1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #ifndef BTRFS_CTREE_H
7 #define BTRFS_CTREE_H
8
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/highmem.h>
12 #include <linux/fs.h>
13 #include <linux/rwsem.h>
14 #include <linux/semaphore.h>
15 #include <linux/completion.h>
16 #include <linux/backing-dev.h>
17 #include <linux/wait.h>
18 #include <linux/slab.h>
19 #include <trace/events/btrfs.h>
20 #include <asm/unaligned.h>
21 #include <linux/pagemap.h>
22 #include <linux/btrfs.h>
23 #include <linux/btrfs_tree.h>
24 #include <linux/workqueue.h>
25 #include <linux/security.h>
26 #include <linux/sizes.h>
27 #include <linux/dynamic_debug.h>
28 #include <linux/refcount.h>
29 #include <linux/crc32c.h>
30 #include <linux/iomap.h>
31 #include "extent-io-tree.h"
32 #include "extent_io.h"
33 #include "extent_map.h"
34 #include "async-thread.h"
35 #include "block-rsv.h"
36 #include "locking.h"
37
38 struct btrfs_trans_handle;
39 struct btrfs_transaction;
40 struct btrfs_pending_snapshot;
41 struct btrfs_delayed_ref_root;
42 struct btrfs_space_info;
43 struct btrfs_block_group;
44 extern struct kmem_cache *btrfs_trans_handle_cachep;
45 extern struct kmem_cache *btrfs_bit_radix_cachep;
46 extern struct kmem_cache *btrfs_path_cachep;
47 extern struct kmem_cache *btrfs_free_space_cachep;
48 extern struct kmem_cache *btrfs_free_space_bitmap_cachep;
49 struct btrfs_ordered_sum;
50 struct btrfs_ref;
51 struct btrfs_bio;
52
53 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
54
55 /*
56 * Maximum number of mirrors that can be available for all profiles counting
57 * the target device of dev-replace as one. During an active device replace
58 * procedure, the target device of the copy operation is a mirror for the
59 * filesystem data as well that can be used to read data in order to repair
60 * read errors on other disks.
61 *
62 * Current value is derived from RAID1C4 with 4 copies.
63 */
64 #define BTRFS_MAX_MIRRORS (4 + 1)
65
66 #define BTRFS_MAX_LEVEL 8
67
68 #define BTRFS_OLDEST_GENERATION 0ULL
69
70 /*
71 * we can actually store much bigger names, but lets not confuse the rest
72 * of linux
73 */
74 #define BTRFS_NAME_LEN 255
75
76 /*
77 * Theoretical limit is larger, but we keep this down to a sane
78 * value. That should limit greatly the possibility of collisions on
79 * inode ref items.
80 */
81 #define BTRFS_LINK_MAX 65535U
82
83 #define BTRFS_EMPTY_DIR_SIZE 0
84
85 /* ioprio of readahead is set to idle */
86 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
87
88 #define BTRFS_DIRTY_METADATA_THRESH SZ_32M
89
90 /*
91 * Use large batch size to reduce overhead of metadata updates. On the reader
92 * side, we only read it when we are close to ENOSPC and the read overhead is
93 * mostly related to the number of CPUs, so it is OK to use arbitrary large
94 * value here.
95 */
96 #define BTRFS_TOTAL_BYTES_PINNED_BATCH SZ_128M
97
98 #define BTRFS_MAX_EXTENT_SIZE SZ_128M
99
100 /*
101 * Deltas are an effective way to populate global statistics. Give macro names
102 * to make it clear what we're doing. An example is discard_extents in
103 * btrfs_free_space_ctl.
104 */
105 #define BTRFS_STAT_NR_ENTRIES 2
106 #define BTRFS_STAT_CURR 0
107 #define BTRFS_STAT_PREV 1
108
109 /*
110 * Count how many BTRFS_MAX_EXTENT_SIZE cover the @size
111 */
count_max_extents(u64 size)112 static inline u32 count_max_extents(u64 size)
113 {
114 return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE);
115 }
116
btrfs_chunk_item_size(int num_stripes)117 static inline unsigned long btrfs_chunk_item_size(int num_stripes)
118 {
119 BUG_ON(num_stripes == 0);
120 return sizeof(struct btrfs_chunk) +
121 sizeof(struct btrfs_stripe) * (num_stripes - 1);
122 }
123
124 /*
125 * Runtime (in-memory) states of filesystem
126 */
127 enum {
128 /* Global indicator of serious filesystem errors */
129 BTRFS_FS_STATE_ERROR,
130 /*
131 * Filesystem is being remounted, allow to skip some operations, like
132 * defrag
133 */
134 BTRFS_FS_STATE_REMOUNTING,
135 /* Filesystem in RO mode */
136 BTRFS_FS_STATE_RO,
137 /* Track if a transaction abort has been reported on this filesystem */
138 BTRFS_FS_STATE_TRANS_ABORTED,
139 /*
140 * Bio operations should be blocked on this filesystem because a source
141 * or target device is being destroyed as part of a device replace
142 */
143 BTRFS_FS_STATE_DEV_REPLACING,
144 /* The btrfs_fs_info created for self-tests */
145 BTRFS_FS_STATE_DUMMY_FS_INFO,
146 };
147
148 #define BTRFS_BACKREF_REV_MAX 256
149 #define BTRFS_BACKREF_REV_SHIFT 56
150 #define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \
151 BTRFS_BACKREF_REV_SHIFT)
152
153 #define BTRFS_OLD_BACKREF_REV 0
154 #define BTRFS_MIXED_BACKREF_REV 1
155
156 /*
157 * every tree block (leaf or node) starts with this header.
158 */
159 struct btrfs_header {
160 /* these first four must match the super block */
161 u8 csum[BTRFS_CSUM_SIZE];
162 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
163 __le64 bytenr; /* which block this node is supposed to live in */
164 __le64 flags;
165
166 /* allowed to be different from the super from here on down */
167 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
168 __le64 generation;
169 __le64 owner;
170 __le32 nritems;
171 u8 level;
172 } __attribute__ ((__packed__));
173
174 /*
175 * this is a very generous portion of the super block, giving us
176 * room to translate 14 chunks with 3 stripes each.
177 */
178 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
179
180 /*
181 * just in case we somehow lose the roots and are not able to mount,
182 * we store an array of the roots from previous transactions
183 * in the super.
184 */
185 #define BTRFS_NUM_BACKUP_ROOTS 4
186 struct btrfs_root_backup {
187 __le64 tree_root;
188 __le64 tree_root_gen;
189
190 __le64 chunk_root;
191 __le64 chunk_root_gen;
192
193 __le64 extent_root;
194 __le64 extent_root_gen;
195
196 __le64 fs_root;
197 __le64 fs_root_gen;
198
199 __le64 dev_root;
200 __le64 dev_root_gen;
201
202 __le64 csum_root;
203 __le64 csum_root_gen;
204
205 __le64 total_bytes;
206 __le64 bytes_used;
207 __le64 num_devices;
208 /* future */
209 __le64 unused_64[4];
210
211 u8 tree_root_level;
212 u8 chunk_root_level;
213 u8 extent_root_level;
214 u8 fs_root_level;
215 u8 dev_root_level;
216 u8 csum_root_level;
217 /* future and to align */
218 u8 unused_8[10];
219 } __attribute__ ((__packed__));
220
221 #define BTRFS_SUPER_INFO_OFFSET SZ_64K
222 #define BTRFS_SUPER_INFO_SIZE 4096
223
224 /*
225 * the super block basically lists the main trees of the FS
226 * it currently lacks any block count etc etc
227 */
228 struct btrfs_super_block {
229 /* the first 4 fields must match struct btrfs_header */
230 u8 csum[BTRFS_CSUM_SIZE];
231 /* FS specific UUID, visible to user */
232 u8 fsid[BTRFS_FSID_SIZE];
233 __le64 bytenr; /* this block number */
234 __le64 flags;
235
236 /* allowed to be different from the btrfs_header from here own down */
237 __le64 magic;
238 __le64 generation;
239 __le64 root;
240 __le64 chunk_root;
241 __le64 log_root;
242
243 /* this will help find the new super based on the log root */
244 __le64 log_root_transid;
245 __le64 total_bytes;
246 __le64 bytes_used;
247 __le64 root_dir_objectid;
248 __le64 num_devices;
249 __le32 sectorsize;
250 __le32 nodesize;
251 __le32 __unused_leafsize;
252 __le32 stripesize;
253 __le32 sys_chunk_array_size;
254 __le64 chunk_root_generation;
255 __le64 compat_flags;
256 __le64 compat_ro_flags;
257 __le64 incompat_flags;
258 __le16 csum_type;
259 u8 root_level;
260 u8 chunk_root_level;
261 u8 log_root_level;
262 struct btrfs_dev_item dev_item;
263
264 char label[BTRFS_LABEL_SIZE];
265
266 __le64 cache_generation;
267 __le64 uuid_tree_generation;
268
269 /* the UUID written into btree blocks */
270 u8 metadata_uuid[BTRFS_FSID_SIZE];
271
272 /* future expansion */
273 __le64 reserved[28];
274 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
275 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
276
277 /* Padded to 4096 bytes */
278 u8 padding[565];
279 } __attribute__ ((__packed__));
280 static_assert(sizeof(struct btrfs_super_block) == BTRFS_SUPER_INFO_SIZE);
281
282 /*
283 * Compat flags that we support. If any incompat flags are set other than the
284 * ones specified below then we will fail to mount
285 */
286 #define BTRFS_FEATURE_COMPAT_SUPP 0ULL
287 #define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL
288 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL
289
290 #define BTRFS_FEATURE_COMPAT_RO_SUPP \
291 (BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE | \
292 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | \
293 BTRFS_FEATURE_COMPAT_RO_VERITY)
294
295 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL
296 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL
297
298 #define BTRFS_FEATURE_INCOMPAT_SUPP \
299 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \
300 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \
301 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \
302 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \
303 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \
304 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \
305 BTRFS_FEATURE_INCOMPAT_RAID56 | \
306 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \
307 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \
308 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \
309 BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \
310 BTRFS_FEATURE_INCOMPAT_RAID1C34 | \
311 BTRFS_FEATURE_INCOMPAT_ZONED)
312
313 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET \
314 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
315 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL
316
317 /*
318 * A leaf is full of items. offset and size tell us where to find
319 * the item in the leaf (relative to the start of the data area)
320 */
321 struct btrfs_item {
322 struct btrfs_disk_key key;
323 __le32 offset;
324 __le32 size;
325 } __attribute__ ((__packed__));
326
327 /*
328 * leaves have an item area and a data area:
329 * [item0, item1....itemN] [free space] [dataN...data1, data0]
330 *
331 * The data is separate from the items to get the keys closer together
332 * during searches.
333 */
334 struct btrfs_leaf {
335 struct btrfs_header header;
336 struct btrfs_item items[];
337 } __attribute__ ((__packed__));
338
339 /*
340 * all non-leaf blocks are nodes, they hold only keys and pointers to
341 * other blocks
342 */
343 struct btrfs_key_ptr {
344 struct btrfs_disk_key key;
345 __le64 blockptr;
346 __le64 generation;
347 } __attribute__ ((__packed__));
348
349 struct btrfs_node {
350 struct btrfs_header header;
351 struct btrfs_key_ptr ptrs[];
352 } __attribute__ ((__packed__));
353
354 /* Read ahead values for struct btrfs_path.reada */
355 enum {
356 READA_NONE,
357 READA_BACK,
358 READA_FORWARD,
359 /*
360 * Similar to READA_FORWARD but unlike it:
361 *
362 * 1) It will trigger readahead even for leaves that are not close to
363 * each other on disk;
364 * 2) It also triggers readahead for nodes;
365 * 3) During a search, even when a node or leaf is already in memory, it
366 * will still trigger readahead for other nodes and leaves that follow
367 * it.
368 *
369 * This is meant to be used only when we know we are iterating over the
370 * entire tree or a very large part of it.
371 */
372 READA_FORWARD_ALWAYS,
373 };
374
375 /*
376 * btrfs_paths remember the path taken from the root down to the leaf.
377 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
378 * to any other levels that are present.
379 *
380 * The slots array records the index of the item or block pointer
381 * used while walking the tree.
382 */
383 struct btrfs_path {
384 struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
385 int slots[BTRFS_MAX_LEVEL];
386 /* if there is real range locking, this locks field will change */
387 u8 locks[BTRFS_MAX_LEVEL];
388 u8 reada;
389 /* keep some upper locks as we walk down */
390 u8 lowest_level;
391
392 /*
393 * set by btrfs_split_item, tells search_slot to keep all locks
394 * and to force calls to keep space in the nodes
395 */
396 unsigned int search_for_split:1;
397 unsigned int keep_locks:1;
398 unsigned int skip_locking:1;
399 unsigned int search_commit_root:1;
400 unsigned int need_commit_sem:1;
401 unsigned int skip_release_on_error:1;
402 /*
403 * Indicate that new item (btrfs_search_slot) is extending already
404 * existing item and ins_len contains only the data size and not item
405 * header (ie. sizeof(struct btrfs_item) is not included).
406 */
407 unsigned int search_for_extension:1;
408 };
409 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \
410 sizeof(struct btrfs_item))
411 struct btrfs_dev_replace {
412 u64 replace_state; /* see #define above */
413 time64_t time_started; /* seconds since 1-Jan-1970 */
414 time64_t time_stopped; /* seconds since 1-Jan-1970 */
415 atomic64_t num_write_errors;
416 atomic64_t num_uncorrectable_read_errors;
417
418 u64 cursor_left;
419 u64 committed_cursor_left;
420 u64 cursor_left_last_write_of_item;
421 u64 cursor_right;
422
423 u64 cont_reading_from_srcdev_mode; /* see #define above */
424
425 int is_valid;
426 int item_needs_writeback;
427 struct btrfs_device *srcdev;
428 struct btrfs_device *tgtdev;
429
430 struct mutex lock_finishing_cancel_unmount;
431 struct rw_semaphore rwsem;
432
433 struct btrfs_scrub_progress scrub_progress;
434
435 struct percpu_counter bio_counter;
436 wait_queue_head_t replace_wait;
437 };
438
439 /*
440 * free clusters are used to claim free space in relatively large chunks,
441 * allowing us to do less seeky writes. They are used for all metadata
442 * allocations. In ssd_spread mode they are also used for data allocations.
443 */
444 struct btrfs_free_cluster {
445 spinlock_t lock;
446 spinlock_t refill_lock;
447 struct rb_root root;
448
449 /* largest extent in this cluster */
450 u64 max_size;
451
452 /* first extent starting offset */
453 u64 window_start;
454
455 /* We did a full search and couldn't create a cluster */
456 bool fragmented;
457
458 struct btrfs_block_group *block_group;
459 /*
460 * when a cluster is allocated from a block group, we put the
461 * cluster onto a list in the block group so that it can
462 * be freed before the block group is freed.
463 */
464 struct list_head block_group_list;
465 };
466
467 enum btrfs_caching_type {
468 BTRFS_CACHE_NO,
469 BTRFS_CACHE_STARTED,
470 BTRFS_CACHE_FAST,
471 BTRFS_CACHE_FINISHED,
472 BTRFS_CACHE_ERROR,
473 };
474
475 /*
476 * Tree to record all locked full stripes of a RAID5/6 block group
477 */
478 struct btrfs_full_stripe_locks_tree {
479 struct rb_root root;
480 struct mutex lock;
481 };
482
483 /* Discard control. */
484 /*
485 * Async discard uses multiple lists to differentiate the discard filter
486 * parameters. Index 0 is for completely free block groups where we need to
487 * ensure the entire block group is trimmed without being lossy. Indices
488 * afterwards represent monotonically decreasing discard filter sizes to
489 * prioritize what should be discarded next.
490 */
491 #define BTRFS_NR_DISCARD_LISTS 3
492 #define BTRFS_DISCARD_INDEX_UNUSED 0
493 #define BTRFS_DISCARD_INDEX_START 1
494
495 struct btrfs_discard_ctl {
496 struct workqueue_struct *discard_workers;
497 struct delayed_work work;
498 spinlock_t lock;
499 struct btrfs_block_group *block_group;
500 struct list_head discard_list[BTRFS_NR_DISCARD_LISTS];
501 u64 prev_discard;
502 u64 prev_discard_time;
503 atomic_t discardable_extents;
504 atomic64_t discardable_bytes;
505 u64 max_discard_size;
506 u64 delay_ms;
507 u32 iops_limit;
508 u32 kbps_limit;
509 u64 discard_extent_bytes;
510 u64 discard_bitmap_bytes;
511 atomic64_t discard_bytes_saved;
512 };
513
514 enum btrfs_orphan_cleanup_state {
515 ORPHAN_CLEANUP_STARTED = 1,
516 ORPHAN_CLEANUP_DONE = 2,
517 };
518
519 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info);
520
521 /* fs_info */
522 struct reloc_control;
523 struct btrfs_device;
524 struct btrfs_fs_devices;
525 struct btrfs_balance_control;
526 struct btrfs_delayed_root;
527
528 /*
529 * Block group or device which contains an active swapfile. Used for preventing
530 * unsafe operations while a swapfile is active.
