1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include <linux/namei.h>
18 #include "misc.h"
19 #include "ctree.h"
20 #include "extent_map.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "async-thread.h"
27 #include "check-integrity.h"
28 #include "rcu-string.h"
29 #include "dev-replace.h"
30 #include "sysfs.h"
31 #include "tree-checker.h"
32 #include "space-info.h"
33 #include "block-group.h"
34 #include "discard.h"
35 #include "zoned.h"
36
37 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
38 [BTRFS_RAID_RAID10] = {
39 .sub_stripes = 2,
40 .dev_stripes = 1,
41 .devs_max = 0, /* 0 == as many as possible */
42 .devs_min = 2,
43 .tolerated_failures = 1,
44 .devs_increment = 2,
45 .ncopies = 2,
46 .nparity = 0,
47 .raid_name = "raid10",
48 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
49 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
50 },
51 [BTRFS_RAID_RAID1] = {
52 .sub_stripes = 1,
53 .dev_stripes = 1,
54 .devs_max = 2,
55 .devs_min = 2,
56 .tolerated_failures = 1,
57 .devs_increment = 2,
58 .ncopies = 2,
59 .nparity = 0,
60 .raid_name = "raid1",
61 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
62 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
63 },
64 [BTRFS_RAID_RAID1C3] = {
65 .sub_stripes = 1,
66 .dev_stripes = 1,
67 .devs_max = 3,
68 .devs_min = 3,
69 .tolerated_failures = 2,
70 .devs_increment = 3,
71 .ncopies = 3,
72 .nparity = 0,
73 .raid_name = "raid1c3",
74 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
75 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
76 },
77 [BTRFS_RAID_RAID1C4] = {
78 .sub_stripes = 1,
79 .dev_stripes = 1,
80 .devs_max = 4,
81 .devs_min = 4,
82 .tolerated_failures = 3,
83 .devs_increment = 4,
84 .ncopies = 4,
85 .nparity = 0,
86 .raid_name = "raid1c4",
87 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
88 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
89 },
90 [BTRFS_RAID_DUP] = {
91 .sub_stripes = 1,
92 .dev_stripes = 2,
93 .devs_max = 1,
94 .devs_min = 1,
95 .tolerated_failures = 0,
96 .devs_increment = 1,
97 .ncopies = 2,
98 .nparity = 0,
99 .raid_name = "dup",
100 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
101 .mindev_error = 0,
102 },
103 [BTRFS_RAID_RAID0] = {
104 .sub_stripes = 1,
105 .dev_stripes = 1,
106 .devs_max = 0,
107 .devs_min = 1,
108 .tolerated_failures = 0,
109 .devs_increment = 1,
110 .ncopies = 1,
111 .nparity = 0,
112 .raid_name = "raid0",
113 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
114 .mindev_error = 0,
115 },
116 [BTRFS_RAID_SINGLE] = {
117 .sub_stripes = 1,
118 .dev_stripes = 1,
119 .devs_max = 1,
120 .devs_min = 1,
121 .tolerated_failures = 0,
122 .devs_increment = 1,
123 .ncopies = 1,
124 .nparity = 0,
125 .raid_name = "single",
126 .bg_flag = 0,
127 .mindev_error = 0,
128 },
129 [BTRFS_RAID_RAID5] = {
130 .sub_stripes = 1,
131 .dev_stripes = 1,
132 .devs_max = 0,
133 .devs_min = 2,
134 .tolerated_failures = 1,
135 .devs_increment = 1,
136 .ncopies = 1,
137 .nparity = 1,
138 .raid_name = "raid5",
139 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
140 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
141 },
142 [BTRFS_RAID_RAID6] = {
143 .sub_stripes = 1,
144 .dev_stripes = 1,
145 .devs_max = 0,
146 .devs_min = 3,
147 .tolerated_failures = 2,
148 .devs_increment = 1,
149 .ncopies = 1,
150 .nparity = 2,
151 .raid_name = "raid6",
152 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
153 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
154 },
155 };
156
157 /*
158 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
159 * can be used as index to access btrfs_raid_array[].
160 */
btrfs_bg_flags_to_raid_index(u64 flags)161 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
162 {
163 if (flags & BTRFS_BLOCK_GROUP_RAID10)
164 return BTRFS_RAID_RAID10;
165 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
166 return BTRFS_RAID_RAID1;
167 else if (flags & BTRFS_BLOCK_GROUP_RAID1C3)
168 return BTRFS_RAID_RAID1C3;
169 else if (flags & BTRFS_BLOCK_GROUP_RAID1C4)
170 return BTRFS_RAID_RAID1C4;
171 else if (flags & BTRFS_BLOCK_GROUP_DUP)
172 return BTRFS_RAID_DUP;
173 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
174 return BTRFS_RAID_RAID0;
175 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
176 return BTRFS_RAID_RAID5;
177 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
178 return BTRFS_RAID_RAID6;
179
180 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
181 }
182
btrfs_bg_type_to_raid_name(u64 flags)183 const char *btrfs_bg_type_to_raid_name(u64 flags)
184 {
185 const int index = btrfs_bg_flags_to_raid_index(flags);
186
187 if (index >= BTRFS_NR_RAID_TYPES)
188 return NULL;
189
190 return btrfs_raid_array[index].raid_name;
191 }
192
193 /*
194 * Fill @buf with textual description of @bg_flags, no more than @size_buf
195 * bytes including terminating null byte.
196 */
btrfs_describe_block_groups(u64 bg_flags,char * buf,u32 size_buf)197 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
198 {
199 int i;
200 int ret;
201 char *bp = buf;
202 u64 flags = bg_flags;
203 u32 size_bp = size_buf;
204
205 if (!flags) {
206 strcpy(bp, "NONE");
207 return;
208 }
209
210 #define DESCRIBE_FLAG(flag, desc) \
211 do { \
212 if (flags & (flag)) { \
213 ret = snprintf(bp, size_bp, "%s|", (desc)); \
214 if (ret < 0 || ret >= size_bp) \
215 goto out_overflow; \
216 size_bp -= ret; \
217 bp += ret; \
218 flags &= ~(flag); \
219 } \
220 } while (0)
221
222 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
223 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
224 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
225
226 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
227 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
228 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
229 btrfs_raid_array[i].raid_name);
230 #undef DESCRIBE_FLAG
231
232 if (flags) {
233 ret = snprintf(bp, size_bp, "0x%llx|", flags);
234 size_bp -= ret;
235 }
236
237 if (size_bp < size_buf)
238 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
239
240 /*
241 * The text is trimmed, it's up to the caller to provide sufficiently
242 * large buffer
243 */
244 out_overflow:;
245 }
246
247 static int init_first_rw_device(struct btrfs_trans_handle *trans);
248 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
249 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
250 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
251 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
252 enum btrfs_map_op op,
253 u64 logical, u64 *length,
254 struct btrfs_io_context **bioc_ret,
255 int mirror_num, int need_raid_map);
256
257 /*
258 * Device locking
259 * ==============
260 *
261 * There are several mutexes that protect manipulation of devices and low-level
262 * structures like chunks but not block groups, extents or files
263 *
264 * uuid_mutex (global lock)
265 * ------------------------
266 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
267 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
268 * device) or requested by the device= mount option
269 *
270 * the mutex can be very coarse and can cover long-running operations
271 *
272 * protects: updates to fs_devices counters like missing devices, rw devices,
273 * seeding, structure cloning, opening/closing devices at mount/umount time
274 *
275 * global::fs_devs - add, remove, updates to the global list
276 *
277 * does not protect: manipulation of the fs_devices::devices list in general
278 * but in mount context it could be used to exclude list modifications by eg.
279 * scan ioctl
280 *
281 * btrfs_device::name - renames (write side), read is RCU
282 *
283 * fs_devices::device_list_mutex (per-fs, with RCU)
284 * ------------------------------------------------
285 * protects updates to fs_devices::devices, ie. adding and deleting
286 *
287 * simple list traversal with read-only actions can be done with RCU protection
288 *
289 * may be used to exclude some operations from running concurrently without any
290 * modifications to the list (see write_all_supers)
291 *
292 * Is not required at mount and close times, because our device list is
293 * protected by the uuid_mutex at that point.
294 *
295 * balance_mutex
296 * -------------
297 * protects balance structures (status, state) and context accessed from
298 * several places (internally, ioctl)
299 *
300 * chunk_mutex
301 * -----------
302 * protects chunks, adding or removing during allocation, trim or when a new
303 * device is added/removed. Additionally it also protects post_commit_list of
304 * individual devices, since they can be added to the transaction's
305 * post_commit_list only with chunk_mutex held.
