bytes(const struct request *rq)
966 {
967 if (!rq->bio)
968 return 0;
969 if (!bio_has_data(rq->bio)) /* dataless requests such as discard */
970 return rq->bio->bi_iter.bi_size;
971 return bio_iovec(rq->bio).bv_len;
972 }
973
974 unsigned int blk_rq_err_bytes(const struct request *rq);
975
blk_rq_sectors(const struct request * rq)976 static inline unsigned int blk_rq_sectors(const struct request *rq)
977 {
978 return blk_rq_bytes(rq) >> SECTOR_SHIFT;
979 }
980
blk_rq_cur_sectors(const struct request * rq)981 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
982 {
983 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
984 }
985
blk_rq_stats_sectors(const struct request * rq)986 static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
987 {
988 return rq->stats_sectors;
989 }
990
991 /*
992 * Some commands like WRITE SAME have a payload or data transfer size which
993 * is different from the size of the request. Any driver that supports such
994 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
995 * calculate the data transfer size.
996 */
blk_rq_payload_bytes(struct request * rq)997 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
998 {
999 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1000 return rq->special_vec.bv_len;
1001 return blk_rq_bytes(rq);
1002 }
1003
1004 /*
1005 * Return the first full biovec in the request. The caller needs to check that
1006 * there are any bvecs before calling this helper.
1007 */
req_bvec(struct request * rq)1008 static inline struct bio_vec req_bvec(struct request *rq)
1009 {
1010 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1011 return rq->special_vec;
1012 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
1013 }
1014
blk_rq_count_bios(struct request * rq)1015 static inline unsigned int blk_rq_count_bios(struct request *rq)
1016 {
1017 unsigned int nr_bios = 0;
1018 struct bio *bio;
1019
1020 __rq_for_each_bio(bio, rq)
1021 nr_bios++;
1022
1023 return nr_bios;
1024 }
1025
1026 void blk_steal_bios(struct bio_list *list, struct request *rq);
1027
1028 /*
1029 * Request completion related functions.
1030 *
1031 * blk_update_request() completes given number of bytes and updates
1032 * the request without completing it.
1033 */
1034 bool blk_update_request(struct request *rq, blk_status_t error,
1035 unsigned int nr_bytes);
1036 void blk_abort_request(struct request *);
1037
1038 /*
1039 * Number of physical segments as sent to the device.
1040 *
1041 * Normally this is the number of discontiguous data segments sent by the
1042 * submitter. But for data-less command like discard we might have no
1043 * actual data segments submitted, but the driver might have to add it's
1044 * own special payload. In that case we still return 1 here so that this
1045 * special payload will be mapped.
1046 */
blk_rq_nr_phys_segments(struct request * rq)1047 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1048 {
1049 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1050 return 1;
1051 return rq->nr_phys_segments;
1052 }
1053
1054 /*
1055 * Number of discard segments (or ranges) the driver needs to fill in.
1056 * Each discard bio merged into a request is counted as one segment.
1057 */
blk_rq_nr_discard_segments(struct request * rq)1058 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1059 {
1060 return max_t(unsigned short, rq->nr_phys_segments, 1);
1061 }
1062
1063 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
1064 struct scatterlist *sglist, struct scatterlist **last_sg);
blk_rq_map_sg(struct request_queue * q,struct request * rq,struct scatterlist * sglist)1065 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1066 struct scatterlist *sglist)
1067 {
1068 struct scatterlist *last_sg = NULL;
1069
1070 return __blk_rq_map_sg(q, rq, sglist, &last_sg);
1071 }
1072 void blk_dump_rq_flags(struct request *, char *);
1073
1074 #ifdef CONFIG_BLK_DEV_ZONED
blk_rq_zone_no(struct request * rq)1075 static inline unsigned int blk_rq_zone_no(struct request *rq)
1076 {
1077 return blk_queue_zone_no(rq->q, blk_rq_pos(rq));
1078 }
1079
blk_rq_zone_is_seq(struct request * rq)1080 static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
1081 {
1082 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq));
1083 }
1084
1085 bool blk_req_needs_zone_write_lock(struct request *rq);
1086 bool blk_req_zone_write_trylock(struct request *rq);
1087 void __blk_req_zone_write_lock(struct request *rq);
1088 void __blk_req_zone_write_unlock(struct request *rq);
1089
blk_req_zone_write_lock(struct request * rq)1090 static inline void blk_req_zone_write_lock(struct request *rq)
1091 {
1092 if (blk_req_needs_zone_write_lock(rq))
1093 __blk_req_zone_write_lock(rq);
1094 }
1095
blk_req_zone_write_unlock(struct request * rq)1096 static inline void blk_req_zone_write_unlock(struct request *rq)
1097 {
1098 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
1099 __blk_req_zone_write_unlock(rq);
1100 }
1101
blk_req_zone_is_write_locked(struct request * rq)1102 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1103 {
1104 return rq->q->seq_zones_wlock &&
1105 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock);
1106 }
1107
blk_req_can_dispatch_to_zone(struct request * rq)1108 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1109 {
1110 if (!blk_req_needs_zone_write_lock(rq))
1111 return true;
1112 return !blk_req_zone_is_write_locked(rq);
1113 }
1114 #else /* CONFIG_BLK_DEV_ZONED */
blk_req_needs_zone_write_lock(struct request * rq)1115 static inline bool blk_req_needs_zone_write_lock(struct request *rq)
1116 {
1117 return false;
1118 }
1119
blk_req_zone_write_lock(struct request * rq)1120 static inline void blk_req_zone_write_lock(struct request *rq)
1121 {
1122 }
1123
blk_req_zone_write_unlock(struct request * rq)1124 static inline void blk_req_zone_write_unlock(struct request *rq)
1125 {
1126 }
blk_req_zone_is_write_locked(struct request * rq)1127 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1128 {
1129 return false;
1130 }
1131
blk_req_can_dispatch_to_zone(struct request * rq)1132 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1133 {
1134 return true;
1135 }
1136 #endif /* CONFIG_BLK_DEV_ZONED */
1137
1138 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1139 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
1140 #endif
1141 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1142 void rq_flush_dcache_pages(struct request *rq);
1143 #else
rq_flush_dcache_pages(struct request * rq)1144 static inline void rq_flush_dcache_pages(struct request *rq)
1145 {
1146 }
1147 #endif /* ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE */
1148 #endif /* BLK_MQ_H */
1149