531 *
532 * These are sorted on (ptr, inode) (note that a block group or device can
533 * contain more than one swapfile). We compare the pointer values because we
534 * don't actually care what the object is, we just need a quick check whether
535 * the object exists in the rbtree.
536 */
537 struct btrfs_swapfile_pin {
538 struct rb_node node;
539 void *ptr;
540 struct inode *inode;
541 /*
542 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr
543 * points to a struct btrfs_device.
544 */
545 bool is_block_group;
546 /*
547 * Only used when 'is_block_group' is true and it is the number of
548 * extents used by a swapfile for this block group ('ptr' field).
549 */
550 int bg_extent_count;
551 };
552
553 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr);
554
555 enum {
556 BTRFS_FS_BARRIER,
557 BTRFS_FS_CLOSING_START,
558 BTRFS_FS_CLOSING_DONE,
559 BTRFS_FS_LOG_RECOVERING,
560 BTRFS_FS_OPEN,
561 BTRFS_FS_QUOTA_ENABLED,
562 BTRFS_FS_UPDATE_UUID_TREE_GEN,
563 BTRFS_FS_CREATING_FREE_SPACE_TREE,
564 BTRFS_FS_BTREE_ERR,
565 BTRFS_FS_LOG1_ERR,
566 BTRFS_FS_LOG2_ERR,
567 BTRFS_FS_QUOTA_OVERRIDE,
568 /* Used to record internally whether fs has been frozen */
569 BTRFS_FS_FROZEN,
570 /*
571 * Indicate that balance has been set up from the ioctl and is in the
572 * main phase. The fs_info::balance_ctl is initialized.
573 */
574 BTRFS_FS_BALANCE_RUNNING,
575
576 /*
577 * Indicate that relocation of a chunk has started, it's set per chunk
578 * and is toggled between chunks.
579 * Set, tested and cleared while holding fs_info::send_reloc_lock.
580 */
581 BTRFS_FS_RELOC_RUNNING,
582
583 /* Indicate that the cleaner thread is awake and doing something. */
584 BTRFS_FS_CLEANER_RUNNING,
585
586 /*
587 * The checksumming has an optimized version and is considered fast,
588 * so we don't need to offload checksums to workqueues.
589 */
590 BTRFS_FS_CSUM_IMPL_FAST,
591
592 /* Indicate that the discard workqueue can service discards. */
593 BTRFS_FS_DISCARD_RUNNING,
594
595 /* Indicate that we need to cleanup space cache v1 */
596 BTRFS_FS_CLEANUP_SPACE_CACHE_V1,
597
598 /* Indicate that we can't trust the free space tree for caching yet */
599 BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED,
600
601 /* Indicate whether there are any tree modification log users */
602 BTRFS_FS_TREE_MOD_LOG_USERS,
603
604 #if BITS_PER_LONG == 32
605 /* Indicate if we have error/warn message printed on 32bit systems */
606 BTRFS_FS_32BIT_ERROR,
607 BTRFS_FS_32BIT_WARN,
608 #endif
609 };
610
611 /*
612 * Exclusive operations (device replace, resize, device add/remove, balance)
613 */
614 enum btrfs_exclusive_operation {
615 BTRFS_EXCLOP_NONE,
616 BTRFS_EXCLOP_BALANCE,
617 BTRFS_EXCLOP_DEV_ADD,
618 BTRFS_EXCLOP_DEV_REMOVE,
619 BTRFS_EXCLOP_DEV_REPLACE,
620 BTRFS_EXCLOP_RESIZE,
621 BTRFS_EXCLOP_SWAP_ACTIVATE,
622 };
623
624 struct btrfs_fs_info {
625 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
626 unsigned long flags;
627 struct btrfs_root *extent_root;
628 struct btrfs_root *tree_root;
629 struct btrfs_root *chunk_root;
630 struct btrfs_root *dev_root;
631 struct btrfs_root *fs_root;
632 struct btrfs_root *csum_root;
633 struct btrfs_root *quota_root;
634 struct btrfs_root *uuid_root;
635 struct btrfs_root *free_space_root;
636 struct btrfs_root *data_reloc_root;
637
638 /* the log root tree is a directory of all the other log roots */
639 struct btrfs_root *log_root_tree;
640
641 spinlock_t fs_roots_radix_lock;
642 struct radix_tree_root fs_roots_radix;
643
644 /* block group cache stuff */
645 spinlock_t block_group_cache_lock;
646 u64 first_logical_byte;
647 struct rb_root block_group_cache_tree;
648
649 /* keep track of unallocated space */
650 atomic64_t free_chunk_space;
651
652 /* Track ranges which are used by log trees blocks/logged data extents */
653 struct extent_io_tree excluded_extents;
654
655 /* logical->physical extent mapping */
656 struct extent_map_tree mapping_tree;
657
658 /*
659 * block reservation for extent, checksum, root tree and
660 * delayed dir index item
661 */
662 struct btrfs_block_rsv global_block_rsv;
663 /* block reservation for metadata operations */
664 struct btrfs_block_rsv trans_block_rsv;
665 /* block reservation for chunk tree */
666 struct btrfs_block_rsv chunk_block_rsv;
667 /* block reservation for delayed operations */
668 struct btrfs_block_rsv delayed_block_rsv;
669 /* block reservation for delayed refs */
670 struct btrfs_block_rsv delayed_refs_rsv;
671
672 struct btrfs_block_rsv empty_block_rsv;
673
674 u64 generation;
675 u64 last_trans_committed;
676 u64 avg_delayed_ref_runtime;
677
678 /*
679 * this is updated to the current trans every time a full commit
680 * is required instead of the faster short fsync log commits
681 */
682 u64 last_trans_log_full_commit;
683 unsigned long mount_opt;
684 /*
685 * Track requests for actions that need to be done during transaction
686 * commit (like for some mount options).
687 */
688 unsigned long pending_changes;
689 unsigned long compress_type:4;
690 unsigned int compress_level;
691 u32 commit_interval;
692 /*
693 * It is a suggestive number, the read side is safe even it gets a
694 * wrong number because we will write out the data into a regular
695 * extent. The write side(mount/remount) is under ->s_umount lock,
696 * so it is also safe.
697 */
698 u64 max_inline;
699
700 struct btrfs_transaction *running_transaction;
701 wait_queue_head_t transaction_throttle;
702 wait_queue_head_t transaction_wait;
703 wait_queue_head_t transaction_blocked_wait;
704 wait_queue_head_t async_submit_wait;
705
706 /*
707 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
708 * when they are updated.
709 *
710 * Because we do not clear the flags for ever, so we needn't use
711 * the lock on the read side.
712 *
713 * We also needn't use the lock when we mount the fs, because
714 * there is no other task which will update the flag.
715 */
716 spinlock_t super_lock;
717 struct btrfs_super_block *super_copy;
718 struct btrfs_super_block *super_for_commit;
719 struct super_block *sb;
720 struct inode *btree_inode;
721 struct mutex tree_log_mutex;
722 struct mutex transaction_kthread_mutex;
723 struct mutex cleaner_mutex;
724 struct mutex chunk_mutex;
725
726 /*
727 * this is taken to make sure we don't set block groups ro after
728 * the free space cache has been allocated on them
729 */
730 struct mutex ro_block_group_mutex;
731
732 /* this is used during read/modify/write to make sure
733 * no two ios are trying to mod the same stripe at the same
734 * time
735 */
736 struct btrfs_stripe_hash_table *stripe_hash_table;
737
738 /*
739 * this protects the ordered operations list only while we are
740 * processing all of the entries on it. This way we make
741 * sure the commit code doesn't find the list temporarily empty
742 * because another function happens to be doing non-waiting preflush
743 * before jumping into the main commit.
744 */
745 struct mutex ordered_operations_mutex;
746
747 struct rw_semaphore commit_root_sem;
748
749 struct rw_semaphore cleanup_work_sem;
750
751 struct rw_semaphore subvol_sem;
752
753 spinlock_t trans_lock;
754 /*
755 * the reloc mutex goes with the trans lock, it is taken
756 * during commit to protect us from the relocation code
757 */
758 struct mutex reloc_mutex;
759
760 struct list_head trans_list;
761 struct list_head dead_roots;
762 struct list_head caching_block_groups;
763
764 spinlock_t delayed_iput_lock;
765 struct list_head delayed_iputs;
766 atomic_t nr_delayed_iputs;
767 wait_queue_head_t delayed_iputs_wait;
768
769 atomic64_t tree_mod_seq;
770
771 /* this protects tree_mod_log and tree_mod_seq_list */
772 rwlock_t tree_mod_log_lock;
773 struct rb_root tree_mod_log;
774 struct list_head tree_mod_seq_list;
775
776 atomic_t async_delalloc_pages;
777
778 /*
779 * this is used to protect the following list -- ordered_roots.
780 */
781 spinlock_t ordered_root_lock;
782
783 /*
784 * all fs/file tree roots in which there are data=ordered extents
785 * pending writeback are added into this list.
786 *
787 * these can span multiple transactions and basically include
788 * every dirty data page that isn't from nodatacow
789 */
790 struct list_head ordered_roots;
791
792 struct mutex delalloc_root_mutex;
793 spinlock_t delalloc_root_lock;
794 /* all fs/file tree roots that have delalloc inodes. */
795 struct list_head delalloc_roots;
796
797 /*
798 * there is a pool of worker threads for checksumming during writes
799 * and a pool for checksumming after reads. This is because readers
800 * can run with FS locks held, and the writers may be waiting for
801 * those locks. We don't want ordering in the pending list to cause
802 * deadlocks, and so the two are serviced separately.
803 *
804 * A third pool does submit_bio to avoid deadlocking with the other
805 * two
806 */
807 struct btrfs_workqueue *workers;
808 struct btrfs_workqueue *delalloc_workers;
809 struct btrfs_workqueue *flush_workers;
810 struct btrfs_workqueue *endio_workers;
811 struct btrfs_workqueue *endio_meta_workers;
812 struct btrfs_workqueue *endio_raid56_workers;
813 struct btrfs_workqueue *rmw_workers;
814 struct btrfs_workqueue *endio_meta_write_workers;
815 struct btrfs_workqueue *endio_write_workers;
816 struct btrfs_workqueue *endio_freespace_worker;
817 struct btrfs_workqueue *caching_workers;
818 struct btrfs_workqueue *readahead_workers;
819
820 /*
821 * fixup workers take dirty pages that didn't properly go through
822 * the cow mechanism and make them safe to write. It happens
823 * for the sys_munmap function call path
824 */
825 struct btrfs_workqueue *fixup_workers;
826 struct btrfs_workqueue *delayed_workers;
827
828 struct task_struct *transaction_kthread;
829 struct task_struct *cleaner_kthread;
830 u32 thread_pool_size;
831
832 struct kobject *space_info_kobj;
833 struct kobject *qgroups_kobj;
834
835 /* used to keep from writing metadata until there is a nice batch */
836 struct percpu_counter dirty_metadata_bytes;
837 struct percpu_counter delalloc_bytes;
838 struct percpu_counter ordered_bytes;
839 s32 dirty_metadata_batch;
840 s32 delalloc_batch;
841
842 struct list_head dirty_cowonly_roots;
843
844 struct btrfs_fs_devices *fs_devices;
845
846 /*
847 * The space_info list is effectively read only after initial
848 * setup. It is populated at mount time and cleaned up after
849 * all block groups are removed. RCU is used to protect it.
850 */
851 struct list_head space_info;
852
853 struct btrfs_space_info *data_sinfo;
854
855 struct reloc_control *reloc_ctl;
856
857 /* data_alloc_cluster is only used in ssd_spread mode */
858 struct btrfs_free_cluster data_alloc_cluster;
859
860 /* all metadata allocations go through this cluster */
861 struct btrfs_free_cluster meta_alloc_cluster;
862
863 /* auto defrag inodes go here */
864 spinlock_t defrag_inodes_lock;
865 struct rb_root defrag_inodes;
866 atomic_t defrag_running;
867
868 /* Used to protect avail_{data, metadata, system}_alloc_bits */
869 seqlock_t profiles_lock;
870 /*
871 * these three are in extended format (availability of single
872 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
873 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
874 */
875 u64 avail_data_alloc_bits;
876 u64 avail_metadata_alloc_bits;
877 u64 avail_system_alloc_bits;
878
879 /* restriper state */
880 spinlock_t balance_lock;
881 struct mutex balance_mutex;
882 atomic_t balance_pause_req;
883 atomic_t balance_cancel_req;
884 struct btrfs_balance_control *balance_ctl;
885 wait_queue_head_t balance_wait_q;
886
887 /* Cancellation requests for chunk relocation */
888 atomic_t reloc_cancel_req;
889
890 u32 data_chunk_allocations;
891 u32 metadata_ratio;
892
893 void *bdev_holder;
894
895 /* private scrub information */
896 struct mutex scrub_lock;
897 atomic_t scrubs_running;
898 atomic_t scrub_pause_req;
899 atomic_t scrubs_paused;
900 atomic_t scrub_cancel_req;
901 wait_queue_head_t scrub_pause_wait;
902 /*
903 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not
904 * running.
905 */
906 refcount_t scrub_workers_refcnt;
907 struct btrfs_workqueue *scrub_workers;
908 struct btrfs_workqueue *scrub_wr_completion_workers;
909 struct btrfs_workqueue *scrub_parity_workers;
910 struct btrfs_subpage_info *subpage_info;
911
912 struct btrfs_discard_ctl discard_ctl;
913
914 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
915 u32 check_integrity_print_mask;
916 #endif
917 /* is qgroup tracking in a consistent state? */
918 u64 qgroup_flags;
919
920 /* holds configuration and tracking. Protected by qgroup_lock */
921 struct rb_root qgroup_tree;
922 spinlock_t qgroup_lock;
923
924 /*
925 * used to avoid frequently calling ulist_alloc()/ulist_free()
926 * when doing qgroup accounting, it must be protected by qgroup_lock.
927 */
928 struct ulist *qgroup_ulist;
929
930 /*
931 * Protect user change for quota operations. If a transaction is needed,
932 * it must be started before locking this lock.
933 */
934 struct mutex qgroup_ioctl_lock;
935
936 /* list of dirty qgroups to be written at next commit */
937 struct list_head dirty_qgroups;
938
939 /* used by qgroup for an efficient tree traversal */
940 u64 qgroup_seq;
941
942 /* qgroup rescan items */
943 struct mutex qgroup_rescan_lock; /* protects the progress item */
944 struct btrfs_key qgroup_rescan_progress;
945 struct btrfs_workqueue *qgroup_rescan_workers;
946 struct completion qgroup_rescan_completion;
947 struct btrfs_work qgroup_rescan_work;
948 bool qgroup_rescan_running; /* protected by qgroup_rescan_lock */
949
950 /* filesystem state */
951 unsigned long fs_state;
952
953 struct btrfs_delayed_root *delayed_root;
954
955 /* readahead tree */
956 spinlock_t reada_lock;
957 struct radix_tree_root reada_tree;
958
959 /* readahead works cnt */
960 atomic_t reada_works_cnt;
961
962 /* Extent buffer radix tree */
963 spinlock_t buffer_lock;
964 /* Entries are eb->start / sectorsize */
965 struct radix_tree_root buffer_radix;
966
967 /* next backup root to be overwritten */
968 int backup_root_index;
969
970 /* device replace state */
971 struct btrfs_dev_replace dev_replace;
972
973 struct semaphore uuid_tree_rescan_sem;
974
975 /* Used to reclaim the metadata space in the background. */
976 struct work_struct async_reclaim_work;
977 struct work_struct async_data_reclaim_work;
978 struct work_struct preempt_reclaim_work;
979
980 /* Reclaim partially filled block groups in the background */
981 struct work_struct reclaim_bgs_work;
982 struct list_head reclaim_bgs;
983 int bg_reclaim_threshold;
984
985 spinlock_t unused_bgs_lock;
986 struct list_head unused_bgs;
987 struct mutex unused_bg_unpin_mutex;
988 /* Protect block groups that are going to be deleted */
989 struct mutex reclaim_bgs_lock;
990
991 /* Cached block sizes */
992 u32 nodesize;
993 u32 sectorsize;
994 /* ilog2 of sectorsize, use to avoid 64bit division */
995 u32 sectorsize_bits;
996 u32 csum_size;
997 u32 csums_per_leaf;
998 u32 stripesize;
999
1000 /* Block groups and devices containing active swapfiles. */
1001 spinlock_t swapfile_pins_lock;
1002 struct rb_root swapfile_pins;
1003
1004 struct crypto_shash *csum_shash;
1005
1006 spinlock_t send_reloc_lock;
1007 /*
1008 * Number of send operations in progress.
1009 * Updated while holding fs_info::send_reloc_lock.
1010 */
1011 int send_in_progress;
1012
1013 /* Type of exclusive operation running, protected by super_lock */
1014 enum btrfs_exclusive_operation exclusive_operation;
1015
1016 /*
1017 * Zone size > 0 when in ZONED mode, otherwise it's used for a check
1018 * if the mode is enabled
1019 */
1020 union {
1021 u64 zone_size;
1022 u64 zoned;
1023 };
1024
1025 struct mutex zoned_meta_io_lock;
1026 spinlock_t treelog_bg_lock;
1027 u64 treelog_bg;
1028
1029 /*
1030 * Start of the dedicated data relocation block group, protected by
1031 * relocation_bg_lock.