306 *
307 * cleaner_mutex
308 * -------------
309 * a big lock that is held by the cleaner thread and prevents running subvolume
310 * cleaning together with relocation or delayed iputs
311 *
312 *
313 * Lock nesting
314 * ============
315 *
316 * uuid_mutex
317 * device_list_mutex
318 * chunk_mutex
319 * balance_mutex
320 *
321 *
322 * Exclusive operations
323 * ====================
324 *
325 * Maintains the exclusivity of the following operations that apply to the
326 * whole filesystem and cannot run in parallel.
327 *
328 * - Balance (*)
329 * - Device add
330 * - Device remove
331 * - Device replace (*)
332 * - Resize
333 *
334 * The device operations (as above) can be in one of the following states:
335 *
336 * - Running state
337 * - Paused state
338 * - Completed state
339 *
340 * Only device operations marked with (*) can go into the Paused state for the
341 * following reasons:
342 *
343 * - ioctl (only Balance can be Paused through ioctl)
344 * - filesystem remounted as read-only
345 * - filesystem unmounted and mounted as read-only
346 * - system power-cycle and filesystem mounted as read-only
347 * - filesystem or device errors leading to forced read-only
348 *
349 * The status of exclusive operation is set and cleared atomically.
350 * During the course of Paused state, fs_info::exclusive_operation remains set.
351 * A device operation in Paused or Running state can be canceled or resumed
352 * either by ioctl (Balance only) or when remounted as read-write.
353 * The exclusive status is cleared when the device operation is canceled or
354 * completed.
355 */
356
357 DEFINE_MUTEX(uuid_mutex);
358 static LIST_HEAD(fs_uuids);
btrfs_get_fs_uuids(void)359 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
360 {
361 return &fs_uuids;
362 }
363
364 /*
365 * alloc_fs_devices - allocate struct btrfs_fs_devices
366 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
367 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
368 *
369 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
370 * The returned struct is not linked onto any lists and can be destroyed with
371 * kfree() right away.
372 */
alloc_fs_devices(const u8 * fsid,const u8 * metadata_fsid)373 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
374 const u8 *metadata_fsid)
375 {
376 struct btrfs_fs_devices *fs_devs;
377
378 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
379 if (!fs_devs)
380 return ERR_PTR(-ENOMEM);
381
382 mutex_init(&fs_devs->device_list_mutex);
383
384 INIT_LIST_HEAD(&fs_devs->devices);
385 INIT_LIST_HEAD(&fs_devs->alloc_list);
386 INIT_LIST_HEAD(&fs_devs->fs_list);
387 INIT_LIST_HEAD(&fs_devs->seed_list);
388 if (fsid)
389 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
390
391 if (metadata_fsid)
392 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
393 else if (fsid)
394 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
395
396 return fs_devs;
397 }
398
btrfs_free_device(struct btrfs_device * device)399 void btrfs_free_device(struct btrfs_device *device)
400 {
401 WARN_ON(!list_empty(&device->post_commit_list));
402 rcu_string_free(device->name);
403 extent_io_tree_release(&device->alloc_state);
404 bio_put(device->flush_bio);
405 btrfs_destroy_dev_zone_info(device);
406 kfree(device);
407 }
408
free_fs_devices(struct btrfs_fs_devices * fs_devices)409 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
410 {
411 struct btrfs_device *device;
412 WARN_ON(fs_devices->opened);
413 while (!list_empty(&fs_devices->devices)) {
414 device = list_entry(fs_devices->devices.next,
415 struct btrfs_device, dev_list);
416 list_del(&device->dev_list);
417 btrfs_free_device(device);
418 }
419 kfree(fs_devices);
420 }
421
btrfs_cleanup_fs_uuids(void)422 void __exit btrfs_cleanup_fs_uuids(void)
423 {
424 struct btrfs_fs_devices *fs_devices;
425
426 while (!list_empty(&fs_uuids)) {
427 fs_devices = list_entry(fs_uuids.next,
428 struct btrfs_fs_devices, fs_list);
429 list_del(&fs_devices->fs_list);
430 free_fs_devices(fs_devices);
431 }
432 }
433
find_fsid(const u8 * fsid,const u8 * metadata_fsid)434 static noinline struct btrfs_fs_devices *find_fsid(
435 const u8 *fsid, const u8 *metadata_fsid)
436 {
437 struct btrfs_fs_devices *fs_devices;
438
439 ASSERT(fsid);
440
441 /* Handle non-split brain cases */
442 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
443 if (metadata_fsid) {
444 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
445 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
446 BTRFS_FSID_SIZE) == 0)
447 return fs_devices;
448 } else {
449 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
450 return fs_devices;
451 }
452 }
453 return NULL;
454 }
455
find_fsid_with_metadata_uuid(struct btrfs_super_block * disk_super)456 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
457 struct btrfs_super_block *disk_super)
458 {
459
460 struct btrfs_fs_devices *fs_devices;
461
462 /*
463 * Handle scanned device having completed its fsid change but
464 * belonging to a fs_devices that was created by first scanning
465 * a device which didn't have its fsid/metadata_uuid changed
466 * at all and the CHANGING_FSID_V2 flag set.
467 */
468 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
469 if (fs_devices->fsid_change &&
470 memcmp(disk_super->metadata_uuid, fs_devices->fsid,
471 BTRFS_FSID_SIZE) == 0 &&
472 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
473 BTRFS_FSID_SIZE) == 0) {
474 return fs_devices;
475 }
476 }
477 /*
478 * Handle scanned device having completed its fsid change but
479 * belonging to a fs_devices that was created by a device that
480 * has an outdated pair of fsid/metadata_uuid and
481 * CHANGING_FSID_V2 flag set.
482 */
483 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
484 if (fs_devices->fsid_change &&
485 memcmp(fs_devices->metadata_uuid,
486 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
487 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
488 BTRFS_FSID_SIZE) == 0) {
489 return fs_devices;
490 }
491 }
492
493 return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
494 }
495
496
497 static int
btrfs_get_bdev_and_sb(const char * device_path,fmode_t flags,void * holder,int flush,struct block_device ** bdev,struct btrfs_super_block ** disk_super)498 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
499 int flush, struct block_device **bdev,
500 struct btrfs_super_block **disk_super)
501 {
502 int ret;
503
504 *bdev = blkdev_get_by_path(device_path, flags, holder);
505
506 if (IS_ERR(*bdev)) {
507 ret = PTR_ERR(*bdev);
508 goto error;
509 }
510
511 if (flush)
512 sync_blockdev(*bdev);
513 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
514 if (ret) {
515 blkdev_put(*bdev, flags);
516 goto error;
517 }
518 invalidate_bdev(*bdev);
519 *disk_super = btrfs_read_dev_super(*bdev);
520 if (IS_ERR(*disk_super)) {
521 ret = PTR_ERR(*disk_super);
522 blkdev_put(*bdev, flags);
523 goto error;
524 }
525
526 return 0;
527
528 error:
529 *bdev = NULL;
530 return ret;
531 }
532
device_path_matched(const char * path,struct btrfs_device * device)533 static bool device_path_matched(const char *path, struct btrfs_device *device)
534 {
535 int found;
536
537 rcu_read_lock();
538 found = strcmp(rcu_str_deref(device->name), path);
539 rcu_read_unlock();
540
541 return found == 0;
542 }
543
544 /*
545 * Search and remove all stale (devices which are not mounted) devices.
546 * When both inputs are NULL, it will search and release all stale devices.
547 * path: Optional. When provided will it release all unmounted devices
548 * matching this path only.
549 * skip_dev: Optional. Will skip this device when searching for the stale
550 * devices.
551 * Return: 0 for success or if @path is NULL.
552 * -EBUSY if @path is a mounted device.
553 * -ENOENT if @path does not match any device in the list.
554 */
btrfs_free_stale_devices(const char * path,struct btrfs_device * skip_device)555 static int btrfs_free_stale_devices(const char *path,
556 struct btrfs_device *skip_device)
557 {
558 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
559 struct btrfs_device *device, *tmp_device;
560 int ret = 0;
561
562 lockdep_assert_held(&uuid_mutex);
563
564 if (path)
565 ret = -ENOENT;
566
567 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
568
569 mutex_lock(&fs_devices->device_list_mutex);
570 list_for_each_entry_safe(device, tmp_device,
571 &fs_devices->devices, dev_list) {
572 if (skip_device && skip_device == device)
573 continue;
574 if (path && !device->name)
575 continue;
576 if (path && !device_path_matched(path, device))
577 continue;
578 if (fs_devices->opened) {
579 /* for an already deleted device return 0 */
580 if (path && ret != 0)
581 ret = -EBUSY;
582 break;
583 }
584
585 /* delete the stale device */
586 fs_devices->num_devices--;
587 list_del(&device->dev_list);
588 btrfs_free_device(device);
589
590 ret = 0;
591 }
592 mutex_unlock(&fs_devices->device_list_mutex);
593
594 if (fs_devices->num_devices == 0) {
595 btrfs_sysfs_remove_fsid(fs_devices);
596 list_del(&fs_devices->fs_list);
597 free_fs_devices(fs_devices);
598 }
599 }
600
601 return ret;
602 }
603
604 /*
605 * This is only used on mount, and we are protected from competing things
606 * messing with our fs_devices by the uuid_mutex, thus we do not need the
607 * fs_devices->device_list_mutex here.