1032 */
1033 spinlock_t relocation_bg_lock;
1034 u64 data_reloc_bg;
1035
1036 spinlock_t zone_active_bgs_lock;
1037 struct list_head zone_active_bgs;
1038
1039 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
1040 spinlock_t ref_verify_lock;
1041 struct rb_root block_tree;
1042 #endif
1043
1044 #ifdef CONFIG_BTRFS_DEBUG
1045 struct kobject *debug_kobj;
1046 struct kobject *discard_debug_kobj;
1047 struct list_head allocated_roots;
1048
1049 spinlock_t eb_leak_lock;
1050 struct list_head allocated_ebs;
1051 #endif
1052 };
1053
btrfs_sb(struct super_block * sb)1054 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
1055 {
1056 return sb->s_fs_info;
1057 }
1058
1059 /*
1060 * The state of btrfs root
1061 */
1062 enum {
1063 /*
1064 * btrfs_record_root_in_trans is a multi-step process, and it can race
1065 * with the balancing code. But the race is very small, and only the
1066 * first time the root is added to each transaction. So IN_TRANS_SETUP
1067 * is used to tell us when more checks are required
1068 */
1069 BTRFS_ROOT_IN_TRANS_SETUP,
1070
1071 /*
1072 * Set if tree blocks of this root can be shared by other roots.
1073 * Only subvolume trees and their reloc trees have this bit set.
1074 * Conflicts with TRACK_DIRTY bit.
1075 *
1076 * This affects two things:
1077 *
1078 * - How balance works
1079 * For shareable roots, we need to use reloc tree and do path
1080 * replacement for balance, and need various pre/post hooks for
1081 * snapshot creation to handle them.
1082 *
1083 * While for non-shareable trees, we just simply do a tree search
1084 * with COW.
1085 *
1086 * - How dirty roots are tracked
1087 * For shareable roots, btrfs_record_root_in_trans() is needed to
1088 * track them, while non-subvolume roots have TRACK_DIRTY bit, they
1089 * don't need to set this manually.
1090 */
1091 BTRFS_ROOT_SHAREABLE,
1092 BTRFS_ROOT_TRACK_DIRTY,
1093 BTRFS_ROOT_IN_RADIX,
1094 BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
1095 BTRFS_ROOT_DEFRAG_RUNNING,
1096 BTRFS_ROOT_FORCE_COW,
1097 BTRFS_ROOT_MULTI_LOG_TASKS,
1098 BTRFS_ROOT_DIRTY,
1099 BTRFS_ROOT_DELETING,
1100
1101 /*
1102 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
1103 *
1104 * Set for the subvolume tree owning the reloc tree.
1105 */
1106 BTRFS_ROOT_DEAD_RELOC_TREE,
1107 /* Mark dead root stored on device whose cleanup needs to be resumed */
1108 BTRFS_ROOT_DEAD_TREE,
1109 /* The root has a log tree. Used for subvolume roots and the tree root. */
1110 BTRFS_ROOT_HAS_LOG_TREE,
1111 /* Qgroup flushing is in progress */
1112 BTRFS_ROOT_QGROUP_FLUSHING,
1113 };
1114
1115 /*
1116 * Record swapped tree blocks of a subvolume tree for delayed subtree trace
1117 * code. For detail check comment in fs/btrfs/qgroup.c.
1118 */
1119 struct btrfs_qgroup_swapped_blocks {
1120 spinlock_t lock;
1121 /* RM_EMPTY_ROOT() of above blocks[] */
1122 bool swapped;
1123 struct rb_root blocks[BTRFS_MAX_LEVEL];
1124 };
1125
1126 /*
1127 * in ram representation of the tree. extent_root is used for all allocations
1128 * and for the extent tree extent_root root.
1129 */
1130 struct btrfs_root {
1131 struct extent_buffer *node;
1132
1133 struct extent_buffer *commit_root;
1134 struct btrfs_root *log_root;
1135 struct btrfs_root *reloc_root;
1136
1137 unsigned long state;
1138 struct btrfs_root_item root_item;
1139 struct btrfs_key root_key;
1140 struct btrfs_fs_info *fs_info;
1141 struct extent_io_tree dirty_log_pages;
1142
1143 struct mutex objectid_mutex;
1144
1145 spinlock_t accounting_lock;
1146 struct btrfs_block_rsv *block_rsv;
1147
1148 struct mutex log_mutex;
1149 wait_queue_head_t log_writer_wait;
1150 wait_queue_head_t log_commit_wait[2];
1151 struct list_head log_ctxs[2];
1152 /* Used only for log trees of subvolumes, not for the log root tree */
1153 atomic_t log_writers;
1154 atomic_t log_commit[2];
1155 /* Used only for log trees of subvolumes, not for the log root tree */
1156 atomic_t log_batch;
1157 int log_transid;
1158 /* No matter the commit succeeds or not*/
1159 int log_transid_committed;
1160 /* Just be updated when the commit succeeds. */
1161 int last_log_commit;
1162 pid_t log_start_pid;
1163
1164 u64 last_trans;
1165
1166 u32 type;
1167
1168 u64 free_objectid;
1169
1170 struct btrfs_key defrag_progress;
1171 struct btrfs_key defrag_max;
1172
1173 /* The dirty list is only used by non-shareable roots */
1174 struct list_head dirty_list;
1175
1176 struct list_head root_list;
1177
1178 spinlock_t log_extents_lock[2];
1179 struct list_head logged_list[2];
1180
1181 int orphan_cleanup_state;
1182
1183 spinlock_t inode_lock;
1184 /* red-black tree that keeps track of in-memory inodes */
1185 struct rb_root inode_tree;
1186
1187 /*
1188 * radix tree that keeps track of delayed nodes of every inode,
1189 * protected by inode_lock
1190 */
1191 struct radix_tree_root delayed_nodes_tree;
1192 /*
1193 * right now this just gets used so that a root has its own devid
1194 * for stat. It may be used for more later
1195 */
1196 dev_t anon_dev;
1197
1198 spinlock_t root_item_lock;
1199 refcount_t refs;
1200
1201 struct mutex delalloc_mutex;
1202 spinlock_t delalloc_lock;
1203 /*
1204 * all of the inodes that have delalloc bytes. It is possible for
1205 * this list to be empty even when there is still dirty data=ordered
1206 * extents waiting to finish IO.
1207 */
1208 struct list_head delalloc_inodes;
1209 struct list_head delalloc_root;
1210 u64 nr_delalloc_inodes;
1211
1212 struct mutex ordered_extent_mutex;
1213 /*
1214 * this is used by the balancing code to wait for all the pending
1215 * ordered extents
1216 */
1217 spinlock_t ordered_extent_lock;
1218
1219 /*
1220 * all of the data=ordered extents pending writeback
1221 * these can span multiple transactions and basically include
1222 * every dirty data page that isn't from nodatacow
1223 */
1224 struct list_head ordered_extents;
1225 struct list_head ordered_root;
1226 u64 nr_ordered_extents;
1227
1228 /*
1229 * Not empty if this subvolume root has gone through tree block swap
1230 * (relocation)
1231 *
1232 * Will be used by reloc_control::dirty_subvol_roots.
1233 */
1234 struct list_head reloc_dirty_list;
1235
1236 /*
1237 * Number of currently running SEND ioctls to prevent
1238 * manipulation with the read-only status via SUBVOL_SETFLAGS
1239 */
1240 int send_in_progress;
1241 /*
1242 * Number of currently running deduplication operations that have a
1243 * destination inode belonging to this root. Protected by the lock
1244 * root_item_lock.
1245 */
1246 int dedupe_in_progress;
1247 /* For exclusion of snapshot creation and nocow writes */
1248 struct btrfs_drew_lock snapshot_lock;
1249
1250 atomic_t snapshot_force_cow;
1251
1252 /* For qgroup metadata reserved space */
1253 spinlock_t qgroup_meta_rsv_lock;
1254 u64 qgroup_meta_rsv_pertrans;
1255 u64 qgroup_meta_rsv_prealloc;
1256 wait_queue_head_t qgroup_flush_wait;
1257
1258 /* Number of active swapfiles */
1259 atomic_t nr_swapfiles;
1260
1261 /* Record pairs of swapped blocks for qgroup */
1262 struct btrfs_qgroup_swapped_blocks swapped_blocks;
1263
1264 /* Used only by log trees, when logging csum items */
1265 struct extent_io_tree log_csum_range;
1266
1267 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1268 u64 alloc_bytenr;
1269 #endif
1270
1271 #ifdef CONFIG_BTRFS_DEBUG
1272 struct list_head leak_list;
1273 #endif
1274 };
1275
1276 /*
1277 * Structure that conveys information about an extent that is going to replace
1278 * all the extents in a file range.
1279 */
1280 struct btrfs_replace_extent_info {
1281 u64 disk_offset;
1282 u64 disk_len;
1283 u64 data_offset;
1284 u64 data_len;
1285 u64 file_offset;
1286 /* Pointer to a file extent item of type regular or prealloc. */
1287 char *extent_buf;
1288 /*
1289 * Set to true when attempting to replace a file range with a new extent
1290 * described by this structure, set to false when attempting to clone an
1291 * existing extent into a file range.
1292 */
1293 bool is_new_extent;
1294 /* Meaningful only if is_new_extent is true. */
1295 int qgroup_reserved;
1296 /*
1297 * Meaningful only if is_new_extent is true.
1298 * Used to track how many extent items we have already inserted in a
1299 * subvolume tree that refer to the extent described by this structure,
1300 * so that we know when to create a new delayed ref or update an existing
1301 * one.
1302 */
1303 int insertions;
1304 };
1305
1306 /* Arguments for btrfs_drop_extents() */
1307 struct btrfs_drop_extents_args {
1308 /* Input parameters */
1309
1310 /*
1311 * If NULL, btrfs_drop_extents() will allocate and free its own path.
1312 * If 'replace_extent' is true, this must not be NULL. Also the path
1313 * is always released except if 'replace_extent' is true and
1314 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
1315 * the path is kept locked.
1316 */
1317 struct btrfs_path *path;
1318 /* Start offset of the range to drop extents from */
1319 u64 start;
1320 /* End (exclusive, last byte + 1) of the range to drop extents from */
1321 u64 end;
1322 /* If true drop all the extent maps in the range */
1323 bool drop_cache;
1324 /*
1325 * If true it means we want to insert a new extent after dropping all
1326 * the extents in the range. If this is true, the 'extent_item_size'
1327 * parameter must be set as well and the 'extent_inserted' field will
1328 * be set to true by btrfs_drop_extents() if it could insert the new
1329 * extent.
1330 * Note: when this is set to true the path must not be NULL.
1331 */
1332 bool replace_extent;
1333 /*
1334 * Used if 'replace_extent' is true. Size of the file extent item to
1335 * insert after dropping all existing extents in the range
1336 */
1337 u32 extent_item_size;
1338
1339 /* Output parameters */
1340
1341 /*
1342 * Set to the minimum between the input parameter 'end' and the end
1343 * (exclusive, last byte + 1) of the last dropped extent. This is always
1344 * set even if btrfs_drop_extents() returns an error.
1345 */
1346 u64 drop_end;
1347 /*
1348 * The number of allocated bytes found in the range. This can be smaller
1349 * than the range's length when there are holes in the range.
1350 */
1351 u64 bytes_found;
1352 /*
1353 * Only set if 'replace_extent' is true. Set to true if we were able
1354 * to insert a replacement extent after dropping all extents in the
1355 * range, otherwise set to false by btrfs_drop_extents().
1356 * Also, if btrfs_drop_extents() has set this to true it means it
1357 * returned with the path locked, otherwise if it has set this to
1358 * false it has returned with the path released.
1359 */
1360 bool extent_inserted;
1361 };
1362
1363 struct btrfs_file_private {
1364 void *filldir_buf;
1365 };
1366
1367
BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info * info)1368 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
1369 {
1370
1371 return info->nodesize - sizeof(struct btrfs_header);
1372 }
1373
1374 #define BTRFS_LEAF_DATA_OFFSET offsetof(struct btrfs_leaf, items)
1375
BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info * info)1376 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
1377 {
1378 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
1379 }
1380
BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info * info)1381 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
1382 {
1383 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
1384 }
1385
1386 #define BTRFS_FILE_EXTENT_INLINE_DATA_START \
1387 (offsetof(struct btrfs_file_extent_item, disk_bytenr))
BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info * info)1388 static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info)
1389 {
1390 return BTRFS_MAX_ITEM_SIZE(info) -
1391 BTRFS_FILE_EXTENT_INLINE_DATA_START;
1392 }
1393
BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info * info)1394 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
1395 {
1396 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
1397 }
1398
1399 /*
1400 * Flags for mount options.
1401 *
1402 * Note: don't forget to add new options to btrfs_show_options()
1403 */
1404 enum {
1405 BTRFS_MOUNT_NODATASUM = (1UL << 0),
1406 BTRFS_MOUNT_NODATACOW = (1UL << 1),
1407 BTRFS_MOUNT_NOBARRIER = (1UL << 2),
1408 BTRFS_MOUNT_SSD = (1UL << 3),
1409 BTRFS_MOUNT_DEGRADED = (1UL << 4),
1410 BTRFS_MOUNT_COMPRESS = (1UL << 5),
1411 BTRFS_MOUNT_NOTREELOG = (1UL << 6),
1412 BTRFS_MOUNT_FLUSHONCOMMIT = (1UL << 7),
1413 BTRFS_MOUNT_SSD_SPREAD = (1UL << 8),
1414 BTRFS_MOUNT_NOSSD = (1UL << 9),
1415 BTRFS_MOUNT_DISCARD_SYNC = (1UL << 10),
1416 BTRFS_MOUNT_FORCE_COMPRESS = (1UL << 11),
1417 BTRFS_MOUNT_SPACE_CACHE = (1UL << 12),
1418 BTRFS_MOUNT_CLEAR_CACHE = (1UL << 13),
1419 BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED = (1UL << 14),
1420 BTRFS_MOUNT_ENOSPC_DEBUG = (1UL << 15),
1421 BTRFS_MOUNT_AUTO_DEFRAG = (1UL << 16),
1422 BTRFS_MOUNT_USEBACKUPROOT = (1UL << 17),
1423 BTRFS_MOUNT_SKIP_BALANCE = (1UL << 18),
1424 BTRFS_MOUNT_CHECK_INTEGRITY = (1UL << 19),
1425 BTRFS_MOUNT_CHECK_INTEGRITY_DATA = (1UL << 20),
1426 BTRFS_MOUNT_PANIC_ON_FATAL_ERROR = (1UL << 21),
1427 BTRFS_MOUNT_RESCAN_UUID_TREE = (1UL << 22),
1428 BTRFS_MOUNT_FRAGMENT_DATA = (1UL << 23),
1429 BTRFS_MOUNT_FRAGMENT_METADATA = (1UL << 24),
1430 BTRFS_MOUNT_FREE_SPACE_TREE = (1UL << 25),
1431 BTRFS_MOUNT_NOLOGREPLAY = (1UL << 26),
1432 BTRFS_MOUNT_REF_VERIFY = (1UL << 27),
1433 BTRFS_MOUNT_DISCARD_ASYNC = (1UL << 28),
1434 BTRFS_MOUNT_IGNOREBADROOTS = (1UL << 29),
1435 BTRFS_MOUNT_IGNOREDATACSUMS = (1UL << 30),
1436 };
1437
1438 #define BTRFS_DEFAULT_COMMIT_INTERVAL (30)
1439 #define BTRFS_DEFAULT_MAX_INLINE (2048)
1440
1441 #define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt)
1442 #define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt)
1443 #define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt)
1444 #define btrfs_test_opt(fs_info, opt) ((fs_info)->mount_opt & \
1445 BTRFS_MOUNT_##opt)
1446
1447 #define btrfs_set_and_info(fs_info, opt, fmt, args...) \
1448 do { \
1449 if (!btrfs_test_opt(fs_info, opt)) \
1450 btrfs_info(fs_info, fmt, ##args); \
1451 btrfs_set_opt(fs_info->mount_opt, opt); \
1452 } while (0)
1453
1454 #define btrfs_clear_and_info(fs_info, opt, fmt, args...) \
1455 do { \
1456 if (btrfs_test_opt(fs_info, opt)) \
1457 btrfs_info(fs_info, fmt, ##args); \
1458 btrfs_clear_opt(fs_info->mount_opt, opt); \
1459 } while (0)
1460
1461 /*
1462 * Requests for changes that need to be done during transaction commit.
1463 *
1464 * Internal mount options that are used for special handling of the real
1465 * mount options (eg. cannot be set during remount and have to be set during
1466 * transaction commit)
1467 */
1468
1469 #define BTRFS_PENDING_COMMIT (0)
1470
1471 #define btrfs_test_pending(info, opt) \
1472 test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1473 #define btrfs_set_pending(info, opt) \
1474 set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1475 #define btrfs_clear_pending(info, opt) \
1476 clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1477
1478 /*
1479 * Helpers for setting pending mount option changes.