608 */
btrfs_open_one_device(struct btrfs_fs_devices * fs_devices,struct btrfs_device * device,fmode_t flags,void * holder)609 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
610 struct btrfs_device *device, fmode_t flags,
611 void *holder)
612 {
613 struct request_queue *q;
614 struct block_device *bdev;
615 struct btrfs_super_block *disk_super;
616 u64 devid;
617 int ret;
618
619 if (device->bdev)
620 return -EINVAL;
621 if (!device->name)
622 return -EINVAL;
623
624 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
625 &bdev, &disk_super);
626 if (ret)
627 return ret;
628
629 devid = btrfs_stack_device_id(&disk_super->dev_item);
630 if (devid != device->devid)
631 goto error_free_page;
632
633 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
634 goto error_free_page;
635
636 device->generation = btrfs_super_generation(disk_super);
637
638 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
639 if (btrfs_super_incompat_flags(disk_super) &
640 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
641 pr_err(
642 "BTRFS: Invalid seeding and uuid-changed device detected\n");
643 goto error_free_page;
644 }
645
646 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
647 fs_devices->seeding = true;
648 } else {
649 if (bdev_read_only(bdev))
650 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
651 else
652 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
653 }
654
655 q = bdev_get_queue(bdev);
656 if (!blk_queue_nonrot(q))
657 fs_devices->rotating = true;
658
659 device->bdev = bdev;
660 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
661 device->mode = flags;
662
663 fs_devices->open_devices++;
664 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
665 device->devid != BTRFS_DEV_REPLACE_DEVID) {
666 fs_devices->rw_devices++;
667 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
668 }
669 btrfs_release_disk_super(disk_super);
670
671 return 0;
672
673 error_free_page:
674 btrfs_release_disk_super(disk_super);
675 blkdev_put(bdev, flags);
676
677 return -EINVAL;
678 }
679
680 /*
681 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
682 * being created with a disk that has already completed its fsid change. Such
683 * disk can belong to an fs which has its FSID changed or to one which doesn't.
684 * Handle both cases here.
685 */
find_fsid_inprogress(struct btrfs_super_block * disk_super)686 static struct btrfs_fs_devices *find_fsid_inprogress(
687 struct btrfs_super_block *disk_super)
688 {
689 struct btrfs_fs_devices *fs_devices;
690
691 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
692 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
693 BTRFS_FSID_SIZE) != 0 &&
694 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
695 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
696 return fs_devices;
697 }
698 }
699
700 return find_fsid(disk_super->fsid, NULL);
701 }
702
703
find_fsid_changed(struct btrfs_super_block * disk_super)704 static struct btrfs_fs_devices *find_fsid_changed(
705 struct btrfs_super_block *disk_super)
706 {
707 struct btrfs_fs_devices *fs_devices;
708
709 /*
710 * Handles the case where scanned device is part of an fs that had
711 * multiple successful changes of FSID but currently device didn't
712 * observe it. Meaning our fsid will be different than theirs. We need
713 * to handle two subcases :
714 * 1 - The fs still continues to have different METADATA/FSID uuids.
715 * 2 - The fs is switched back to its original FSID (METADATA/FSID
716 * are equal).
717 */
718 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
719 /* Changed UUIDs */
720 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
721 BTRFS_FSID_SIZE) != 0 &&
722 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
723 BTRFS_FSID_SIZE) == 0 &&
724 memcmp(fs_devices->fsid, disk_super->fsid,
725 BTRFS_FSID_SIZE) != 0)
726 return fs_devices;
727
728 /* Unchanged UUIDs */
729 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
730 BTRFS_FSID_SIZE) == 0 &&
731 memcmp(fs_devices->fsid, disk_super->metadata_uuid,
732 BTRFS_FSID_SIZE) == 0)
733 return fs_devices;
734 }
735
736 return NULL;
737 }
738
find_fsid_reverted_metadata(struct btrfs_super_block * disk_super)739 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
740 struct btrfs_super_block *disk_super)
741 {
742 struct btrfs_fs_devices *fs_devices;
743
744 /*
745 * Handle the case where the scanned device is part of an fs whose last
746 * metadata UUID change reverted it to the original FSID. At the same
747 * time * fs_devices was first created by another constitutent device
748 * which didn't fully observe the operation. This results in an
749 * btrfs_fs_devices created with metadata/fsid different AND
750 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
751 * fs_devices equal to the FSID of the disk.
752 */
753 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
754 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
755 BTRFS_FSID_SIZE) != 0 &&
756 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
757 BTRFS_FSID_SIZE) == 0 &&
758 fs_devices->fsid_change)
759 return fs_devices;
760 }
761
762 return NULL;
763 }
764 /*
765 * Add new device to list of registered devices
766 *
767 * Returns:
768 * device pointer which was just added or updated when successful
769 * error pointer when failed
770 */
device_list_add(const char * path,struct btrfs_super_block * disk_super,bool * new_device_added)771 static noinline struct btrfs_device *device_list_add(const char *path,
772 struct btrfs_super_block *disk_super,
773 bool *new_device_added)
774 {
775 struct btrfs_device *device;
776 struct btrfs_fs_devices *fs_devices = NULL;
777 struct rcu_string *name;
778 u64 found_transid = btrfs_super_generation(disk_super);
779 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
780 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
781 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
782 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
783 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
784
785 if (fsid_change_in_progress) {
786 if (!has_metadata_uuid)
787 fs_devices = find_fsid_inprogress(disk_super);
788 else
789 fs_devices = find_fsid_changed(disk_super);
790 } else if (has_metadata_uuid) {
791 fs_devices = find_fsid_with_metadata_uuid(disk_super);
792 } else {
793 fs_devices = find_fsid_reverted_metadata(disk_super);
794 if (!fs_devices)
795 fs_devices = find_fsid(disk_super->fsid, NULL);
796 }
797
798
799 if (!fs_devices) {
800 if (has_metadata_uuid)
801 fs_devices = alloc_fs_devices(disk_super->fsid,
802 disk_super->metadata_uuid);
803 else
804 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
805
806 if (IS_ERR(fs_devices))
807 return ERR_CAST(fs_devices);
808
809 fs_devices->fsid_change = fsid_change_in_progress;
810
811 mutex_lock(&fs_devices->device_list_mutex);
812 list_add(&fs_devices->fs_list, &fs_uuids);
813
814 device = NULL;
815 } else {
816 struct btrfs_dev_lookup_args args = {
817 .devid = devid,
818 .uuid = disk_super->dev_item.uuid,
819 };
820
821 mutex_lock(&fs_devices->device_list_mutex);
822 device = btrfs_find_device(fs_devices, &args);
823
824 /*
825 * If this disk has been pulled into an fs devices created by
826 * a device which had the CHANGING_FSID_V2 flag then replace the
827 * metadata_uuid/fsid values of the fs_devices.
828 */
829 if (fs_devices->fsid_change &&
830 found_transid > fs_devices->latest_generation) {
831 memcpy(fs_devices->fsid, disk_super->fsid,
832 BTRFS_FSID_SIZE);
833
834 if (has_metadata_uuid)
835 memcpy(fs_devices->metadata_uuid,
836 disk_super->metadata_uuid,
837 BTRFS_FSID_SIZE);
838 else
839 memcpy(fs_devices->metadata_uuid,
840 disk_super->fsid, BTRFS_FSID_SIZE);
841
842 fs_devices->fsid_change = false;
843 }
844 }
845
846 if (!device) {
847 if (fs_devices->opened) {
848 mutex_unlock(&fs_devices->device_list_mutex);
849 return ERR_PTR(-EBUSY);
850 }
851
852 device = btrfs_alloc_device(NULL, &devid,
853 disk_super->dev_item.uuid);
854 if (IS_ERR(device)) {
855 mutex_unlock(&fs_devices->device_list_mutex);
856 /* we can safely leave the fs_devices entry around */
857 return device;
858 }
859
860 name = rcu_string_strdup(path, GFP_NOFS);
861 if (!name) {
862 btrfs_free_device(device);
863 mutex_unlock(&fs_devices->device_list_mutex);
864 return ERR_PTR(-ENOMEM);
865 }
866 rcu_assign_pointer(device->name, name);
867
868 list_add_rcu(&device->dev_list, &fs_devices->devices);
869 fs_devices->num_devices++;
870
871 device->fs_devices = fs_devices;
872 *new_device_added = true;
873
874 if (disk_super->label[0])
875 pr_info(
876 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
877 disk_super->label, devid, found_transid, path,
878 current->comm, task_pid_nr(current));
879 else
880 pr_info(
881 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
882 disk_super->fsid, devid, found_transid, path,
883 current->comm, task_pid_nr(current));
884
885 } else if (!device->name || strcmp(device->name->str, path)) {
886 /*
887 * When FS is already mounted.