1480 *
1481 * Expects corresponding macros
1482 * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name
1483 */
1484 #define btrfs_set_pending_and_info(info, opt, fmt, args...) \
1485 do { \
1486 if (!btrfs_raw_test_opt((info)->mount_opt, opt)) { \
1487 btrfs_info((info), fmt, ##args); \
1488 btrfs_set_pending((info), SET_##opt); \
1489 btrfs_clear_pending((info), CLEAR_##opt); \
1490 } \
1491 } while(0)
1492
1493 #define btrfs_clear_pending_and_info(info, opt, fmt, args...) \
1494 do { \
1495 if (btrfs_raw_test_opt((info)->mount_opt, opt)) { \
1496 btrfs_info((info), fmt, ##args); \
1497 btrfs_set_pending((info), CLEAR_##opt); \
1498 btrfs_clear_pending((info), SET_##opt); \
1499 } \
1500 } while(0)
1501
1502 /*
1503 * Inode flags
1504 */
1505 #define BTRFS_INODE_NODATASUM (1U << 0)
1506 #define BTRFS_INODE_NODATACOW (1U << 1)
1507 #define BTRFS_INODE_READONLY (1U << 2)
1508 #define BTRFS_INODE_NOCOMPRESS (1U << 3)
1509 #define BTRFS_INODE_PREALLOC (1U << 4)
1510 #define BTRFS_INODE_SYNC (1U << 5)
1511 #define BTRFS_INODE_IMMUTABLE (1U << 6)
1512 #define BTRFS_INODE_APPEND (1U << 7)
1513 #define BTRFS_INODE_NODUMP (1U << 8)
1514 #define BTRFS_INODE_NOATIME (1U << 9)
1515 #define BTRFS_INODE_DIRSYNC (1U << 10)
1516 #define BTRFS_INODE_COMPRESS (1U << 11)
1517
1518 #define BTRFS_INODE_ROOT_ITEM_INIT (1U << 31)
1519
1520 #define BTRFS_INODE_FLAG_MASK \
1521 (BTRFS_INODE_NODATASUM | \
1522 BTRFS_INODE_NODATACOW | \
1523 BTRFS_INODE_READONLY | \
1524 BTRFS_INODE_NOCOMPRESS | \
1525 BTRFS_INODE_PREALLOC | \
1526 BTRFS_INODE_SYNC | \
1527 BTRFS_INODE_IMMUTABLE | \
1528 BTRFS_INODE_APPEND | \
1529 BTRFS_INODE_NODUMP | \
1530 BTRFS_INODE_NOATIME | \
1531 BTRFS_INODE_DIRSYNC | \
1532 BTRFS_INODE_COMPRESS | \
1533 BTRFS_INODE_ROOT_ITEM_INIT)
1534
1535 #define BTRFS_INODE_RO_VERITY (1U << 0)
1536
1537 #define BTRFS_INODE_RO_FLAG_MASK (BTRFS_INODE_RO_VERITY)
1538
1539 struct btrfs_map_token {
1540 struct extent_buffer *eb;
1541 char *kaddr;
1542 unsigned long offset;
1543 };
1544
1545 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
1546 ((bytes) >> (fs_info)->sectorsize_bits)
1547
btrfs_init_map_token(struct btrfs_map_token * token,struct extent_buffer * eb)1548 static inline void btrfs_init_map_token(struct btrfs_map_token *token,
1549 struct extent_buffer *eb)
1550 {
1551 token->eb = eb;
1552 token->kaddr = page_address(eb->pages[0]);
1553 token->offset = 0;
1554 }
1555
1556 /* some macros to generate set/get functions for the struct fields. This
1557 * assumes there is a lefoo_to_cpu for every type, so lets make a simple
1558 * one for u8:
1559 */
1560 #define le8_to_cpu(v) (v)
1561 #define cpu_to_le8(v) (v)
1562 #define __le8 u8
1563
get_unaligned_le8(const void * p)1564 static inline u8 get_unaligned_le8(const void *p)
1565 {
1566 return *(u8 *)p;
1567 }
1568
put_unaligned_le8(u8 val,void * p)1569 static inline void put_unaligned_le8(u8 val, void *p)
1570 {
1571 *(u8 *)p = val;
1572 }
1573
1574 #define read_eb_member(eb, ptr, type, member, result) (\
1575 read_extent_buffer(eb, (char *)(result), \
1576 ((unsigned long)(ptr)) + \
1577 offsetof(type, member), \
1578 sizeof(((type *)0)->member)))
1579
1580 #define write_eb_member(eb, ptr, type, member, result) (\
1581 write_extent_buffer(eb, (char *)(result), \
1582 ((unsigned long)(ptr)) + \
1583 offsetof(type, member), \
1584 sizeof(((type *)0)->member)))
1585
1586 #define DECLARE_BTRFS_SETGET_BITS(bits) \
1587 u##bits btrfs_get_token_##bits(struct btrfs_map_token *token, \
1588 const void *ptr, unsigned long off); \
1589 void btrfs_set_token_##bits(struct btrfs_map_token *token, \
1590 const void *ptr, unsigned long off, \
1591 u##bits val); \
1592 u##bits btrfs_get_##bits(const struct extent_buffer *eb, \
1593 const void *ptr, unsigned long off); \
1594 void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr, \
1595 unsigned long off, u##bits val);
1596
1597 DECLARE_BTRFS_SETGET_BITS(8)
1598 DECLARE_BTRFS_SETGET_BITS(16)
1599 DECLARE_BTRFS_SETGET_BITS(32)
1600 DECLARE_BTRFS_SETGET_BITS(64)
1601
1602 #define BTRFS_SETGET_FUNCS(name, type, member, bits) \
1603 static inline u##bits btrfs_##name(const struct extent_buffer *eb, \
1604 const type *s) \
1605 { \
1606 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
1607 return btrfs_get_##bits(eb, s, offsetof(type, member)); \
1608 } \
1609 static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \
1610 u##bits val) \
1611 { \
1612 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
1613 btrfs_set_##bits(eb, s, offsetof(type, member), val); \
1614 } \
1615 static inline u##bits btrfs_token_##name(struct btrfs_map_token *token, \
1616 const type *s) \
1617 { \
1618 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
1619 return btrfs_get_token_##bits(token, s, offsetof(type, member));\
1620 } \
1621 static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\
1622 type *s, u##bits val) \
1623 { \
1624 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
1625 btrfs_set_token_##bits(token, s, offsetof(type, member), val); \
1626 }
1627
1628 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \
1629 static inline u##bits btrfs_##name(const struct extent_buffer *eb) \
1630 { \
1631 const type *p = page_address(eb->pages[0]) + \
1632 offset_in_page(eb->start); \
1633 return get_unaligned_le##bits(&p->member); \
1634 } \
1635 static inline void btrfs_set_##name(const struct extent_buffer *eb, \
1636 u##bits val) \
1637 { \
1638 type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \
1639 put_unaligned_le##bits(val, &p->member); \
1640 }
1641
1642 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \
1643 static inline u##bits btrfs_##name(const type *s) \
1644 { \
1645 return get_unaligned_le##bits(&s->member); \
1646 } \
1647 static inline void btrfs_set_##name(type *s, u##bits val) \
1648 { \
1649 put_unaligned_le##bits(val, &s->member); \
1650 }
1651
btrfs_device_total_bytes(const struct extent_buffer * eb,struct btrfs_dev_item * s)1652 static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb,
1653 struct btrfs_dev_item *s)
1654 {
1655 BUILD_BUG_ON(sizeof(u64) !=
1656 sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1657 return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item,
1658 total_bytes));
1659 }
btrfs_set_device_total_bytes(const struct extent_buffer * eb,struct btrfs_dev_item * s,u64 val)1660 static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb,
1661 struct btrfs_dev_item *s,
1662 u64 val)
1663 {
1664 BUILD_BUG_ON(sizeof(u64) !=
1665 sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1666 WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize));
1667 btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val);
1668 }
1669
1670
1671 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
1672 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
1673 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
1674 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
1675 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
1676 start_offset, 64);
1677 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
1678 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
1679 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
1680 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
1681 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
1682 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
1683
1684 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
1685 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
1686 total_bytes, 64);
1687 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
1688 bytes_used, 64);
1689 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
1690 io_align, 32);
1691 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
1692 io_width, 32);
1693 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
1694 sector_size, 32);
1695 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
1696 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
1697 dev_group, 32);
1698 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
1699 seek_speed, 8);
1700 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
1701 bandwidth, 8);
1702 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
1703 generation, 64);
1704
btrfs_device_uuid(struct btrfs_dev_item * d)1705 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
1706 {
1707 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
1708 }
1709
btrfs_device_fsid(struct btrfs_dev_item * d)1710 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
1711 {
1712 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
1713 }
1714
1715 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
1716 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
1717 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
1718 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
1719 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
1720 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
1721 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
1722 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
1723 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
1724 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
1725 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
1726
btrfs_stripe_dev_uuid(struct btrfs_stripe * s)1727 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
1728 {
1729 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
1730 }
1731
1732 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
1733 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
1734 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
1735 stripe_len, 64);
1736 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
1737 io_align, 32);
1738 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
1739 io_width, 32);
1740 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
1741 sector_size, 32);
1742 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
1743 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
1744 num_stripes, 16);
1745 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
1746 sub_stripes, 16);
1747 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
1748 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
1749
btrfs_stripe_nr(struct btrfs_chunk * c,int nr)1750 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
1751 int nr)
1752 {
1753 unsigned long offset = (unsigned long)c;
1754 offset += offsetof(struct btrfs_chunk, stripe);
1755 offset += nr * sizeof(struct btrfs_stripe);
1756 return (struct btrfs_stripe *)offset;
1757 }
1758
btrfs_stripe_dev_uuid_nr(struct btrfs_chunk * c,int nr)1759 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
1760 {
1761 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
1762 }
1763
btrfs_stripe_offset_nr(const struct extent_buffer * eb,struct btrfs_chunk * c,int nr)1764 static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb,
1765 struct btrfs_chunk *c, int nr)
1766 {
1767 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
1768 }
1769
btrfs_stripe_devid_nr(const struct extent_buffer * eb,struct btrfs_chunk * c,int nr)1770 static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb,
1771 struct btrfs_chunk *c, int nr)
1772 {
1773 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
1774 }
1775
1776 /* struct btrfs_block_group_item */
1777 BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item,
1778 used, 64);
1779 BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item,
1780 used, 64);
1781 BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid,
1782 struct btrfs_block_group_item, chunk_objectid, 64);
1783
1784 BTRFS_SETGET_FUNCS(block_group_chunk_objectid,
1785 struct btrfs_block_group_item, chunk_objectid, 64);
1786 BTRFS_SETGET_FUNCS(block_group_flags,
1787 struct btrfs_block_group_item, flags, 64);
1788 BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags,
1789 struct btrfs_block_group_item, flags, 64);
1790
1791 /* struct btrfs_free_space_info */
1792 BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info,
1793 extent_count, 32);
1794 BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32);
1795
1796 /* struct btrfs_inode_ref */
1797 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
1798 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
1799
1800 /* struct btrfs_inode_extref */
1801 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
1802 parent_objectid, 64);
1803 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
1804 name_len, 16);
1805 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
1806
1807 /* struct btrfs_inode_item */
1808 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
1809 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
1810 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
1811 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
1812 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
1813 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
1814 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
1815 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
1816 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
1817 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
1818 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
1819 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
1820 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1821 generation, 64);
1822 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1823 sequence, 64);
1824 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1825 transid, 64);
1826 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1827 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1828 nbytes, 64);
1829 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1830 block_group, 64);
1831 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1832 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1833 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1834 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1835 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1836 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1837 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
1838 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
1839 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1840 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1841
1842 /* struct btrfs_dev_extent */
1843 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
1844 chunk_tree, 64);
1845 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
1846 chunk_objectid, 64);
1847 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
1848 chunk_offset, 64);
1849 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
1850 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
1851 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
1852 generation, 64);
1853 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
1854
1855 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
1856
btrfs_tree_block_key(const struct extent_buffer * eb,struct btrfs_tree_block_info * item,struct btrfs_disk_key * key)1857 static inline void btrfs_tree_block_key(const struct extent_buffer *eb,
1858 struct btrfs_tree_block_info *item,
1859 struct btrfs_disk_key *key)
1860 {
1861 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1862 }
1863
btrfs_set_tree_block_key(const struct extent_buffer * eb,struct btrfs_tree_block_info * item,struct btrfs_disk_key * key)1864 static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb,
1865 struct btrfs_tree_block_info *item,
1866 struct btrfs_disk_key *key)
1867 {
1868 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1869 }
1870
1871 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
1872 root, 64);
1873 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
1874 objectid, 64);
1875 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
1876 offset, 64);
1877 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
1878 count, 32);
1879
1880 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
1881 count, 32);
1882
1883 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
1884 type, 8);
1885 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
1886 offset, 64);
1887
btrfs_extent_inline_ref_size(int type)1888 static inline u32 btrfs_extent_inline_ref_size(int type)
1889 {
1890 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1891 type == BTRFS_SHARED_BLOCK_REF_KEY)
1892 return sizeof(struct btrfs_extent_inline_ref);
1893 if (type == BTRFS_SHARED_DATA_REF_KEY)
1894 return sizeof(struct btrfs_shared_data_ref) +
1895 sizeof(struct btrfs_extent_inline_ref);
1896 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1897 return sizeof(struct btrfs_extent_data_ref) +
1898 offsetof(struct btrfs_extent_inline_ref, offset);
1899 return 0;
1900 }
1901
1902 /* struct btrfs_node */
1903 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
1904 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
1905 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
1906 blockptr, 64);
1907 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
1908 generation, 64);
1909
btrfs_node_blockptr(const struct extent_buffer * eb,int nr)1910 static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr)
1911 {
1912 unsigned long ptr;
1913 ptr = offsetof(struct btrfs_node, ptrs) +
1914 sizeof(struct btrfs_key_ptr) * nr;
1915 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
1916 }
1917
btrfs_set_node_blockptr(const struct extent_buffer * eb,int nr,u64 val)1918 static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb,
1919 int nr, u64 val)
1920 {
1921 unsigned long ptr;
1922 ptr = offsetof(struct btrfs_node, ptrs) +
1923 sizeof(struct btrfs_key_ptr) * nr;
1924 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
1925 }
1926
btrfs_node_ptr_generation(const struct extent_buffer * eb,int nr)1927 static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr)
1928 {
1929 unsigned long ptr;
1930 ptr = offsetof(struct btrfs_node, ptrs) +
1931 sizeof(struct btrfs_key_ptr) * nr;
1932 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
1933 }
1934
btrfs_set_node_ptr_generation(const struct extent_buffer * eb,int nr,u64 val)1935 static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb,
1936 int nr, u64 val)
1937 {
1938 unsigned long ptr;
1939 ptr = offsetof(struct btrfs_node, ptrs) +
1940 sizeof(struct btrfs_key_ptr) * nr;
1941 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
1942 }
1943
btrfs_node_key_ptr_offset(int nr)1944 static inline unsigned long btrfs_node_key_ptr_offset(int nr)
1945 {
1946 return offsetof(struct btrfs_node, ptrs) +
1947 sizeof(struct btrfs_key_ptr) * nr;
1948 }
1949
1950 void btrfs_node_key(const struct extent_buffer *eb,
1951 struct btrfs_disk_key *disk_key, int nr);
1952
btrfs_set_node_key(const struct extent_buffer * eb,struct btrfs_disk_key * disk_key,int nr)1953 static inline void btrfs_set_node_key(const struct extent_buffer *eb,
1954 struct btrfs_disk_key *disk_key, int nr)
1955 {
1956 unsigned long ptr;
1957 ptr = btrfs_node_key_ptr_offset(nr);
1958 write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
1959 struct btrfs_key_ptr, key, disk_key);
1960 }
1961
1962 /* struct btrfs_item */
1963 BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32);
1964 BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32);
1965 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
1966 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
1967
btrfs_item_nr_offset(int nr)1968 static inline unsigned long btrfs_item_nr_offset(int nr)
1969 {
1970 return offsetof(struct btrfs_leaf, items) +
1971 sizeof(struct btrfs_item) * nr;
1972 }
1973
btrfs_item_nr(int nr)1974 static inline struct btrfs_item *btrfs_item_nr(int nr)
1975 {
1976 return (struct btrfs_item *)btrfs_item_nr_offset(nr);
1977 }
1978
btrfs_item_end(const struct extent_buffer * eb,struct btrfs_item * item)1979 static inline u32 btrfs_item_end(const struct extent_buffer *eb,
1980 struct btrfs_item *item)
1981 {
1982 return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item);
1983 }
1984
btrfs_item_end_nr(const struct extent_buffer * eb,int nr)1985 static inline u32 btrfs_item_end_nr(const struct extent_buffer *eb, int nr)
1986 {
1987 return btrfs_item_end(eb, btrfs_item_nr(nr));
1988 }
1989
btrfs_item_offset_nr(const struct extent_buffer * eb,int nr)1990 static inline u32 btrfs_item_offset_nr(const struct extent_buffer *eb, int nr)
1991 {
1992 return btrfs_item_offset(eb, btrfs_item_nr(nr));
1993 }
1994
btrfs_item_size_nr(const struct extent_buffer * eb,int nr)1995 static inline u32 btrfs_item_size_nr(const struct extent_buffer *eb, int nr)
1996 {
1997 return btrfs_item_size(eb, btrfs_item_nr(nr));
1998 }
1999
btrfs_item_key(const struct extent_buffer * eb,struct btrfs_disk_key * disk_key,int nr)2000 static inline void btrfs_item_key(const struct extent_buffer *eb,
2001 struct btrfs_disk_key *disk_key, int nr)
2002 {
2003 struct btrfs_item *item = btrfs_item_nr(nr);
2004 read_eb_member(eb, item, struct btrfs_item, key, disk_key);
2005 }
2006
btrfs_set_item_key(struct extent_buffer * eb,struct btrfs_disk_key * disk_key,int nr)2007 static inline void btrfs_set_item_key(struct extent_buffer *eb,
2008 struct btrfs_disk_key *disk_key, int nr)
2009 {
2010 struct btrfs_item *item = btrfs_item_nr(nr);
2011 write_eb_member(eb, item, struct btrfs_item, key, disk_key);
2012 }
2013
2014 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
2015
2016 /*
2017 * struct btrfs_root_ref
2018 */
2019 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
2020 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
2021 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
2022
2023 /* struct btrfs_dir_item */
2024 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
2025 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
2026 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
2027 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
2028 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
2029 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
2030 data_len, 16);
2031 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
2032 name_len, 16);
2033 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
2034 transid, 64);
2035
btrfs_dir_item_key(const struct extent_buffer * eb,const struct btrfs_dir_item * item,struct btrfs_disk_key * key)2036 static inline void btrfs_dir_item_key(const struct extent_buffer *eb,
2037 const struct btrfs_dir_item *item,
2038 struct btrfs_disk_key *key)
2039 {
2040 read_eb_member(eb, item, struct btrfs_dir_item, location, key);
2041 }
2042
btrfs_set_dir_item_key(struct extent_buffer * eb,struct btrfs_dir_item * item,const struct btrfs_disk_key * key)2043 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
2044 struct btrfs_dir_item *item,
2045 const struct btrfs_disk_key *key)
2046 {
2047 write_eb_member(eb, item, struct btrfs_dir_item, location, key);
2048 }
2049
2050 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
2051 num_entries, 64);
2052 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
2053 num_bitmaps, 64);
2054 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
2055 generation, 64);
2056
btrfs_free_space_key(const struct extent_buffer * eb,const struct btrfs_free_space_header * h,struct btrfs_disk_key * key)2057 static inline void btrfs_free_space_key(const struct extent_buffer *eb,
2058 const struct btrfs_free_space_header *h,
2059 struct btrfs_disk_key *key)
2060 {
2061 read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2062 }
2063
btrfs_set_free_space_key(struct extent_buffer * eb,struct btrfs_free_space_header * h,const struct btrfs_disk_key * key)2064 static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
2065 struct btrfs_free_space_header *h,
2066 const struct btrfs_disk_key *key)
2067 {
2068 write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2069 }
2070
2071 /* struct btrfs_disk_key */
2072 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
2073 objectid, 64);
2074 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
2075 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
2076
2077 #ifdef __LITTLE_ENDIAN
2078
2079 /*
2080 * Optimized helpers for little-endian architectures where CPU and on-disk
2081 * structures have the same endianness and we can skip conversions.