888 * 1. If you are here and if the device->name is NULL that
889 * means this device was missing at time of FS mount.
890 * 2. If you are here and if the device->name is different
891 * from 'path' that means either
892 * a. The same device disappeared and reappeared with
893 * different name. or
894 * b. The missing-disk-which-was-replaced, has
895 * reappeared now.
896 *
897 * We must allow 1 and 2a above. But 2b would be a spurious
898 * and unintentional.
899 *
900 * Further in case of 1 and 2a above, the disk at 'path'
901 * would have missed some transaction when it was away and
902 * in case of 2a the stale bdev has to be updated as well.
903 * 2b must not be allowed at all time.
904 */
905
906 /*
907 * For now, we do allow update to btrfs_fs_device through the
908 * btrfs dev scan cli after FS has been mounted. We're still
909 * tracking a problem where systems fail mount by subvolume id
910 * when we reject replacement on a mounted FS.
911 */
912 if (!fs_devices->opened && found_transid < device->generation) {
913 /*
914 * That is if the FS is _not_ mounted and if you
915 * are here, that means there is more than one
916 * disk with same uuid and devid.We keep the one
917 * with larger generation number or the last-in if
918 * generation are equal.
919 */
920 mutex_unlock(&fs_devices->device_list_mutex);
921 return ERR_PTR(-EEXIST);
922 }
923
924 /*
925 * We are going to replace the device path for a given devid,
926 * make sure it's the same device if the device is mounted
927 */
928 if (device->bdev) {
929 int error;
930 dev_t path_dev;
931
932 error = lookup_bdev(path, &path_dev);
933 if (error) {
934 mutex_unlock(&fs_devices->device_list_mutex);
935 return ERR_PTR(error);
936 }
937
938 if (device->bdev->bd_dev != path_dev) {
939 mutex_unlock(&fs_devices->device_list_mutex);
940 /*
941 * device->fs_info may not be reliable here, so
942 * pass in a NULL instead. This avoids a
943 * possible use-after-free when the fs_info and
944 * fs_info->sb are already torn down.
945 */
946 btrfs_warn_in_rcu(NULL,
947 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
948 path, devid, found_transid,
949 current->comm,
950 task_pid_nr(current));
951 return ERR_PTR(-EEXIST);
952 }
953 btrfs_info_in_rcu(device->fs_info,
954 "devid %llu device path %s changed to %s scanned by %s (%d)",
955 devid, rcu_str_deref(device->name),
956 path, current->comm,
957 task_pid_nr(current));
958 }
959
960 name = rcu_string_strdup(path, GFP_NOFS);
961 if (!name) {
962 mutex_unlock(&fs_devices->device_list_mutex);
963 return ERR_PTR(-ENOMEM);
964 }
965 rcu_string_free(device->name);
966 rcu_assign_pointer(device->name, name);
967 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
968 fs_devices->missing_devices--;
969 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
970 }
971 }
972
973 /*
974 * Unmount does not free the btrfs_device struct but would zero
975 * generation along with most of the other members. So just update
976 * it back. We need it to pick the disk with largest generation
977 * (as above).
978 */
979 if (!fs_devices->opened) {
980 device->generation = found_transid;
981 fs_devices->latest_generation = max_t(u64, found_transid,
982 fs_devices->latest_generation);
983 }
984
985 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
986
987 mutex_unlock(&fs_devices->device_list_mutex);
988 return device;
989 }
990
clone_fs_devices(struct btrfs_fs_devices * orig)991 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
992 {
993 struct btrfs_fs_devices *fs_devices;
994 struct btrfs_device *device;
995 struct btrfs_device *orig_dev;
996 int ret = 0;
997
998 lockdep_assert_held(&uuid_mutex);
999
1000 fs_devices = alloc_fs_devices(orig->fsid, NULL);
1001 if (IS_ERR(fs_devices))
1002 return fs_devices;
1003
1004 fs_devices->total_devices = orig->total_devices;
1005
1006 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1007 struct rcu_string *name;
1008
1009 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1010 orig_dev->uuid);
1011 if (IS_ERR(device)) {
1012 ret = PTR_ERR(device);
1013 goto error;
1014 }
1015
1016 /*
1017 * This is ok to do without rcu read locked because we hold the
1018 * uuid mutex so nothing we touch in here is going to disappear.
1019 */
1020 if (orig_dev->name) {
1021 name = rcu_string_strdup(orig_dev->name->str,
1022 GFP_KERNEL);
1023 if (!name) {
1024 btrfs_free_device(device);
1025 ret = -ENOMEM;
1026 goto error;
1027 }
1028 rcu_assign_pointer(device->name, name);
1029 }
1030
1031 list_add(&device->dev_list, &fs_devices->devices);
1032 device->fs_devices = fs_devices;
1033 fs_devices->num_devices++;
1034 }
1035 return fs_devices;
1036 error:
1037 free_fs_devices(fs_devices);
1038 return ERR_PTR(ret);
1039 }
1040
__btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices,struct btrfs_device ** latest_dev)1041 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1042 struct btrfs_device **latest_dev)
1043 {
1044 struct btrfs_device *device, *next;
1045
1046 /* This is the initialized path, it is safe to release the devices. */
1047 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1048 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1049 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1050 &device->dev_state) &&
1051 !test_bit(BTRFS_DEV_STATE_MISSING,
1052 &device->dev_state) &&
1053 (!*latest_dev ||
1054 device->generation > (*latest_dev)->generation)) {
1055 *latest_dev = device;
1056 }
1057 continue;
1058 }
1059
1060 /*
1061 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1062 * in btrfs_init_dev_replace() so just continue.
1063 */
1064 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1065 continue;
1066
1067 if (device->bdev) {
1068 blkdev_put(device->bdev, device->mode);
1069 device->bdev = NULL;
1070 fs_devices->open_devices--;
1071 }
1072 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1073 list_del_init(&device->dev_alloc_list);
1074 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1075 fs_devices->rw_devices--;
1076 }
1077 list_del_init(&device->dev_list);
1078 fs_devices->num_devices--;
1079 btrfs_free_device(device);
1080 }
1081
1082 }
1083
1084 /*
1085 * After we have read the system tree and know devids belonging to this
1086 * filesystem, remove the device which does not belong there.
1087 */
btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices)1088 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1089 {
1090 struct btrfs_device *latest_dev = NULL;
1091 struct btrfs_fs_devices *seed_dev;
1092
1093 mutex_lock(&uuid_mutex);
1094 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1095
1096 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1097 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1098
1099 fs_devices->latest_dev = latest_dev;
1100
1101 mutex_unlock(&uuid_mutex);
1102 }
1103
btrfs_close_bdev(struct btrfs_device * device)1104 static void btrfs_close_bdev(struct btrfs_device *device)
1105 {
1106 if (!device->bdev)
1107 return;
1108
1109 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1110 sync_blockdev(device->bdev);
1111 invalidate_bdev(device->bdev);
1112 }
1113
1114 blkdev_put(device->bdev, device->mode);
1115 }
1116
btrfs_close_one_device(struct btrfs_device * device)1117 static void btrfs_close_one_device(struct btrfs_device *device)
1118 {
1119 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1120
1121 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1122 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1123 list_del_init(&device->dev_alloc_list);
1124 fs_devices->rw_devices--;
1125 }
1126
1127 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1128 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1129
1130 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1131 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1132 fs_devices->missing_devices--;
1133 }
1134
1135 btrfs_close_bdev(device);
1136 if (device->bdev) {
1137 fs_devices->open_devices--;
1138 device->bdev = NULL;
1139 }
1140 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1141 btrfs_destroy_dev_zone_info(device);
1142
1143 device->fs_info = NULL;
1144 atomic_set(&device->dev_stats_ccnt, 0);
1145 extent_io_tree_release(&device->alloc_state);
1146
1147 /*
1148 * Reset the flush error record. We might have a transient flush error
1149 * in this mount, and if so we aborted the current transaction and set
1150 * the fs to an error state, guaranteeing no super blocks can be further
1151 * committed. However that error might be transient and if we unmount the
1152 * filesystem and mount it again, we should allow the mount to succeed
1153 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1154 * filesystem again we still get flush errors, then we will again abort
1155 * any transaction and set the error state, guaranteeing no commits of
1156 * unsafe super blocks.