2082 */
2083
btrfs_disk_key_to_cpu(struct btrfs_key * cpu_key,const struct btrfs_disk_key * disk_key)2084 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key,
2085 const struct btrfs_disk_key *disk_key)
2086 {
2087 memcpy(cpu_key, disk_key, sizeof(struct btrfs_key));
2088 }
2089
btrfs_cpu_key_to_disk(struct btrfs_disk_key * disk_key,const struct btrfs_key * cpu_key)2090 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key,
2091 const struct btrfs_key *cpu_key)
2092 {
2093 memcpy(disk_key, cpu_key, sizeof(struct btrfs_key));
2094 }
2095
btrfs_node_key_to_cpu(const struct extent_buffer * eb,struct btrfs_key * cpu_key,int nr)2096 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2097 struct btrfs_key *cpu_key, int nr)
2098 {
2099 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2100
2101 btrfs_node_key(eb, disk_key, nr);
2102 }
2103
btrfs_item_key_to_cpu(const struct extent_buffer * eb,struct btrfs_key * cpu_key,int nr)2104 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2105 struct btrfs_key *cpu_key, int nr)
2106 {
2107 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2108
2109 btrfs_item_key(eb, disk_key, nr);
2110 }
2111
btrfs_dir_item_key_to_cpu(const struct extent_buffer * eb,const struct btrfs_dir_item * item,struct btrfs_key * cpu_key)2112 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2113 const struct btrfs_dir_item *item,
2114 struct btrfs_key *cpu_key)
2115 {
2116 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2117
2118 btrfs_dir_item_key(eb, item, disk_key);
2119 }
2120
2121 #else
2122
btrfs_disk_key_to_cpu(struct btrfs_key * cpu,const struct btrfs_disk_key * disk)2123 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
2124 const struct btrfs_disk_key *disk)
2125 {
2126 cpu->offset = le64_to_cpu(disk->offset);
2127 cpu->type = disk->type;
2128 cpu->objectid = le64_to_cpu(disk->objectid);
2129 }
2130
btrfs_cpu_key_to_disk(struct btrfs_disk_key * disk,const struct btrfs_key * cpu)2131 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
2132 const struct btrfs_key *cpu)
2133 {
2134 disk->offset = cpu_to_le64(cpu->offset);
2135 disk->type = cpu->type;
2136 disk->objectid = cpu_to_le64(cpu->objectid);
2137 }
2138
btrfs_node_key_to_cpu(const struct extent_buffer * eb,struct btrfs_key * key,int nr)2139 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2140 struct btrfs_key *key, int nr)
2141 {
2142 struct btrfs_disk_key disk_key;
2143 btrfs_node_key(eb, &disk_key, nr);
2144 btrfs_disk_key_to_cpu(key, &disk_key);
2145 }
2146
btrfs_item_key_to_cpu(const struct extent_buffer * eb,struct btrfs_key * key,int nr)2147 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2148 struct btrfs_key *key, int nr)
2149 {
2150 struct btrfs_disk_key disk_key;
2151 btrfs_item_key(eb, &disk_key, nr);
2152 btrfs_disk_key_to_cpu(key, &disk_key);
2153 }
2154
btrfs_dir_item_key_to_cpu(const struct extent_buffer * eb,const struct btrfs_dir_item * item,struct btrfs_key * key)2155 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2156 const struct btrfs_dir_item *item,
2157 struct btrfs_key *key)
2158 {
2159 struct btrfs_disk_key disk_key;
2160 btrfs_dir_item_key(eb, item, &disk_key);
2161 btrfs_disk_key_to_cpu(key, &disk_key);
2162 }
2163
2164 #endif
2165
2166 /* struct btrfs_header */
2167 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
2168 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
2169 generation, 64);
2170 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
2171 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
2172 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
2173 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
2174 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
2175 generation, 64);
2176 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
2177 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
2178 nritems, 32);
2179 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2180
btrfs_header_flag(const struct extent_buffer * eb,u64 flag)2181 static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag)
2182 {
2183 return (btrfs_header_flags(eb) & flag) == flag;
2184 }
2185
btrfs_set_header_flag(struct extent_buffer * eb,u64 flag)2186 static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2187 {
2188 u64 flags = btrfs_header_flags(eb);
2189 btrfs_set_header_flags(eb, flags | flag);
2190 }
2191
btrfs_clear_header_flag(struct extent_buffer * eb,u64 flag)2192 static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2193 {
2194 u64 flags = btrfs_header_flags(eb);
2195 btrfs_set_header_flags(eb, flags & ~flag);
2196 }
2197
btrfs_header_backref_rev(const struct extent_buffer * eb)2198 static inline int btrfs_header_backref_rev(const struct extent_buffer *eb)
2199 {
2200 u64 flags = btrfs_header_flags(eb);
2201 return flags >> BTRFS_BACKREF_REV_SHIFT;
2202 }
2203
btrfs_set_header_backref_rev(struct extent_buffer * eb,int rev)2204 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
2205 int rev)
2206 {
2207 u64 flags = btrfs_header_flags(eb);
2208 flags &= ~BTRFS_BACKREF_REV_MASK;
2209 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
2210 btrfs_set_header_flags(eb, flags);
2211 }
2212
btrfs_is_leaf(const struct extent_buffer * eb)2213 static inline int btrfs_is_leaf(const struct extent_buffer *eb)
2214 {
2215 return btrfs_header_level(eb) == 0;
2216 }
2217
2218 /* struct btrfs_root_item */
2219 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
2220 generation, 64);
2221 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
2222 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
2223 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
2224
2225 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
2226 generation, 64);
2227 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
2228 BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8);
2229 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
2230 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
2231 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
2232 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
2233 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
2234 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
2235 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
2236 last_snapshot, 64);
2237 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
2238 generation_v2, 64);
2239 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
2240 ctransid, 64);
2241 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
2242 otransid, 64);
2243 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
2244 stransid, 64);
2245 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
2246 rtransid, 64);
2247
btrfs_root_readonly(const struct btrfs_root * root)2248 static inline bool btrfs_root_readonly(const struct btrfs_root *root)
2249 {
2250 /* Byte-swap the constant at compile time, root_item::flags is LE */
2251 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
2252 }
2253
btrfs_root_dead(const struct btrfs_root * root)2254 static inline bool btrfs_root_dead(const struct btrfs_root *root)
2255 {
2256 /* Byte-swap the constant at compile time, root_item::flags is LE */
2257 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
2258 }
2259
btrfs_root_id(const struct btrfs_root * root)2260 static inline u64 btrfs_root_id(const struct btrfs_root *root)
2261 {
2262 return root->root_key.objectid;
2263 }
2264
2265 /* struct btrfs_root_backup */
2266 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
2267 tree_root, 64);
2268 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
2269 tree_root_gen, 64);
2270 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
2271 tree_root_level, 8);
2272
2273 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
2274 chunk_root, 64);
2275 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
2276 chunk_root_gen, 64);
2277 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
2278 chunk_root_level, 8);
2279
2280 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
2281 extent_root, 64);
2282 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
2283 extent_root_gen, 64);
2284 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
2285 extent_root_level, 8);
2286
2287 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
2288 fs_root, 64);
2289 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
2290 fs_root_gen, 64);
2291 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
2292 fs_root_level, 8);
2293
2294 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
2295 dev_root, 64);
2296 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
2297 dev_root_gen, 64);
2298 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
2299 dev_root_level, 8);
2300
2301 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
2302 csum_root, 64);
2303 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
2304 csum_root_gen, 64);
2305 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
2306 csum_root_level, 8);
2307 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
2308 total_bytes, 64);
2309 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
2310 bytes_used, 64);
2311 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
2312 num_devices, 64);
2313
2314 /* struct btrfs_balance_item */
2315 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
2316
btrfs_balance_data(const struct extent_buffer * eb,const struct btrfs_balance_item * bi,struct btrfs_disk_balance_args * ba)2317 static inline void btrfs_balance_data(const struct extent_buffer *eb,
2318 const struct btrfs_balance_item *bi,
2319 struct btrfs_disk_balance_args *ba)
2320 {
2321 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2322 }
2323
btrfs_set_balance_data(struct extent_buffer * eb,struct btrfs_balance_item * bi,const struct btrfs_disk_balance_args * ba)2324 static inline void btrfs_set_balance_data(struct extent_buffer *eb,
2325 struct btrfs_balance_item *bi,
2326 const struct btrfs_disk_balance_args *ba)
2327 {
2328 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2329 }
2330
btrfs_balance_meta(const struct extent_buffer * eb,const struct btrfs_balance_item * bi,struct btrfs_disk_balance_args * ba)2331 static inline void btrfs_balance_meta(const struct extent_buffer *eb,
2332 const struct btrfs_balance_item *bi,
2333 struct btrfs_disk_balance_args *ba)
2334 {
2335 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2336 }
2337
btrfs_set_balance_meta(struct extent_buffer * eb,struct btrfs_balance_item * bi,const struct btrfs_disk_balance_args * ba)2338 static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
2339 struct btrfs_balance_item *bi,
2340 const struct btrfs_disk_balance_args *ba)
2341 {
2342 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2343 }
2344
btrfs_balance_sys(const struct extent_buffer * eb,const struct btrfs_balance_item * bi,struct btrfs_disk_balance_args * ba)2345 static inline void btrfs_balance_sys(const struct extent_buffer *eb,
2346 const struct btrfs_balance_item *bi,
2347 struct btrfs_disk_balance_args *ba)
2348 {
2349 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2350 }
2351
btrfs_set_balance_sys(struct extent_buffer * eb,struct btrfs_balance_item * bi,const struct btrfs_disk_balance_args * ba)2352 static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
2353 struct btrfs_balance_item *bi,
2354 const struct btrfs_disk_balance_args *ba)
2355 {
2356 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2357 }
2358
2359 static inline void
btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args * cpu,const struct btrfs_disk_balance_args * disk)2360 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
2361 const struct btrfs_disk_balance_args *disk)
2362 {
2363 memset(cpu, 0, sizeof(*cpu));
2364
2365 cpu->profiles = le64_to_cpu(disk->profiles);
2366 cpu->usage = le64_to_cpu(disk->usage);
2367 cpu->devid = le64_to_cpu(disk->devid);
2368 cpu->pstart = le64_to_cpu(disk->pstart);
2369 cpu->pend = le64_to_cpu(disk->pend);
2370 cpu->vstart = le64_to_cpu(disk->vstart);
2371 cpu->vend = le64_to_cpu(disk->vend);
2372 cpu->target = le64_to_cpu(disk->target);
2373 cpu->flags = le64_to_cpu(disk->flags);
2374 cpu->limit = le64_to_cpu(disk->limit);
2375 cpu->stripes_min = le32_to_cpu(disk->stripes_min);
2376 cpu->stripes_max = le32_to_cpu(disk->stripes_max);
2377 }
2378
2379 static inline void
btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args * disk,const struct btrfs_balance_args * cpu)2380 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
2381 const struct btrfs_balance_args *cpu)
2382 {
2383 memset(disk, 0, sizeof(*disk));
2384
2385 disk->profiles = cpu_to_le64(cpu->profiles);
2386 disk->usage = cpu_to_le64(cpu->usage);
2387 disk->devid = cpu_to_le64(cpu->devid);
2388 disk->pstart = cpu_to_le64(cpu->pstart);
2389 disk->pend = cpu_to_le64(cpu->pend);
2390 disk->vstart = cpu_to_le64(cpu->vstart);
2391 disk->vend = cpu_to_le64(cpu->vend);
2392 disk->target = cpu_to_le64(cpu->target);
2393 disk->flags = cpu_to_le64(cpu->flags);
2394 disk->limit = cpu_to_le64(cpu->limit);
2395 disk->stripes_min = cpu_to_le32(cpu->stripes_min);
2396 disk->stripes_max = cpu_to_le32(cpu->stripes_max);
2397 }
2398
2399 /* struct btrfs_super_block */
2400 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
2401 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
2402 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
2403 generation, 64);
2404 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
2405 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
2406 struct btrfs_super_block, sys_chunk_array_size, 32);
2407 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
2408 struct btrfs_super_block, chunk_root_generation, 64);
2409 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
2410 root_level, 8);
2411 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
2412 chunk_root, 64);
2413 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
2414 chunk_root_level, 8);
2415 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
2416 log_root, 64);
2417 BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block,
2418 log_root_transid, 64);
2419 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
2420 log_root_level, 8);
2421 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
2422 total_bytes, 64);
2423 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
2424 bytes_used, 64);
2425 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
2426 sectorsize, 32);
2427 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
2428 nodesize, 32);
2429 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
2430 stripesize, 32);
2431 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
2432 root_dir_objectid, 64);
2433 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
2434 num_devices, 64);
2435 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
2436 compat_flags, 64);
2437 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
2438 compat_ro_flags, 64);
2439 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
2440 incompat_flags, 64);
2441 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
2442 csum_type, 16);
2443 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
2444 cache_generation, 64);
2445 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
2446 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
2447 uuid_tree_generation, 64);
2448
2449 int btrfs_super_csum_size(const struct btrfs_super_block *s);
2450 const char *btrfs_super_csum_name(u16 csum_type);
2451 const char *btrfs_super_csum_driver(u16 csum_type);
2452 size_t __attribute_const__ btrfs_get_num_csums(void);
2453
2454
2455 /*
2456 * The leaf data grows from end-to-front in the node.