1157 */
1158 device->last_flush_error = 0;
1159
1160 /* Verify the device is back in a pristine state */
1161 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1162 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1163 ASSERT(list_empty(&device->dev_alloc_list));
1164 ASSERT(list_empty(&device->post_commit_list));
1165 ASSERT(atomic_read(&device->reada_in_flight) == 0);
1166 }
1167
close_fs_devices(struct btrfs_fs_devices * fs_devices)1168 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1169 {
1170 struct btrfs_device *device, *tmp;
1171
1172 lockdep_assert_held(&uuid_mutex);
1173
1174 if (--fs_devices->opened > 0)
1175 return;
1176
1177 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1178 btrfs_close_one_device(device);
1179
1180 WARN_ON(fs_devices->open_devices);
1181 WARN_ON(fs_devices->rw_devices);
1182 fs_devices->opened = 0;
1183 fs_devices->seeding = false;
1184 fs_devices->fs_info = NULL;
1185 }
1186
btrfs_close_devices(struct btrfs_fs_devices * fs_devices)1187 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1188 {
1189 LIST_HEAD(list);
1190 struct btrfs_fs_devices *tmp;
1191
1192 mutex_lock(&uuid_mutex);
1193 close_fs_devices(fs_devices);
1194 if (!fs_devices->opened)
1195 list_splice_init(&fs_devices->seed_list, &list);
1196
1197 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1198 close_fs_devices(fs_devices);
1199 list_del(&fs_devices->seed_list);
1200 free_fs_devices(fs_devices);
1201 }
1202 mutex_unlock(&uuid_mutex);
1203 }
1204
open_fs_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)1205 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1206 fmode_t flags, void *holder)
1207 {
1208 struct btrfs_device *device;
1209 struct btrfs_device *latest_dev = NULL;
1210 struct btrfs_device *tmp_device;
1211
1212 flags |= FMODE_EXCL;
1213
1214 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1215 dev_list) {
1216 int ret;
1217
1218 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1219 if (ret == 0 &&
1220 (!latest_dev || device->generation > latest_dev->generation)) {
1221 latest_dev = device;
1222 } else if (ret == -ENODATA) {
1223 fs_devices->num_devices--;
1224 list_del(&device->dev_list);
1225 btrfs_free_device(device);
1226 }
1227 }
1228 if (fs_devices->open_devices == 0)
1229 return -EINVAL;
1230
1231 fs_devices->opened = 1;
1232 fs_devices->latest_dev = latest_dev;
1233 fs_devices->total_rw_bytes = 0;
1234 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1235 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1236
1237 return 0;
1238 }
1239
devid_cmp(void * priv,const struct list_head * a,const struct list_head * b)1240 static int devid_cmp(void *priv, const struct list_head *a,
1241 const struct list_head *b)
1242 {
1243 const struct btrfs_device *dev1, *dev2;
1244
1245 dev1 = list_entry(a, struct btrfs_device, dev_list);
1246 dev2 = list_entry(b, struct btrfs_device, dev_list);
1247
1248 if (dev1->devid < dev2->devid)
1249 return -1;
1250 else if (dev1->devid > dev2->devid)
1251 return 1;
1252 return 0;
1253 }
1254
btrfs_open_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)1255 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1256 fmode_t flags, void *holder)
1257 {
1258 int ret;
1259
1260 lockdep_assert_held(&uuid_mutex);
1261 /*
1262 * The device_list_mutex cannot be taken here in case opening the
1263 * underlying device takes further locks like open_mutex.
1264 *
1265 * We also don't need the lock here as this is called during mount and
1266 * exclusion is provided by uuid_mutex
1267 */
1268
1269 if (fs_devices->opened) {
1270 fs_devices->opened++;
1271 ret = 0;
1272 } else {
1273 list_sort(NULL, &fs_devices->devices, devid_cmp);
1274 ret = open_fs_devices(fs_devices, flags, holder);
1275 }
1276
1277 return ret;
1278 }
1279
btrfs_release_disk_super(struct btrfs_super_block * super)1280 void btrfs_release_disk_super(struct btrfs_super_block *super)
1281 {
1282 struct page *page = virt_to_page(super);
1283
1284 put_page(page);
1285 }
1286
btrfs_read_disk_super(struct block_device * bdev,u64 bytenr,u64 bytenr_orig)1287 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1288 u64 bytenr, u64 bytenr_orig)
1289 {
1290 struct btrfs_super_block *disk_super;
1291 struct page *page;
1292 void *p;
1293 pgoff_t index;
1294
1295 /* make sure our super fits in the device */
1296 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1297 return ERR_PTR(-EINVAL);
1298
1299 /* make sure our super fits in the page */
1300 if (sizeof(*disk_super) > PAGE_SIZE)
1301 return ERR_PTR(-EINVAL);
1302
1303 /* make sure our super doesn't straddle pages on disk */
1304 index = bytenr >> PAGE_SHIFT;
1305 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1306 return ERR_PTR(-EINVAL);
1307
1308 /* pull in the page with our super */
1309 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1310
1311 if (IS_ERR(page))
1312 return ERR_CAST(page);
1313
1314 p = page_address(page);
1315
1316 /* align our pointer to the offset of the super block */
1317 disk_super = p + offset_in_page(bytenr);
1318
1319 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1320 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1321 btrfs_release_disk_super(p);
1322 return ERR_PTR(-EINVAL);
1323 }
1324
1325 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1326 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1327
1328 return disk_super;
1329 }
1330
btrfs_forget_devices(const char * path)1331 int btrfs_forget_devices(const char *path)
1332 {
1333 int ret;
1334
1335 mutex_lock(&uuid_mutex);
1336 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1337 mutex_unlock(&uuid_mutex);
1338
1339 return ret;
1340 }
1341
1342 /*
1343 * Look for a btrfs signature on a device. This may be called out of the mount path
1344 * and we are not allowed to call set_blocksize during the scan. The superblock
1345 * is read via pagecache
1346 */
btrfs_scan_one_device(const char * path,fmode_t flags,void * holder)1347 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1348 void *holder)
1349 {
1350 struct btrfs_super_block *disk_super;
1351 bool new_device_added = false;
1352 struct btrfs_device *device = NULL;
1353 struct block_device *bdev;
1354 u64 bytenr, bytenr_orig;
1355 int ret;
1356
1357 lockdep_assert_held(&uuid_mutex);
1358
1359 /*
1360 * we would like to check all the supers, but that would make
1361 * a btrfs mount succeed after a mkfs from a different FS.
1362 * So, we need to add a special mount option to scan for
1363 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1364 */
1365 flags |= FMODE_EXCL;
1366
1367 bdev = blkdev_get_by_path(path, flags, holder);
1368 if (IS_ERR(bdev))
1369 return ERR_CAST(bdev);
1370
1371 bytenr_orig = btrfs_sb_offset(0);
1372 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1373 if (ret) {
1374 device = ERR_PTR(ret);
1375 goto error_bdev_put;
1376 }
1377
1378 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1379 if (IS_ERR(disk_super)) {
1380 device = ERR_CAST(disk_super);
1381 goto error_bdev_put;
1382 }
1383
1384 device = device_list_add(path, disk_super, &new_device_added);
1385 if (!IS_ERR(device)) {
1386 if (new_device_added)
1387 btrfs_free_stale_devices(path, device);
1388 }
1389
1390 btrfs_release_disk_super(disk_super);
1391
1392 error_bdev_put:
1393 blkdev_put(bdev, flags);
1394
1395 return device;
1396 }
1397
1398 /*
1399 * Try to find a chunk that intersects [start, start + len] range and when one
1400 * such is found, record the end of it in *start
1401 */
contains_pending_extent(struct btrfs_device * device,u64 * start,u64 len)1402 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1403 u64 len)
1404 {
1405 u64 physical_start, physical_end;
1406
1407 lockdep_assert_held(&device->fs_info->chunk_mutex);
1408
1409 if (!find_first_extent_bit(&device->alloc_state, *start,
1410 &physical_start, &physical_end,
1411 CHUNK_ALLOCATED, NULL)) {
1412
1413 if (in_range(physical_start, *start, len) ||
1414 in_range(*start, physical_start,
1415 physical_end - physical_start)) {
1416 *start = physical_end + 1;
1417 return true;
1418 }
1419 }
1420 return false;
1421 }
1422
dev_extent_search_start(struct btrfs_device * device,u64 start)1423 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1424 {
1425 switch (device->fs_devices->chunk_alloc_policy) {
1426 case BTRFS_CHUNK_ALLOC_REGULAR:
1427 /*
1428 * We don't want to overwrite the superblock on the drive nor
1429 * any area used by the boot loader (grub for example), so we
1430 * make sure to start at an offset of at least 1MB.
1431 */
1432 return max_t(u64, start, SZ_1M);
1433 case BTRFS_CHUNK_ALLOC_ZONED:
1434 /*
1435 * We don't care about the starting region like regular
1436 * allocator, because we anyway use/reserve the first two zones
1437 * for superblock logging.
1438 */
1439 return ALIGN(start, device->zone_info->zone_size);
1440 default:
1441 BUG();
1442 }
1443 }
1444
dev_extent_hole_check_zoned(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1445 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1446 u64 *hole_start, u64 *hole_size,
1447 u64 num_bytes)
1448 {
1449 u64 zone_size = device->zone_info->zone_size;
1450 u64 pos;
1451 int ret;
1452 bool changed = false;
1453
1454 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1455
1456 while (*hole_size > 0) {
1457 pos = btrfs_find_allocatable_zones(device, *hole_start,
1458 *hole_start + *hole_size,
1459 num_bytes);
1460 if (pos != *hole_start) {
1461 *hole_size = *hole_start + *hole_size - pos;
1462 *hole_start = pos;
1463 changed = true;
1464 if (*hole_size < num_bytes)
1465 break;
1466 }
1467
1468 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1469
1470 /* Range is ensured to be empty */
1471 if (!ret)
1472 return changed;
1473
1474 /* Given hole range was invalid (outside of device) */
1475 if (ret == -ERANGE) {
1476 *hole_start += *hole_size;
1477 *hole_size = 0;
1478 return true;
1479 }
1480
1481 *hole_start += zone_size;
1482 *hole_size -= zone_size;
1483 changed = true;
1484 }
1485
1486 return changed;
1487 }
1488
1489 /**
1490 * dev_extent_hole_check - check if specified hole is suitable for allocation
1491 * @device: the device which we have the hole
1492 * @hole_start: starting position of the hole
1493 * @hole_size: the size of the hole
1494 * @num_bytes: the size of the free space that we need
1495 *
1496 * This function may modify @hole_start and @hole_size to reflect the suitable
1497 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1498 */
dev_extent_hole_check(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1499 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1500 u64 *hole_size, u64 num_bytes)
1501 {
1502 bool changed = false;
1503 u64 hole_end = *hole_start + *hole_size;
1504
1505 for (;;) {
1506 /*
1507 * Check before we set max_hole_start, otherwise we could end up
1508 * sending back this offset anyway.
1509 */
1510 if (contains_pending_extent(device, hole_start, *hole_size)) {
1511 if (hole_end >= *hole_start)
1512 *hole_size = hole_end - *hole_start;
1513 else
1514 *hole_size = 0;
1515 changed = true;
1516 }
1517
1518 switch (device->fs_devices->chunk_alloc_policy) {
1519 case BTRFS_CHUNK_ALLOC_REGULAR:
1520 /* No extra check */
1521 break;
1522 case BTRFS_CHUNK_ALLOC_ZONED:
1523 if (dev_extent_hole_check_zoned(device, hole_start,
1524 hole_size, num_bytes)) {
1525 changed = true;
1526 /*
1527 * The changed hole can contain pending extent.
1528 * Loop again to check that.
1529 */
1530 continue;
1531 }
1532 break;
1533 default:
1534 BUG();
1535 }
1536
1537 break;
1538 }
1539
1540 return changed;
1541 }
1542
1543 /*
1544 * find_free_dev_extent_start - find free space in the specified device
1545 * @device: the device which we search the free space in
1546 * @num_bytes: the size of the free space that we need
1547 * @search_start: the position from which to begin the search
1548 * @start: store the start of the free space.
1549 * @len: the size of the free space. that we find, or the size
1550 * of the max free space if we don't find suitable free space
1551 *
1552 * this uses a pretty simple search, the expectation is that it is
1553 * called very infrequently and that a given device has a small number
1554 * of extents
1555 *
1556 * @start is used to store the start of the free space if we find. But if we
1557 * don't find suitable free space, it will be used to store the start position
1558 * of the max free space.
1559 *
1560 * @len is used to store the size of the free space that we find.
1561 * But if we don't find suitable free space, it is used to store the size of
1562 * the max free space.
1563 *
1564 * NOTE: This function will search *commit* root of device tree, and does extra
1565 * check to ensure dev extents are not double allocated.
1566 * This makes the function safe to allocate dev extents but may not report
1567 * correct usable device space, as device extent freed in current transaction
1568 * is not reported as available.
1569 */
find_free_dev_extent_start(struct btrfs_device * device,u64 num_bytes,u64 search_start,u64 * start,u64 * len)1570 static int find_free_dev_extent_start(struct btrfs_device *device,
1571 u64 num_bytes, u64 search_start, u64 *start,
1572 u64 *len)
1573 {
1574 struct btrfs_fs_info *fs_info = device->fs_info;
1575 struct btrfs_root *root = fs_info->dev_root;
1576 struct btrfs_key key;
1577 struct btrfs_dev_extent *dev_extent;
1578 struct btrfs_path *path;
1579 u64 hole_size;
1580 u64 max_hole_start;
1581 u64 max_hole_size;
1582 u64 extent_end;
1583 u64 search_end = device->total_bytes;
1584 int ret;
1585 int slot;
1586 struct extent_buffer *l;
1587
1588 search_start = dev_extent_search_start(device, search_start);
1589
1590 WARN_ON(device->zone_info &&
1591 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1592
1593 path = btrfs_alloc_path();
1594 if (!path)
1595 return -ENOMEM;
1596
1597 max_hole_start = search_start;
1598 max_hole_size = 0;
1599
1600 again:
1601 if (search_start >= search_end ||
1602 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1603 ret = -ENOSPC;
1604 goto out;
1605 }
1606
1607 path->reada = READA_FORWARD;
1608 path->search_commit_root = 1;
1609 path->skip_locking = 1;
1610
1611 key.objectid = device->devid;
1612 key.offset = search_start;
1613 key.type = BTRFS_DEV_EXTENT_KEY;
1614
1615 ret = btrfs_search_backwards(root, &key, path);
1616 if (ret < 0)
1617 goto out;
1618
1619 while (1) {
1620 l = path->nodes[0];
1621 slot = path->slots[0];
1622 if (slot >= btrfs_header_nritems(l)) {
1623 ret = btrfs_next_leaf(root, path);
1624 if (ret == 0)
1625 continue;
1626 if (ret < 0)
1627 goto out;
1628
1629 break;
1630 }
1631 btrfs_item_key_to_cpu(l, &key, slot);
1632
1633 if (key.objectid < device->devid)
1634 goto next;
1635
1636 if (key.objectid > device->devid)
1637 break;
1638
1639 if (key.type != BTRFS_DEV_EXTENT_KEY)
1640 goto next;
1641
1642 if (key.offset > search_start) {
1643 hole_size = key.offset - search_start;
1644 dev_extent_hole_check(device, &search_start, &hole_size,
1645 num_bytes);
1646
1647 if (hole_size > max_hole_size) {
1648 max_hole_start = search_start;
1649 max_hole_size = hole_size;
1650 }
1651
1652 /*
1653 * If this free space is greater than which we need,
1654 * it must be the max free space that we have found
1655 * until now, so max_hole_start must point to the start
1656 * of this free space and the length of this free space
1657 * is stored in max_hole_size. Thus, we return
1658 * max_hole_start and max_hole_size and go back to the
1659 * caller.
1660 */
1661 if (hole_size >= num_bytes) {
1662 ret = 0;
1663 goto out;
1664 }
1665 }
1666
1667 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1668 extent_end = key.offset + btrfs_dev_extent_length(l,
1669 dev_extent);
1670 if (extent_end > search_start)
1671 search_start = extent_end;
1672 next:
1673 path->slots[0]++;
1674 cond_resched();
1675 }
1676
1677 /*
1678 * At this point, search_start should be the end of
1679 * allocated dev extents, and when shrinking the device,
1680 * search_end may be smaller than search_start.