2457 * this returns the address of the start of the last item,
2458 * which is the stop of the leaf data stack
2459 */
leaf_data_end(const struct extent_buffer * leaf)2460 static inline unsigned int leaf_data_end(const struct extent_buffer *leaf)
2461 {
2462 u32 nr = btrfs_header_nritems(leaf);
2463
2464 if (nr == 0)
2465 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
2466 return btrfs_item_offset_nr(leaf, nr - 1);
2467 }
2468
2469 /* struct btrfs_file_extent_item */
2470 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item,
2471 type, 8);
2472 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
2473 struct btrfs_file_extent_item, disk_bytenr, 64);
2474 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
2475 struct btrfs_file_extent_item, offset, 64);
2476 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
2477 struct btrfs_file_extent_item, generation, 64);
2478 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
2479 struct btrfs_file_extent_item, num_bytes, 64);
2480 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes,
2481 struct btrfs_file_extent_item, ram_bytes, 64);
2482 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
2483 struct btrfs_file_extent_item, disk_num_bytes, 64);
2484 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
2485 struct btrfs_file_extent_item, compression, 8);
2486
2487 static inline unsigned long
btrfs_file_extent_inline_start(const struct btrfs_file_extent_item * e)2488 btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e)
2489 {
2490 return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START;
2491 }
2492
btrfs_file_extent_calc_inline_size(u32 datasize)2493 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
2494 {
2495 return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize;
2496 }
2497
2498 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
2499 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
2500 disk_bytenr, 64);
2501 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
2502 generation, 64);
2503 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
2504 disk_num_bytes, 64);
2505 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
2506 offset, 64);
2507 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
2508 num_bytes, 64);
2509 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
2510 ram_bytes, 64);
2511 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
2512 compression, 8);
2513 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
2514 encryption, 8);
2515 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
2516 other_encoding, 16);
2517
2518 /*
2519 * this returns the number of bytes used by the item on disk, minus the
2520 * size of any extent headers. If a file is compressed on disk, this is
2521 * the compressed size
2522 */
btrfs_file_extent_inline_item_len(const struct extent_buffer * eb,struct btrfs_item * e)2523 static inline u32 btrfs_file_extent_inline_item_len(
2524 const struct extent_buffer *eb,
2525 struct btrfs_item *e)
2526 {
2527 return btrfs_item_size(eb, e) - BTRFS_FILE_EXTENT_INLINE_DATA_START;
2528 }
2529
2530 /* btrfs_qgroup_status_item */
2531 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
2532 generation, 64);
2533 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
2534 version, 64);
2535 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
2536 flags, 64);
2537 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
2538 rescan, 64);
2539
2540 /* btrfs_qgroup_info_item */
2541 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
2542 generation, 64);
2543 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
2544 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
2545 rfer_cmpr, 64);
2546 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
2547 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
2548 excl_cmpr, 64);
2549
2550 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
2551 struct btrfs_qgroup_info_item, generation, 64);
2552 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
2553 rfer, 64);
2554 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
2555 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
2556 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
2557 excl, 64);
2558 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
2559 struct btrfs_qgroup_info_item, excl_cmpr, 64);
2560
2561 /* btrfs_qgroup_limit_item */
2562 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
2563 flags, 64);
2564 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
2565 max_rfer, 64);
2566 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
2567 max_excl, 64);
2568 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
2569 rsv_rfer, 64);
2570 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
2571 rsv_excl, 64);
2572
2573 /* btrfs_dev_replace_item */
2574 BTRFS_SETGET_FUNCS(dev_replace_src_devid,
2575 struct btrfs_dev_replace_item, src_devid, 64);
2576 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
2577 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
2578 64);
2579 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
2580 replace_state, 64);
2581 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
2582 time_started, 64);
2583 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
2584 time_stopped, 64);
2585 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
2586 num_write_errors, 64);
2587 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
2588 struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
2589 64);
2590 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
2591 cursor_left, 64);
2592 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
2593 cursor_right, 64);
2594
2595 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
2596 struct btrfs_dev_replace_item, src_devid, 64);
2597 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
2598 struct btrfs_dev_replace_item,
2599 cont_reading_from_srcdev_mode, 64);
2600 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
2601 struct btrfs_dev_replace_item, replace_state, 64);
2602 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
2603 struct btrfs_dev_replace_item, time_started, 64);
2604 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
2605 struct btrfs_dev_replace_item, time_stopped, 64);
2606 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
2607 struct btrfs_dev_replace_item, num_write_errors, 64);
2608 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
2609 struct btrfs_dev_replace_item,
2610 num_uncorrectable_read_errors, 64);
2611 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
2612 struct btrfs_dev_replace_item, cursor_left, 64);
2613 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
2614 struct btrfs_dev_replace_item, cursor_right, 64);
2615
2616 /* helper function to cast into the data area of the leaf. */
2617 #define btrfs_item_ptr(leaf, slot, type) \
2618 ((type *)(BTRFS_LEAF_DATA_OFFSET + \
2619 btrfs_item_offset_nr(leaf, slot)))
2620
2621 #define btrfs_item_ptr_offset(leaf, slot) \
2622 ((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \
2623 btrfs_item_offset_nr(leaf, slot)))
2624
btrfs_crc32c(u32 crc,const void * address,unsigned length)2625 static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length)
2626 {
2627 return crc32c(crc, address, length);
2628 }
2629
btrfs_crc32c_final(u32 crc,u8 * result)2630 static inline void btrfs_crc32c_final(u32 crc, u8 *result)
2631 {
2632 put_unaligned_le32(~crc, result);
2633 }
2634
btrfs_name_hash(const char * name,int len)2635 static inline u64 btrfs_name_hash(const char *name, int len)
2636 {
2637 return crc32c((u32)~1, name, len);
2638 }
2639
2640 /*
2641 * Figure the key offset of an extended inode ref
2642 */
btrfs_extref_hash(u64 parent_objectid,const char * name,int len)2643 static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name,
2644 int len)
2645 {
2646 return (u64) crc32c(parent_objectid, name, len);
2647 }
2648
btrfs_alloc_write_mask(struct address_space * mapping)2649 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
2650 {
2651 return mapping_gfp_constraint(mapping, ~__GFP_FS);
2652 }
2653
2654 /* extent-tree.c */
2655
2656 enum btrfs_inline_ref_type {
2657 BTRFS_REF_TYPE_INVALID,
2658 BTRFS_REF_TYPE_BLOCK,
2659 BTRFS_REF_TYPE_DATA,
2660 BTRFS_REF_TYPE_ANY,
2661 };
2662
2663 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
2664 struct btrfs_extent_inline_ref *iref,
2665 enum btrfs_inline_ref_type is_data);
2666 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset);
2667
2668 /*
2669 * Take the number of bytes to be checksummmed and figure out how many leaves
2670 * it would require to store the csums for that many bytes.
2671 */
btrfs_csum_bytes_to_leaves(const struct btrfs_fs_info * fs_info,u64 csum_bytes)2672 static inline u64 btrfs_csum_bytes_to_leaves(
2673 const struct btrfs_fs_info *fs_info, u64 csum_bytes)
2674 {
2675 const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits;
2676
2677 return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf);
2678 }
2679
2680 /*
2681 * Use this if we would be adding new items, as we could split nodes as we cow
2682 * down the tree.
2683 */
btrfs_calc_insert_metadata_size(struct btrfs_fs_info * fs_info,unsigned num_items)2684 static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info,
2685 unsigned num_items)
2686 {
2687 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items;
2688 }
2689
2690 /*
2691 * Doing a truncate or a modification won't result in new nodes or leaves, just
2692 * what we need for COW.
2693 */
btrfs_calc_metadata_size(struct btrfs_fs_info * fs_info,unsigned num_items)2694 static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info,
2695 unsigned num_items)
2696 {
2697 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items;
2698 }
2699
2700 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
2701 u64 start, u64 num_bytes);
2702 void btrfs_free_excluded_extents(struct btrfs_block_group *cache);
2703 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2704 unsigned long count);
2705 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
2706 struct btrfs_delayed_ref_root *delayed_refs,
2707 struct btrfs_delayed_ref_head *head);
2708 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len);
2709 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2710 struct btrfs_fs_info *fs_info, u64 bytenr,
2711 u64 offset, int metadata, u64 *refs, u64 *flags);
2712 int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num,
2713 int reserved);
2714 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2715 u64 bytenr, u64 num_bytes);
2716 int btrfs_exclude_logged_extents(struct extent_buffer *eb);
2717 int btrfs_cross_ref_exist(struct btrfs_root *root,
2718 u64 objectid, u64 offset, u64 bytenr, bool strict);
2719 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
2720 struct btrfs_root *root,
2721 u64 parent, u64 root_objectid,
2722 const struct btrfs_disk_key *key,
2723 int level, u64 hint,
2724 u64 empty_size,
2725 enum btrfs_lock_nesting nest);
2726 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
2727 u64 root_id,
2728 struct extent_buffer *buf,
2729 u64 parent, int last_ref);
2730 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2731 struct btrfs_root *root, u64 owner,
2732 u64 offset, u64 ram_bytes,
2733 struct btrfs_key *ins);
2734 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2735 u64 root_objectid, u64 owner, u64 offset,
2736 struct btrfs_key *ins);
2737 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes,
2738 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
2739 struct btrfs_key *ins, int is_data, int delalloc);
2740 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2741 struct extent_buffer *buf, int full_backref);
2742 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2743 struct extent_buffer *buf, int full_backref);
2744 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2745 struct extent_buffer *eb, u64 flags,
2746 int level, int is_data);
2747 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref);
2748
2749 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
2750 u64 start, u64 len, int delalloc);
2751 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
2752 u64 len);
2753 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans);
2754 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2755 struct btrfs_ref *generic_ref);
2756
2757 void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
2758
2759 /*
2760 * Different levels for to flush space when doing space reservations.
2761 *
2762 * The higher the level, the more methods we try to reclaim space.
2763 */
2764 enum btrfs_reserve_flush_enum {
2765 /* If we are in the transaction, we can't flush anything.*/
2766 BTRFS_RESERVE_NO_FLUSH,
2767
2768 /*
2769 * Flush space by:
2770 * - Running delayed inode items
2771 * - Allocating a new chunk
2772 */
2773 BTRFS_RESERVE_FLUSH_LIMIT,
2774
2775 /*
2776 * Flush space by:
2777 * - Running delayed inode items
2778 * - Running delayed refs
2779 * - Running delalloc and waiting for ordered extents
2780 * - Allocating a new chunk
2781 */
2782 BTRFS_RESERVE_FLUSH_EVICT,
2783
2784 /*
2785 * Flush space by above mentioned methods and by:
2786 * - Running delayed iputs
2787 * - Committing transaction
2788 *
2789 * Can be interrupted by a fatal signal.
2790 */
2791 BTRFS_RESERVE_FLUSH_DATA,
2792 BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE,
2793 BTRFS_RESERVE_FLUSH_ALL,
2794
2795 /*
2796 * Pretty much the same as FLUSH_ALL, but can also steal space from
2797 * global rsv.
2798 *
2799 * Can be interrupted by a fatal signal.
2800 */
2801 BTRFS_RESERVE_FLUSH_ALL_STEAL,
2802 };
2803
2804 enum btrfs_flush_state {
2805 FLUSH_DELAYED_ITEMS_NR = 1,
2806 FLUSH_DELAYED_ITEMS = 2,
2807 FLUSH_DELAYED_REFS_NR = 3,
2808 FLUSH_DELAYED_REFS = 4,
2809 FLUSH_DELALLOC = 5,
2810 FLUSH_DELALLOC_WAIT = 6,
2811 FLUSH_DELALLOC_FULL = 7,
2812 ALLOC_CHUNK = 8,
2813 ALLOC_CHUNK_FORCE = 9,
2814 RUN_DELAYED_IPUTS = 10,
2815 COMMIT_TRANS = 11,
2816 };
2817
2818 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
2819 struct btrfs_block_rsv *rsv,
2820 int nitems, bool use_global_rsv);
2821 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
2822 struct btrfs_block_rsv *rsv);
2823 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes);
2824
2825 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes);
2826 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
2827 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
2828 u64 start, u64 end);
2829 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2830 u64 num_bytes, u64 *actual_bytes);
2831 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
2832
2833 int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
2834 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2835 struct btrfs_fs_info *fs_info);
2836 int btrfs_start_write_no_snapshotting(struct btrfs_root *root);
2837 void btrfs_end_write_no_snapshotting(struct btrfs_root *root);
2838 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root);
2839
2840 /* ctree.c */
2841 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
2842 int *slot);
2843 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
2844 int btrfs_previous_item(struct btrfs_root *root,
2845 struct btrfs_path *path, u64 min_objectid,
2846 int type);
2847 int btrfs_previous_extent_item(struct btrfs_root *root,
2848 struct btrfs_path *path, u64 min_objectid);
2849 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2850 struct btrfs_path *path,
2851 const struct btrfs_key *new_key);
2852 struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
2853 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
2854 struct btrfs_key *key, int lowest_level,
2855 u64 min_trans);
2856 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
2857 struct btrfs_path *path,
2858 u64 min_trans);
2859 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
2860 int slot);
2861
2862 int btrfs_cow_block(struct btrfs_trans_handle *trans,
2863 struct btrfs_root *root, struct extent_buffer *buf,
2864 struct extent_buffer *parent, int parent_slot,
2865 struct extent_buffer **cow_ret,
2866 enum btrfs_lock_nesting nest);
2867 int btrfs_copy_root(struct btrfs_trans_handle *trans,
2868 struct btrfs_root *root,
2869 struct extent_buffer *buf,
2870 struct extent_buffer **cow_ret, u64 new_root_objectid);
2871 int btrfs_block_can_be_shared(struct btrfs_root *root,
2872 struct extent_buffer *buf);
2873 void btrfs_extend_item(struct btrfs_path *path, u32 data_size);
2874 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end);
2875 int btrfs_split_item(struct btrfs_trans_handle *trans,
2876 struct btrfs_root *root,
2877 struct btrfs_path *path,
2878 const struct btrfs_key *new_key,
2879 unsigned long split_offset);
2880 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
2881 struct btrfs_root *root,
2882 struct btrfs_path *path,
2883 const struct btrfs_key *new_key);
2884 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2885 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
2886 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2887 const struct btrfs_key *key, struct btrfs_path *p,
2888 int ins_len, int cow);
2889 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2890 struct btrfs_path *p, u64 time_seq);
2891 int btrfs_search_slot_for_read(struct btrfs_root *root,
2892 const struct btrfs_key *key,
2893 struct btrfs_path *p, int find_higher,
2894 int return_any);
2895 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
2896 struct btrfs_root *root, struct extent_buffer *parent,
2897 int start_slot, u64 *last_ret,
2898 struct btrfs_key *progress);
2899 void btrfs_release_path(struct btrfs_path *p);
2900 struct btrfs_path *btrfs_alloc_path(void);
2901 void btrfs_free_path(struct btrfs_path *p);
2902
2903 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2904 struct btrfs_path *path, int slot, int nr);
btrfs_del_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path)2905 static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
2906 struct btrfs_root *root,
2907 struct btrfs_path *path)
2908 {
2909 return btrfs_del_items(trans, root, path, path->slots[0], 1);
2910 }
2911
2912 /*
2913 * Describes a batch of items to insert in a btree. This is used by
2914 * btrfs_insert_empty_items().
2915 */
2916 struct btrfs_item_batch {
2917 /*
2918 * Pointer to an array containing the keys of the items to insert (in
2919 * sorted order).
2920 */
2921 const struct btrfs_key *keys;
2922 /* Pointer to an array containing the data size for each item to insert. */
2923 const u32 *data_sizes;
2924 /*
2925 * The sum of data sizes for all items. The caller can compute this while
2926 * setting up the data_sizes array, so it ends up being more efficient
2927 * than having btrfs_insert_empty_items() or setup_item_for_insert()
2928 * doing it, as it would avoid an extra loop over a potentially large
2929 * array, and in the case of setup_item_for_insert(), we would be doing
2930 * it while holding a write lock on a leaf and often on upper level nodes
2931 * too, unnecessarily increasing the size of a critical section.
2932 */
2933 u32 total_data_size;
2934 /* Size of the keys and data_sizes arrays (number of items in the batch). */
2935 int nr;
2936 };
2937
2938 void btrfs_setup_item_for_insert(struct btrfs_root *root,
2939 struct btrfs_path *path,
2940 const struct btrfs_key *key,
2941 u32 data_size);
2942 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2943 const struct btrfs_key *key, void *data, u32 data_size);
2944 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
2945 struct btrfs_root *root,
2946 struct btrfs_path *path,
2947 const struct btrfs_item_batch *batch);
2948
btrfs_insert_empty_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * key,u32 data_size)2949 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
2950 struct btrfs_root *root,
2951 struct btrfs_path *path,
2952 const struct btrfs_key *key,
2953 u32 data_size)
2954 {
2955 struct btrfs_item_batch batch;
2956
2957 batch.keys = key;
2958 batch.data_sizes = &data_size;
2959 batch.total_data_size = data_size;
2960 batch.nr = 1;
2961
2962 return btrfs_insert_empty_items(trans, root, path, &batch);
2963 }
2964
2965 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
2966 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
2967 u64 time_seq);
2968
2969 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2970 struct btrfs_path *path);
2971
btrfs_next_old_item(struct btrfs_root * root,struct btrfs_path * p,u64 time_seq)2972 static inline int btrfs_next_old_item(struct btrfs_root *root,
2973 struct btrfs_path *p, u64 time_seq)
2974 {
2975 ++p->slots[0];
2976 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
2977 return btrfs_next_old_leaf(root, p, time_seq);
2978 return 0;
2979 }
2980
2981 /*
2982 * Search the tree again to find a leaf with greater keys.
2983 *
2984 * Returns 0 if it found something or 1 if there are no greater leaves.
2985 * Returns < 0 on error.
2986 */
btrfs_next_leaf(struct btrfs_root * root,struct btrfs_path * path)2987 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
2988 {
2989 return btrfs_next_old_leaf(root, path, 0);
2990 }
2991
btrfs_next_item(struct btrfs_root * root,struct btrfs_path * p)2992 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
2993 {
2994 return btrfs_next_old_item(root, p, 0);
2995 }
2996 int btrfs_leaf_free_space(struct extent_buffer *leaf);
2997 int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref,
2998 int for_reloc);
2999 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
3000 struct btrfs_root *root,
3001 struct extent_buffer *node,
3002 struct extent_buffer *parent);
btrfs_fs_closing(struct btrfs_fs_info * fs_info)3003 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
3004 {
3005 /*
3006 * Do it this way so we only ever do one test_bit in the normal case.
3007 */
3008 if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) {
3009 if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags))
3010 return 2;
3011 return 1;
3012 }
3013 return 0;
3014 }
3015
3016 /*
3017 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
3018 * anything except sleeping. This function is used to check the status of
3019 * the fs.
3020 * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount,
3021 * since setting and checking for SB_RDONLY in the superblock's flags is not
3022 * atomic.
3023 */
btrfs_need_cleaner_sleep(struct btrfs_fs_info * fs_info)3024 static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info)
3025 {
3026 return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) ||
3027 btrfs_fs_closing(fs_info);
3028 }
3029
btrfs_set_sb_rdonly(struct super_block * sb)3030 static inline void btrfs_set_sb_rdonly(struct super_block *sb)
3031 {
3032 sb->s_flags |= SB_RDONLY;
3033 set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
3034 }
3035
btrfs_clear_sb_rdonly(struct super_block * sb)3036 static inline void btrfs_clear_sb_rdonly(struct super_block *sb)
3037 {
3038 sb->s_flags &= ~SB_RDONLY;
3039 clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
3040 }
3041
3042 /* root-item.c */
3043 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
3044 u64 ref_id, u64 dirid, u64 sequence, const char *name,
3045 int name_len);
3046 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
3047 u64 ref_id, u64 dirid, u64 *sequence, const char *name,
3048 int name_len);
3049 int btrfs_del_root(struct btrfs_trans_handle *trans,
3050 const struct btrfs_key *key);
3051 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3052 const struct btrfs_key *key,
3053 struct btrfs_root_item *item);
3054 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
3055 struct btrfs_root *root,
3056 struct btrfs_key *key,
3057 struct btrfs_root_item *item);
3058 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
3059 struct btrfs_path *path, struct btrfs_root_item *root_item,
3060 struct btrfs_key *root_key);
3061 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info);
3062 void btrfs_set_root_node(struct btrfs_root_item *item,
3063 struct extent_buffer *node);
3064 void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
3065 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
3066 struct btrfs_root *root);
3067
3068 /* uuid-tree.c */
3069 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3070 u64 subid);
3071 int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3072 u64 subid);
3073 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info);
3074
3075 /* dir-item.c */
3076 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
3077 const char *name, int name_len);
3078 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name,
3079 int name_len, struct btrfs_inode *dir,
3080 struct btrfs_key *location, u8 type, u64 index);
3081 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
3082 struct btrfs_root *root,
3083 struct btrfs_path *path, u64 dir,
3084 const char *name, int name_len,
3085 int mod);
3086 struct btrfs_dir_item *
3087 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
3088 struct btrfs_root *root,
3089 struct btrfs_path *path, u64 dir,
3090 u64 index, const char *name, int name_len,
3091 int mod);
3092 struct btrfs_dir_item *
3093 btrfs_search_dir_index_item(struct btrfs_root *root,
3094 struct btrfs_path *path, u64 dirid,
3095 const char *name, int name_len);
3096 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
3097 struct btrfs_root *root,
3098 struct btrfs_path *path,
3099 struct btrfs_dir_item *di);
3100 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
3101 struct btrfs_root *root,
3102 struct btrfs_path *path, u64 objectid,
3103 const char *name, u16 name_len,
3104 const void *data, u16 data_len);
3105 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
3106 struct btrfs_root *root,
3107 struct btrfs_path *path, u64 dir,
3108 const char *name, u16 name_len,
3109 int mod);
3110 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info,
3111 struct btrfs_path *path,
3112 const char *name,
3113 int name_len);
3114
3115 /* orphan.c */
3116 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
3117 struct btrfs_root *root, u64 offset);
3118 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
3119 struct btrfs_root *root, u64 offset);
3120 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
3121
3122 /* inode-item.c */
3123 int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans,
3124 struct btrfs_root *root,
3125 const char *name, int name_len,
3126 u64 inode_objectid, u64 ref_objectid, u64 index);
3127 int btrfs_del_inode_ref(struct btrfs_trans_handle *trans,
3128 struct btrfs_root *root,
3129 const char *name, int name_len,
3130 u64 inode_objectid, u64 ref_objectid, u64 *index);
3131 int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans,
3132 struct btrfs_root *root,
3133 struct btrfs_path *path, u64 objectid);
3134 int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
3135 *root, struct btrfs_path *path,
3136 struct btrfs_key *location, int mod);
3137
3138 struct btrfs_inode_extref *
3139 btrfs_lookup_inode_extref(struct btrfs_trans_handle *trans,
3140 struct btrfs_root *root,
3141 struct btrfs_path *path,
3142 const char *name, int name_len,
3143 u64 inode_objectid, u64 ref_objectid, int ins_len,
3144 int cow);
3145
3146 struct btrfs_inode_ref *btrfs_find_name_in_backref(struct extent_buffer *leaf,
3147 int slot, const char *name,
3148 int name_len);
3149 struct btrfs_inode_extref *btrfs_find_name_in_ext_backref(
3150 struct extent_buffer *leaf, int slot, u64 ref_objectid,
3151 const char *name, int name_len);
3152 /* file-item.c */
3153 struct btrfs_dio_private;
3154 int btrfs_del_csums(struct btrfs_trans_handle *trans,
3155 struct btrfs_root *root, u64 bytenr, u64 len);
3156 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst);
3157 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
3158 struct btrfs_root *root,
3159 u64 objectid, u64 pos,
3160 u64 disk_offset, u64 disk_num_bytes,
3161 u64 num_bytes, u64 offset, u64 ram_bytes,
3162 u8 compression, u8 encryption, u16 other_encoding);
3163 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
3164 struct btrfs_root *root,
3165 struct btrfs_path *path, u64 objectid,
3166 u64 bytenr, int mod);
3167 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
3168 struct btrfs_root *root,
3169 struct btrfs_ordered_sum *sums);
3170 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
3171 u64 file_start, int contig);
3172 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
3173 struct list_head *list, int search_commit);
3174 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
3175 const struct btrfs_path *path,
3176 struct btrfs_file_extent_item *fi,
3177 const bool new_inline,
3178 struct extent_map *em);
3179 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
3180 u64 len);
3181 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
3182 u64 len);
3183 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size);
3184 u64 btrfs_file_extent_end(const struct btrfs_path *path);
3185
3186 /* inode.c */
3187 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
3188 int mirror_num, unsigned long bio_flags);
3189 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio,
3190 u32 bio_offset, struct page *page,
3191 u64 start, u64 end);
3192 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
3193 u64 start, u64 len);
3194 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
3195 u64 *orig_start, u64 *orig_block_len,
3196 u64 *ram_bytes, bool strict);
3197
3198 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
3199 struct btrfs_inode *inode);
3200 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
3201 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index);
3202 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3203 struct btrfs_inode *dir, struct btrfs_inode *inode,
3204 const char *name, int name_len);
3205 int btrfs_add_link(struct btrfs_trans_handle *trans,
3206 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
3207 const char *name, int name_len, int add_backref, u64 index);
3208 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry);
3209 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
3210 int front);
3211 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3212 struct btrfs_root *root,
3213 struct btrfs_inode *inode, u64 new_size,
3214 u32 min_type, u64 *extents_found);
3215
3216 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context);
3217 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
3218 bool in_reclaim_context);
3219 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
3220 unsigned int extra_bits,
3221 struct extent_state **cached_state);
3222 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
3223 struct btrfs_root *new_root,
3224 struct btrfs_root *parent_root,
3225 struct user_namespace *mnt_userns);
3226 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
3227 unsigned *bits);
3228 void btrfs_clear_delalloc_extent(struct inode *inode,
3229 struct extent_state *state, unsigned *bits);
3230 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
3231 struct extent_state *other);
3232 void btrfs_split_delalloc_extent(struct inode *inode,
3233 struct extent_state *orig, u64 split);
3234 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end);
3235 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf);
3236 int btrfs_readpage(struct file *file, struct page *page);
3237 void btrfs_evict_inode(struct inode *inode);
3238 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
3239 struct inode *btrfs_alloc_inode(struct super_block *sb);
3240 void btrfs_destroy_inode(struct inode *inode);
3241 void btrfs_free_inode(struct inode *inode);
3242 int btrfs_drop_inode(struct inode *inode);
3243 int __init btrfs_init_cachep(void);
3244 void __cold btrfs_destroy_cachep(void);
3245 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
3246 struct btrfs_root *root, struct btrfs_path *path);
3247 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root);
3248 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
3249 struct page *page, size_t pg_offset,
3250 u64 start, u64 end);
3251 int btrfs_update_inode(struct btrfs_trans_handle *trans,
3252 struct btrfs_root *root, struct btrfs_inode *inode);
3253 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3254 struct btrfs_root *root, struct btrfs_inode *inode);
3255 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3256 struct btrfs_inode *inode);
3257 int btrfs_orphan_cleanup(struct btrfs_root *root);
3258 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size);
3259 void btrfs_add_delayed_iput(struct inode *inode);
3260 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info);
3261 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info);
3262 int btrfs_prealloc_file_range(struct inode *inode, int mode,
3263 u64 start, u64 num_bytes, u64 min_size,
3264 loff_t actual_len, u64 *alloc_hint);
3265 int btrfs_prealloc_file_range_trans(struct inode *inode,
3266 struct btrfs_trans_handle *trans, int mode,
3267 u64 start, u64 num_bytes, u64 min_size,
3268 loff_t actual_len, u64 *alloc_hint);
3269 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
3270 u64 start, u64 end, int *page_started, unsigned long *nr_written,
3271 struct writeback_control *wbc);
3272 int btrfs_writepage_cow_fixup(struct page *page);
3273 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3274 struct page *page, u64 start,
3275 u64 end, bool uptodate);
3276 extern const struct dentry_operations btrfs_dentry_operations;
3277 extern const struct iomap_ops btrfs_dio_iomap_ops;
3278 extern const struct iomap_dio_ops btrfs_dio_ops;
3279
3280 /* Inode locking type flags, by default the exclusive lock is taken */
3281 #define BTRFS_ILOCK_SHARED (1U << 0)
3282 #define BTRFS_ILOCK_TRY (1U << 1)
3283 #define BTRFS_ILOCK_MMAP (1U << 2)
3284
3285 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags);
3286 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags);
3287 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
3288 const u64 add_bytes,
3289 const u64 del_bytes);
3290
3291 /* ioctl.c */
3292 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3293 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3294 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3295 int btrfs_fileattr_set(struct user_namespace *mnt_userns,
3296 struct dentry *dentry, struct fileattr *fa);
3297 int btrfs_ioctl_get_supported_features(void __user *arg);
3298 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode);
3299 int __pure btrfs_is_empty_uuid(u8 *uuid);
3300 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
3301 struct btrfs_ioctl_defrag_range_args *range,
3302 u64 newer_than, unsigned long max_to_defrag);
3303 void btrfs_get_block_group_info(struct list_head *groups_list,
3304 struct btrfs_ioctl_space_info *space);
3305 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3306 struct btrfs_ioctl_balance_args *bargs);
3307 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
3308 enum btrfs_exclusive_operation type);
3309 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
3310 enum btrfs_exclusive_operation type);
3311 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info);
3312 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info);
3313
3314 /* file.c */
3315 int __init btrfs_auto_defrag_init(void);
3316 void __cold btrfs_auto_defrag_exit(void);
3317 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
3318 struct btrfs_inode *inode);
3319 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
3320 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
3321 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3322 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
3323 int skip_pinned);
3324 extern const struct file_operations btrfs_file_operations;
3325 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
3326 struct btrfs_root *root, struct btrfs_inode *inode,
3327 struct btrfs_drop_extents_args *args);
3328 int btrfs_replace_file_extents(struct btrfs_inode *inode,
3329 struct btrfs_path *path, const u64 start,
3330 const u64 end,
3331 struct btrfs_replace_extent_info *extent_info,
3332 struct btrfs_trans_handle **trans_out);
3333 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
3334 struct btrfs_inode *inode, u64 start, u64 end);
3335 int btrfs_release_file(struct inode *inode, struct file *file);
3336 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
3337 size_t num_pages, loff_t pos, size_t write_bytes,
3338 struct extent_state **cached, bool noreserve);
3339 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end);
3340 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
3341 size_t *write_bytes);
3342 void btrfs_check_nocow_unlock(struct btrfs_inode *inode);
3343
3344 /* tree-defrag.c */
3345 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
3346 struct btrfs_root *root);
3347
3348 /* super.c */
3349 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
3350 unsigned long new_flags);
3351 int btrfs_sync_fs(struct super_block *sb, int wait);
3352 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
3353 u64 subvol_objectid);
3354
3355 static inline __printf(2, 3) __cold
btrfs_no_printk(const struct btrfs_fs_info * fs_info,const char * fmt,...)3356 void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
3357 {
3358 }
3359
3360 #ifdef CONFIG_PRINTK
3361 __printf(2, 3)
3362 __cold
3363 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3364 #else
3365 #define btrfs_printk(fs_info, fmt, args...) \
3366 btrfs_no_printk(fs_info, fmt, ##args)
3367 #endif
3368
3369 #define btrfs_emerg(fs_info, fmt, args...) \
3370 btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
3371 #define btrfs_alert(fs_info, fmt, args...) \
3372 btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
3373 #define btrfs_crit(fs_info, fmt, args...) \
3374 btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
3375 #define btrfs_err(fs_info, fmt, args...) \
3376 btrfs_printk(fs_info, KERN_ERR fmt, ##args)
3377 #define btrfs_warn(fs_info, fmt, args...) \
3378 btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
3379 #define btrfs_notice(fs_info, fmt, args...) \
3380 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
3381 #define btrfs_info(fs_info, fmt, args...) \
3382 btrfs_printk(fs_info, KERN_INFO fmt, ##args)
3383
3384 /*
3385 * Wrappers that use printk_in_rcu
3386 */
3387 #define btrfs_emerg_in_rcu(fs_info, fmt, args...) \
3388 btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3389 #define btrfs_alert_in_rcu(fs_info, fmt, args...) \
3390 btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3391 #define btrfs_crit_in_rcu(fs_info, fmt, args...) \
3392 btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3393 #define btrfs_err_in_rcu(fs_info, fmt, args...) \
3394 btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args)
3395 #define btrfs_warn_in_rcu(fs_info, fmt, args...) \
3396 btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3397 #define btrfs_notice_in_rcu(fs_info, fmt, args...) \
3398 btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3399 #define btrfs_info_in_rcu(fs_info, fmt, args...) \
3400 btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args)
3401
3402 /*
3403 * Wrappers that use a ratelimited printk_in_rcu
3404 */
3405 #define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \
3406 btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3407 #define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \
3408 btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3409 #define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \
3410 btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3411 #define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \
3412 btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args)
3413 #define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \
3414 btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3415 #define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \
3416 btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3417 #define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \
3418 btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args)
3419
3420 /*
3421 * Wrappers that use a ratelimited printk
3422 */
3423 #define btrfs_emerg_rl(fs_info, fmt, args...) \
3424 btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args)
3425 #define btrfs_alert_rl(fs_info, fmt, args...) \
3426 btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args)
3427 #define btrfs_crit_rl(fs_info, fmt, args...) \
3428 btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args)
3429 #define btrfs_err_rl(fs_info, fmt, args...) \
3430 btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args)
3431 #define btrfs_warn_rl(fs_info, fmt, args...) \
3432 btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args)
3433 #define btrfs_notice_rl(fs_info, fmt, args...) \
3434 btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args)
3435 #define btrfs_info_rl(fs_info, fmt, args...) \
3436 btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args)
3437
3438 #if defined(CONFIG_DYNAMIC_DEBUG)
3439 #define btrfs_debug(fs_info, fmt, args...) \
3440 _dynamic_func_call_no_desc(fmt, btrfs_printk, \
3441 fs_info, KERN_DEBUG fmt, ##args)
3442 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3443 _dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu, \
3444 fs_info, KERN_DEBUG fmt, ##args)
3445 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3446 _dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu, \
3447 fs_info, KERN_DEBUG fmt, ##args)
3448 #define btrfs_debug_rl(fs_info, fmt, args...) \
3449 _dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited, \
3450 fs_info, KERN_DEBUG fmt, ##args)
3451 #elif defined(DEBUG)
3452 #define btrfs_debug(fs_info, fmt, args...) \
3453 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
3454 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3455 btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3456 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3457 btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3458 #define btrfs_debug_rl(fs_info, fmt, args...) \
3459 btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args)
3460 #else
3461 #define btrfs_debug(fs_info, fmt, args...) \
3462 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3463 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3464 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3465 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3466 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3467 #define btrfs_debug_rl(fs_info, fmt, args...) \
3468 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3469 #endif
3470
3471 #define btrfs_printk_in_rcu(fs_info, fmt, args...) \
3472 do { \
3473 rcu_read_lock(); \
3474 btrfs_printk(fs_info, fmt, ##args); \
3475 rcu_read_unlock(); \
3476 } while (0)
3477
3478 #define btrfs_no_printk_in_rcu(fs_info, fmt, args...) \
3479 do { \
3480 rcu_read_lock(); \
3481 btrfs_no_printk(fs_info, fmt, ##args); \
3482 rcu_read_unlock(); \
3483 } while (0)
3484
3485 #define btrfs_printk_ratelimited(fs_info, fmt, args...) \
3486 do { \
3487 static DEFINE_RATELIMIT_STATE(_rs, \
3488 DEFAULT_RATELIMIT_INTERVAL, \
3489 DEFAULT_RATELIMIT_BURST); \
3490 if (__ratelimit(&_rs)) \
3491 btrfs_printk(fs_info, fmt, ##args); \
3492 } while (0)
3493
3494 #define btrfs_printk_rl_in_rcu(fs_info, fmt, args...) \
3495 do { \
3496 rcu_read_lock(); \
3497 btrfs_printk_ratelimited(fs_info, fmt, ##args); \
3498 rcu_read_unlock(); \
3499 } while (0)
3500
3501 #ifdef CONFIG_BTRFS_ASSERT
3502 __cold __noreturn
assertfail(const char * expr,const char * file,int line)3503 static inline void assertfail(const char *expr, const char *file, int line)
3504 {
3505 pr_err("assertion failed: %s, in %s:%d\n", expr, file, line);
3506 BUG();
3507 }
3508
3509 #define ASSERT(expr) \
3510 (likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__))
3511
3512 #else
assertfail(const char * expr,const char * file,int line)3513 static inline void assertfail(const char *expr, const char* file, int line) { }
3514 #define ASSERT(expr) (void)(expr)
3515 #endif
3516
3517 #if BITS_PER_LONG == 32
3518 #define BTRFS_32BIT_MAX_FILE_SIZE (((u64)ULONG_MAX + 1) << PAGE_SHIFT)
3519 /*
3520 * The warning threshold is 5/8th of the MAX_LFS_FILESIZE that limits the logical
3521 * addresses of extents.