1681 */
1682 if (search_end > search_start) {
1683 hole_size = search_end - search_start;
1684 if (dev_extent_hole_check(device, &search_start, &hole_size,
1685 num_bytes)) {
1686 btrfs_release_path(path);
1687 goto again;
1688 }
1689
1690 if (hole_size > max_hole_size) {
1691 max_hole_start = search_start;
1692 max_hole_size = hole_size;
1693 }
1694 }
1695
1696 /* See above. */
1697 if (max_hole_size < num_bytes)
1698 ret = -ENOSPC;
1699 else
1700 ret = 0;
1701
1702 out:
1703 btrfs_free_path(path);
1704 *start = max_hole_start;
1705 if (len)
1706 *len = max_hole_size;
1707 return ret;
1708 }
1709
find_free_dev_extent(struct btrfs_device * device,u64 num_bytes,u64 * start,u64 * len)1710 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1711 u64 *start, u64 *len)
1712 {
1713 /* FIXME use last free of some kind */
1714 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1715 }
1716
btrfs_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 start,u64 * dev_extent_len)1717 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1718 struct btrfs_device *device,
1719 u64 start, u64 *dev_extent_len)
1720 {
1721 struct btrfs_fs_info *fs_info = device->fs_info;
1722 struct btrfs_root *root = fs_info->dev_root;
1723 int ret;
1724 struct btrfs_path *path;
1725 struct btrfs_key key;
1726 struct btrfs_key found_key;
1727 struct extent_buffer *leaf = NULL;
1728 struct btrfs_dev_extent *extent = NULL;
1729
1730 path = btrfs_alloc_path();
1731 if (!path)
1732 return -ENOMEM;
1733
1734 key.objectid = device->devid;
1735 key.offset = start;
1736 key.type = BTRFS_DEV_EXTENT_KEY;
1737 again:
1738 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1739 if (ret > 0) {
1740 ret = btrfs_previous_item(root, path, key.objectid,
1741 BTRFS_DEV_EXTENT_KEY);
1742 if (ret)
1743 goto out;
1744 leaf = path->nodes[0];
1745 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1746 extent = btrfs_item_ptr(leaf, path->slots[0],
1747 struct btrfs_dev_extent);
1748 BUG_ON(found_key.offset > start || found_key.offset +
1749 btrfs_dev_extent_length(leaf, extent) < start);
1750 key = found_key;
1751 btrfs_release_path(path);
1752 goto again;
1753 } else if (ret == 0) {
1754 leaf = path->nodes[0];
1755 extent = btrfs_item_ptr(leaf, path->slots[0],
1756 struct btrfs_dev_extent);
1757 } else {
1758 goto out;
1759 }
1760
1761 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1762
1763 ret = btrfs_del_item(trans, root, path);
1764 if (ret == 0)
1765 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1766 out:
1767 btrfs_free_path(path);
1768 return ret;
1769 }
1770
find_next_chunk(struct btrfs_fs_info * fs_info)1771 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1772 {
1773 struct extent_map_tree *em_tree;
1774 struct extent_map *em;
1775 struct rb_node *n;
1776 u64 ret = 0;
1777
1778 em_tree = &fs_info->mapping_tree;
1779 read_lock(&em_tree->lock);
1780 n = rb_last(&em_tree->map.rb_root);
1781 if (n) {
1782 em = rb_entry(n, struct extent_map, rb_node);
1783 ret = em->start + em->len;
1784 }
1785 read_unlock(&em_tree->lock);
1786
1787 return ret;
1788 }
1789
find_next_devid(struct btrfs_fs_info * fs_info,u64 * devid_ret)1790 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1791 u64 *devid_ret)
1792 {
1793 int ret;
1794 struct btrfs_key key;
1795 struct btrfs_key found_key;
1796 struct btrfs_path *path;
1797
1798 path = btrfs_alloc_path();
1799 if (!path)
1800 return -ENOMEM;
1801
1802 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1803 key.type = BTRFS_DEV_ITEM_KEY;
1804 key.offset = (u64)-1;
1805
1806 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1807 if (ret < 0)
1808 goto error;
1809
1810 if (ret == 0) {
1811 /* Corruption */
1812 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1813 ret = -EUCLEAN;
1814 goto error;
1815 }
1816
1817 ret = btrfs_previous_item(fs_info->chunk_root, path,
1818 BTRFS_DEV_ITEMS_OBJECTID,
1819 BTRFS_DEV_ITEM_KEY);
1820 if (ret) {
1821 *devid_ret = 1;
1822 } else {
1823 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1824 path->slots[0]);
1825 *devid_ret = found_key.offset + 1;
1826 }
1827 ret = 0;
1828 error:
1829 btrfs_free_path(path);
1830 return ret;
1831 }
1832
1833 /*
1834 * the device information is stored in the chunk root
1835 * the btrfs_device struct should be fully filled in
1836 */
btrfs_add_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)1837 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1838 struct btrfs_device *device)
1839 {
1840 int ret;
1841 struct btrfs_path *path;
1842 struct btrfs_dev_item *dev_item;
1843 struct extent_buffer *leaf;
1844 struct btrfs_key key;
1845 unsigned long ptr;
1846
1847 path = btrfs_alloc_path();
1848 if (!path)
1849 return -ENOMEM;
1850
1851 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1852 key.type = BTRFS_DEV_ITEM_KEY;
1853 key.offset = device->devid;
1854
1855 btrfs_reserve_chunk_metadata(trans, true);
1856 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1857 &key, sizeof(*dev_item));
1858 btrfs_trans_release_chunk_metadata(trans);
1859 if (ret)
1860 goto out;
1861
1862 leaf = path->nodes[0];
1863 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1864
1865 btrfs_set_device_id(leaf, dev_item, device->devid);
1866 btrfs_set_device_generation(leaf, dev_item, 0);
1867 btrfs_set_device_type(leaf, dev_item, device->type);
1868 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1869 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1870 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1871 btrfs_set_device_total_bytes(leaf, dev_item,
1872 btrfs_device_get_disk_total_bytes(device));
1873 btrfs_set_device_bytes_used(leaf, dev_item,
1874 btrfs_device_get_bytes_used(device));
1875 btrfs_set_device_group(leaf, dev_item, 0);
1876 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1877 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1878 btrfs_set_device_start_offset(leaf, dev_item, 0);
1879
1880 ptr = btrfs_device_uuid(dev_item);
1881 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1882 ptr = btrfs_device_fsid(dev_item);
1883 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1884 ptr, BTRFS_FSID_SIZE);
1885 btrfs_mark_buffer_dirty(leaf);
1886
1887 ret = 0;
1888 out:
1889 btrfs_free_path(path);
1890 return ret;
1891 }
1892
1893 /*
1894 * Function to update ctime/mtime for a given device path.
1895 * Mainly used for ctime/mtime based probe like libblkid.
1896 *
1897 * We don't care about errors here, this is just to be kind to userspace.
1898 */
update_dev_time(const char * device_path)1899 static void update_dev_time(const char *device_path)
1900 {
1901 struct path path;
1902 struct timespec64 now;
1903 int ret;
1904
1905 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1906 if (ret)
1907 return;
1908
1909 now = current_time(d_inode(path.dentry));
1910 inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME);
1911 path_put(&path);
1912 }
1913
btrfs_rm_dev_item(struct btrfs_device * device)1914 static int btrfs_rm_dev_item(struct btrfs_device *device)
1915 {
1916 struct btrfs_root *root = device->fs_info->chunk_root;
1917 int ret;
1918 struct btrfs_path *path;
1919 struct btrfs_key key;
1920 struct btrfs_trans_handle *trans;
1921
1922 path = btrfs_alloc_path();
1923 if (!path)
1924 return -ENOMEM;
1925
1926 trans = btrfs_start_transaction(root, 0);
1927 if (IS_ERR(trans)) {
1928 btrfs_free_path(path);
1929 return PTR_ERR(trans);
1930 }
1931 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1932 key.type = BTRFS_DEV_ITEM_KEY;
1933 key.offset = device->devid;
1934
1935 btrfs_reserve_chunk_metadata(trans, false);
1936 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1937 btrfs_trans_release_chunk_metadata(trans);
1938 if (ret) {
1939 if (ret > 0)
1940 ret = -ENOENT;
1941 btrfs_abort_transaction(trans, ret);
1942 btrfs_end_transaction(trans);
1943 goto out;
1944 }
1945
1946 ret = btrfs_del_item(trans, root, path);
1947 if (ret) {
1948 btrfs_abort_transaction(trans, ret);
1949 btrfs_end_transaction(trans);
1950 }
1951
1952 out:
1953 btrfs_free_path(path);
1954 if (!ret)
1955 ret = btrfs_commit_transaction(trans);
1956 return ret;
1957 }
1958
1959 /*
1960 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1961 * filesystem. It's up to the caller to adjust that number regarding eg. device
1962 * replace.
1963 */
btrfs_check_raid_min_devices(struct btrfs_fs_info * fs_info,u64 num_devices)1964 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1965 u64 num_devices)
1966 {
1967 u64 all_avail;
1968 unsigned seq;
1969 int i;
1970
1971 do {
1972 seq = read_seqbegin(&fs_info->profiles_lock);
1973
1974 all_avail = fs_info->avail_data_alloc_bits |
1975 fs_info->avail_system_alloc_bits |
1976 fs_info->avail_metadata_alloc_bits;
1977 } while (read_seqretry(&fs_info->profiles_lock, seq));
1978
1979 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1980 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1981 continue;
1982
1983 if (num_devices < btrfs_raid_array[i].devs_min)
1984 return btrfs_raid_array[i].mindev_error;
1985 }
1986
1987 return 0;
1988 }
1989
btrfs_find_next_active_device(struct btrfs_fs_devices * fs_devs,struct btrfs_device * device)1990 static struct btrfs_device * btrfs_find_next_active_device(
1991 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1992 {
1993 struct btrfs_device *next_device;
1994
1995 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1996 if (next_device != device &&
1997 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1998 && next_device->bdev)
1999 return next_device;
2000 }
2001
2002 return NULL;
2003 }
2004
2005 /*
2006 * Helper function to check if the given device is part of s_bdev / latest_dev
2007 * and replace it with the provided or the next active device, in the context
2008 * where this function called, there should be always be another device (or
2009 * this_dev) which is active.