3522 *
3523 * For 4K page size it's about 10T, for 64K it's 160T.
3524 */
3525 #define BTRFS_32BIT_EARLY_WARN_THRESHOLD (BTRFS_32BIT_MAX_FILE_SIZE * 5 / 8)
3526 void btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info);
3527 void btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info);
3528 #endif
3529
3530 /*
3531 * Get the correct offset inside the page of extent buffer.
3532 *
3533 * @eb: target extent buffer
3534 * @start: offset inside the extent buffer
3535 *
3536 * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases.
3537 */
get_eb_offset_in_page(const struct extent_buffer * eb,unsigned long offset)3538 static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb,
3539 unsigned long offset)
3540 {
3541 /*
3542 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned
3543 * to PAGE_SIZE, thus adding it won't cause any difference.
3544 *
3545 * For sectorsize < PAGE_SIZE, we must only read the data that belongs
3546 * to the eb, thus we have to take the eb->start into consideration.
3547 */
3548 return offset_in_page(offset + eb->start);
3549 }
3550
get_eb_page_index(unsigned long offset)3551 static inline unsigned long get_eb_page_index(unsigned long offset)
3552 {
3553 /*
3554 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough.
3555 *
3556 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE,
3557 * and have ensured that all tree blocks are contained in one page,
3558 * thus we always get index == 0.
3559 */
3560 return offset >> PAGE_SHIFT;
3561 }
3562
3563 /*
3564 * Use that for functions that are conditionally exported for sanity tests but
3565 * otherwise static
3566 */
3567 #ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3568 #define EXPORT_FOR_TESTS static
3569 #else
3570 #define EXPORT_FOR_TESTS
3571 #endif
3572
3573 __cold
btrfs_print_v0_err(struct btrfs_fs_info * fs_info)3574 static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info)
3575 {
3576 btrfs_err(fs_info,
3577 "Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel");
3578 }
3579
3580 __printf(5, 6)
3581 __cold
3582 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
3583 unsigned int line, int errno, const char *fmt, ...);
3584
3585 const char * __attribute_const__ btrfs_decode_error(int errno);
3586
3587 __cold
3588 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
3589 const char *function,
3590 unsigned int line, int errno);
3591
3592 /*
3593 * Call btrfs_abort_transaction as early as possible when an error condition is
3594 * detected, that way the exact line number is reported.
3595 */
3596 #define btrfs_abort_transaction(trans, errno) \
3597 do { \
3598 /* Report first abort since mount */ \
3599 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, \
3600 &((trans)->fs_info->fs_state))) { \
3601 if ((errno) != -EIO && (errno) != -EROFS) { \
3602 WARN(1, KERN_DEBUG \
3603 "BTRFS: Transaction aborted (error %d)\n", \
3604 (errno)); \
3605 } else { \
3606 btrfs_debug((trans)->fs_info, \
3607 "Transaction aborted (error %d)", \
3608 (errno)); \
3609 } \
3610 } \
3611 __btrfs_abort_transaction((trans), __func__, \
3612 __LINE__, (errno)); \
3613 } while (0)
3614
3615 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \
3616 do { \
3617 __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \
3618 (errno), fmt, ##args); \
3619 } while (0)
3620
3621 #define BTRFS_FS_ERROR(fs_info) (unlikely(test_bit(BTRFS_FS_STATE_ERROR, \
3622 &(fs_info)->fs_state)))
3623
3624 __printf(5, 6)
3625 __cold
3626 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
3627 unsigned int line, int errno, const char *fmt, ...);
3628 /*
3629 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
3630 * will panic(). Otherwise we BUG() here.
3631 */
3632 #define btrfs_panic(fs_info, errno, fmt, args...) \
3633 do { \
3634 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \
3635 BUG(); \
3636 } while (0)
3637
3638
3639 /* compatibility and incompatibility defines */
3640
3641 #define btrfs_set_fs_incompat(__fs_info, opt) \
3642 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3643 #opt)
3644
__btrfs_set_fs_incompat(struct btrfs_fs_info * fs_info,u64 flag,const char * name)3645 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
3646 u64 flag, const char* name)
3647 {
3648 struct btrfs_super_block *disk_super;
3649 u64 features;
3650
3651 disk_super = fs_info->super_copy;
3652 features = btrfs_super_incompat_flags(disk_super);
3653 if (!(features & flag)) {
3654 spin_lock(&fs_info->super_lock);
3655 features = btrfs_super_incompat_flags(disk_super);
3656 if (!(features & flag)) {
3657 features |= flag;
3658 btrfs_set_super_incompat_flags(disk_super, features);
3659 btrfs_info(fs_info,
3660 "setting incompat feature flag for %s (0x%llx)",
3661 name, flag);
3662 }
3663 spin_unlock(&fs_info->super_lock);
3664 }
3665 }
3666
3667 #define btrfs_clear_fs_incompat(__fs_info, opt) \
3668 __btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3669 #opt)
3670
__btrfs_clear_fs_incompat(struct btrfs_fs_info * fs_info,u64 flag,const char * name)3671 static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info,
3672 u64 flag, const char* name)
3673 {
3674 struct btrfs_super_block *disk_super;
3675 u64 features;
3676
3677 disk_super = fs_info->super_copy;
3678 features = btrfs_super_incompat_flags(disk_super);
3679 if (features & flag) {
3680 spin_lock(&fs_info->super_lock);
3681 features = btrfs_super_incompat_flags(disk_super);
3682 if (features & flag) {
3683 features &= ~flag;
3684 btrfs_set_super_incompat_flags(disk_super, features);
3685 btrfs_info(fs_info,
3686 "clearing incompat feature flag for %s (0x%llx)",
3687 name, flag);
3688 }
3689 spin_unlock(&fs_info->super_lock);
3690 }
3691 }
3692
3693 #define btrfs_fs_incompat(fs_info, opt) \
3694 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3695
__btrfs_fs_incompat(struct btrfs_fs_info * fs_info,u64 flag)3696 static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
3697 {
3698 struct btrfs_super_block *disk_super;
3699 disk_super = fs_info->super_copy;
3700 return !!(btrfs_super_incompat_flags(disk_super) & flag);
3701 }
3702
3703 #define btrfs_set_fs_compat_ro(__fs_info, opt) \
3704 __btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3705 #opt)
3706
__btrfs_set_fs_compat_ro(struct btrfs_fs_info * fs_info,u64 flag,const char * name)3707 static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info,
3708 u64 flag, const char *name)
3709 {
3710 struct btrfs_super_block *disk_super;
3711 u64 features;
3712
3713 disk_super = fs_info->super_copy;
3714 features = btrfs_super_compat_ro_flags(disk_super);
3715 if (!(features & flag)) {
3716 spin_lock(&fs_info->super_lock);
3717 features = btrfs_super_compat_ro_flags(disk_super);
3718 if (!(features & flag)) {
3719 features |= flag;
3720 btrfs_set_super_compat_ro_flags(disk_super, features);
3721 btrfs_info(fs_info,
3722 "setting compat-ro feature flag for %s (0x%llx)",
3723 name, flag);
3724 }
3725 spin_unlock(&fs_info->super_lock);
3726 }
3727 }
3728
3729 #define btrfs_clear_fs_compat_ro(__fs_info, opt) \
3730 __btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3731 #opt)
3732
__btrfs_clear_fs_compat_ro(struct btrfs_fs_info * fs_info,u64 flag,const char * name)3733 static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info,
3734 u64 flag, const char *name)
3735 {
3736 struct btrfs_super_block *disk_super;
3737 u64 features;
3738
3739 disk_super = fs_info->super_copy;
3740 features = btrfs_super_compat_ro_flags(disk_super);
3741 if (features & flag) {
3742 spin_lock(&fs_info->super_lock);
3743 features = btrfs_super_compat_ro_flags(disk_super);
3744 if (features & flag) {
3745 features &= ~flag;
3746 btrfs_set_super_compat_ro_flags(disk_super, features);
3747 btrfs_info(fs_info,
3748 "clearing compat-ro feature flag for %s (0x%llx)",
3749 name, flag);
3750 }
3751 spin_unlock(&fs_info->super_lock);
3752 }
3753 }
3754
3755 #define btrfs_fs_compat_ro(fs_info, opt) \
3756 __btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
3757
__btrfs_fs_compat_ro(struct btrfs_fs_info * fs_info,u64 flag)3758 static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag)
3759 {
3760 struct btrfs_super_block *disk_super;
3761 disk_super = fs_info->super_copy;
3762 return !!(btrfs_super_compat_ro_flags(disk_super) & flag);
3763 }
3764
3765 /* acl.c */
3766 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
3767 struct posix_acl *btrfs_get_acl(struct inode *inode, int type, bool rcu);
3768 int btrfs_set_acl(struct user_namespace *mnt_userns, struct inode *inode,
3769 struct posix_acl *acl, int type);
3770 int btrfs_init_acl(struct btrfs_trans_handle *trans,
3771 struct inode *inode, struct inode *dir);
3772 #else
3773 #define btrfs_get_acl NULL
3774 #define btrfs_set_acl NULL
btrfs_init_acl(struct btrfs_trans_handle * trans,struct inode * inode,struct inode * dir)3775 static inline int btrfs_init_acl(struct btrfs_trans_handle *trans,
3776 struct inode *inode, struct inode *dir)
3777 {
3778 return 0;
3779 }
3780 #endif
3781
3782 /* relocation.c */
3783 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start);
3784 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
3785 struct btrfs_root *root);
3786 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
3787 struct btrfs_root *root);
3788 int btrfs_recover_relocation(struct btrfs_root *root);
3789 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len);
3790 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3791 struct btrfs_root *root, struct extent_buffer *buf,
3792 struct extent_buffer *cow);
3793 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
3794 u64 *bytes_to_reserve);
3795 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
3796 struct btrfs_pending_snapshot *pending);
3797 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info);
3798 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info,
3799 u64 bytenr);
3800 int btrfs_should_ignore_reloc_root(struct btrfs_root *root);
3801
3802 /* scrub.c */
3803 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3804 u64 end, struct btrfs_scrub_progress *progress,
3805 int readonly, int is_dev_replace);
3806 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info);
3807 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info);
3808 int btrfs_scrub_cancel(struct btrfs_fs_info *info);
3809 int btrfs_scrub_cancel_dev(struct btrfs_device *dev);
3810 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3811 struct btrfs_scrub_progress *progress);
btrfs_init_full_stripe_locks_tree(struct btrfs_full_stripe_locks_tree * locks_root)3812 static inline void btrfs_init_full_stripe_locks_tree(
3813 struct btrfs_full_stripe_locks_tree *locks_root)
3814 {
3815 locks_root->root = RB_ROOT;
3816 mutex_init(&locks_root->lock);
3817 }
3818
3819 /* dev-replace.c */
3820 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
3821 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info);
3822 void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount);
3823
btrfs_bio_counter_dec(struct btrfs_fs_info * fs_info)3824 static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info)
3825 {
3826 btrfs_bio_counter_sub(fs_info, 1);
3827 }
3828
3829 /* reada.c */
3830 struct reada_control {
3831 struct btrfs_fs_info *fs_info; /* tree to prefetch */
3832 struct btrfs_key key_start;
3833 struct btrfs_key key_end; /* exclusive */
3834 atomic_t elems;
3835 struct kref refcnt;
3836 wait_queue_head_t wait;
3837 };
3838 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
3839 struct btrfs_key *start, struct btrfs_key *end);
3840 int btrfs_reada_wait(void *handle);
3841 void btrfs_reada_detach(void *handle);
3842 int btree_readahead_hook(struct extent_buffer *eb, int err);
3843 void btrfs_reada_remove_dev(struct btrfs_device *dev);
3844 void btrfs_reada_undo_remove_dev(struct btrfs_device *dev);
3845
is_fstree(u64 rootid)3846 static inline int is_fstree(u64 rootid)
3847 {
3848 if (rootid == BTRFS_FS_TREE_OBJECTID ||
3849 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
3850 !btrfs_qgroup_level(rootid)))
3851 return 1;
3852 return 0;
3853 }
3854
btrfs_defrag_cancelled(struct btrfs_fs_info * fs_info)3855 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
3856 {
3857 return signal_pending(current);
3858 }
3859
3860 /* verity.c */
3861 #ifdef CONFIG_FS_VERITY
3862
3863 extern const struct fsverity_operations btrfs_verityops;
3864 int btrfs_drop_verity_items(struct btrfs_inode *inode);
3865
3866 BTRFS_SETGET_FUNCS(verity_descriptor_encryption, struct btrfs_verity_descriptor_item,
3867 encryption, 8);
3868 BTRFS_SETGET_FUNCS(verity_descriptor_size, struct btrfs_verity_descriptor_item,
3869 size, 64);
3870 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_encryption,
3871 struct btrfs_verity_descriptor_item, encryption, 8);
3872 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_size,
3873 struct btrfs_verity_descriptor_item, size, 64);
3874
3875 #else
3876
btrfs_drop_verity_items(struct btrfs_inode * inode)3877 static inline int btrfs_drop_verity_items(struct btrfs_inode *inode)
3878 {
3879 return 0;
3880 }
3881
3882 #endif
3883
3884 /* Sanity test specific functions */
3885 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3886 void btrfs_test_destroy_inode(struct inode *inode);
btrfs_is_testing(struct btrfs_fs_info * fs_info)3887 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
3888 {
3889 return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
3890 }
3891 #else
btrfs_is_testing(struct btrfs_fs_info * fs_info)3892 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
3893 {
3894 return 0;
3895 }
3896 #endif
3897
btrfs_is_zoned(const struct btrfs_fs_info * fs_info)3898 static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info)
3899 {
3900 return fs_info->zoned != 0;
3901 }
3902
btrfs_is_data_reloc_root(const struct btrfs_root * root)3903 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
3904 {
3905 return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
3906 }
3907
3908 /*
3909 * We use page status Private2 to indicate there is an ordered extent with
3910 * unfinished IO.
3911 *
3912 * Rename the Private2 accessors to Ordered, to improve readability.
3913 */
3914 #define PageOrdered(page) PagePrivate2(page)
3915 #define SetPageOrdered(page) SetPagePrivate2(page)
3916 #define ClearPageOrdered(page) ClearPagePrivate2(page)
3917
3918 #endif
3919