2010 */
btrfs_assign_next_active_device(struct btrfs_device * device,struct btrfs_device * next_device)2011 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2012 struct btrfs_device *next_device)
2013 {
2014 struct btrfs_fs_info *fs_info = device->fs_info;
2015
2016 if (!next_device)
2017 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2018 device);
2019 ASSERT(next_device);
2020
2021 if (fs_info->sb->s_bdev &&
2022 (fs_info->sb->s_bdev == device->bdev))
2023 fs_info->sb->s_bdev = next_device->bdev;
2024
2025 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2026 fs_info->fs_devices->latest_dev = next_device;
2027 }
2028
2029 /*
2030 * Return btrfs_fs_devices::num_devices excluding the device that's being
2031 * currently replaced.
2032 */
btrfs_num_devices(struct btrfs_fs_info * fs_info)2033 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2034 {
2035 u64 num_devices = fs_info->fs_devices->num_devices;
2036
2037 down_read(&fs_info->dev_replace.rwsem);
2038 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2039 ASSERT(num_devices > 1);
2040 num_devices--;
2041 }
2042 up_read(&fs_info->dev_replace.rwsem);
2043
2044 return num_devices;
2045 }
2046
btrfs_scratch_superblocks(struct btrfs_fs_info * fs_info,struct block_device * bdev,const char * device_path)2047 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2048 struct block_device *bdev,
2049 const char *device_path)
2050 {
2051 struct btrfs_super_block *disk_super;
2052 int copy_num;
2053
2054 if (!bdev)
2055 return;
2056
2057 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2058 struct page *page;
2059 int ret;
2060
2061 disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2062 if (IS_ERR(disk_super))
2063 continue;
2064
2065 if (bdev_is_zoned(bdev)) {
2066 btrfs_reset_sb_log_zones(bdev, copy_num);
2067 continue;
2068 }
2069
2070 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2071
2072 page = virt_to_page(disk_super);
2073 set_page_dirty(page);
2074 lock_page(page);
2075 /* write_on_page() unlocks the page */
2076 ret = write_one_page(page);
2077 if (ret)
2078 btrfs_warn(fs_info,
2079 "error clearing superblock number %d (%d)",
2080 copy_num, ret);
2081 btrfs_release_disk_super(disk_super);
2082
2083 }
2084
2085 /* Notify udev that device has changed */
2086 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2087
2088 /* Update ctime/mtime for device path for libblkid */
2089 update_dev_time(device_path);
2090 }
2091
btrfs_rm_device(struct btrfs_fs_info * fs_info,struct btrfs_dev_lookup_args * args,struct block_device ** bdev,fmode_t * mode)2092 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2093 struct btrfs_dev_lookup_args *args,
2094 struct block_device **bdev, fmode_t *mode)
2095 {
2096 struct btrfs_device *device;
2097 struct btrfs_fs_devices *cur_devices;
2098 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2099 u64 num_devices;
2100 int ret = 0;
2101
2102 /*
2103 * The device list in fs_devices is accessed without locks (neither
2104 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2105 * filesystem and another device rm cannot run.
2106 */
2107 num_devices = btrfs_num_devices(fs_info);
2108
2109 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2110 if (ret)
2111 goto out;
2112
2113 device = btrfs_find_device(fs_info->fs_devices, args);
2114 if (!device) {
2115 if (args->missing)
2116 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2117 else
2118 ret = -ENOENT;
2119 goto out;
2120 }
2121
2122 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2123 btrfs_warn_in_rcu(fs_info,
2124 "cannot remove device %s (devid %llu) due to active swapfile",
2125 rcu_str_deref(device->name), device->devid);
2126 ret = -ETXTBSY;
2127 goto out;
2128 }
2129
2130 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2131 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2132 goto out;
2133 }
2134
2135 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2136 fs_info->fs_devices->rw_devices == 1) {
2137 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2138 goto out;
2139 }
2140
2141 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2142 mutex_lock(&fs_info->chunk_mutex);
2143 list_del_init(&device->dev_alloc_list);
2144 device->fs_devices->rw_devices--;
2145 mutex_unlock(&fs_info->chunk_mutex);
2146 }
2147
2148 ret = btrfs_shrink_device(device, 0);
2149 if (!ret)
2150 btrfs_reada_remove_dev(device);
2151 if (ret)
2152 goto error_undo;
2153
2154 /*
2155 * TODO: the superblock still includes this device in its num_devices
2156 * counter although write_all_supers() is not locked out. This
2157 * could give a filesystem state which requires a degraded mount.
2158 */
2159 ret = btrfs_rm_dev_item(device);
2160 if (ret)
2161 goto error_undo;
2162
2163 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2164 btrfs_scrub_cancel_dev(device);
2165
2166 /*
2167 * the device list mutex makes sure that we don't change
2168 * the device list while someone else is writing out all
2169 * the device supers. Whoever is writing all supers, should
2170 * lock the device list mutex before getting the number of
2171 * devices in the super block (super_copy). Conversely,
2172 * whoever updates the number of devices in the super block
2173 * (super_copy) should hold the device list mutex.
2174 */
2175
2176 /*
2177 * In normal cases the cur_devices == fs_devices. But in case
2178 * of deleting a seed device, the cur_devices should point to
2179 * its own fs_devices listed under the fs_devices->seed_list.
2180 */
2181 cur_devices = device->fs_devices;
2182 mutex_lock(&fs_devices->device_list_mutex);
2183 list_del_rcu(&device->dev_list);
2184
2185 cur_devices->num_devices--;
2186 cur_devices->total_devices--;
2187 /* Update total_devices of the parent fs_devices if it's seed */
2188 if (cur_devices != fs_devices)
2189 fs_devices->total_devices--;
2190
2191 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2192 cur_devices->missing_devices--;
2193
2194 btrfs_assign_next_active_device(device, NULL);
2195
2196 if (device->bdev) {
2197 cur_devices->open_devices--;
2198 /* remove sysfs entry */
2199 btrfs_sysfs_remove_device(device);
2200 }
2201
2202 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2203 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2204 mutex_unlock(&fs_devices->device_list_mutex);
2205
2206 /*
2207 * At this point, the device is zero sized and detached from the
2208 * devices list. All that's left is to zero out the old supers and
2209 * free the device.
2210 *
2211 * We cannot call btrfs_close_bdev() here because we're holding the sb
2212 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2213 * block device and it's dependencies. Instead just flush the device
2214 * and let the caller do the final blkdev_put.
2215 */
2216 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2217 btrfs_scratch_superblocks(fs_info, device->bdev,
2218 device->name->str);
2219 if (device->bdev) {
2220 sync_blockdev(device->bdev);
2221 invalidate_bdev(device->bdev);
2222 }
2223 }
2224
2225 *bdev = device->bdev;
2226 *mode = device->mode;
2227 synchronize_rcu();
2228 btrfs_free_device(device);
2229
2230 /*
2231 * This can happen if cur_devices is the private seed devices list. We
2232 * cannot call close_fs_devices() here because it expects the uuid_mutex
2233 * to be held, but in fact we don't need that for the private
2234 * seed_devices, we can simply decrement cur_devices->opened and then
2235 * remove it from our list and free the fs_devices.
2236 */
2237 if (cur_devices->num_devices == 0) {
2238 list_del_init(&cur_devices->seed_list);
2239 ASSERT(cur_devices->opened == 1);
2240 cur_devices->opened--;
2241 free_fs_devices(cur_devices);
2242 }
2243
2244 out:
2245 return ret;
2246
2247 error_undo:
2248 btrfs_reada_undo_remove_dev(device);
2249 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2250 mutex_lock(&fs_info->chunk_mutex);
2251 list_add(&device->dev_alloc_list,
2252 &fs_devices->alloc_list);
2253 device->fs_devices->rw_devices++;
2254 mutex_unlock(&fs_info->chunk_mutex);
2255 }
2256 goto out;
2257 }
2258
btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device * srcdev)2259 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2260 {
2261 struct btrfs_fs_devices *fs_devices;
2262
2263 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2264
2265 /*
2266 * in case of fs with no seed, srcdev->fs_devices will point
2267 * to fs_devices of fs_info. However when the dev being replaced is
2268 * a seed dev it will point to the seed's local fs_devices. In short
2269 * srcdev will have its correct fs_devices in both the cases.
2270 */
2271 fs_devices = srcdev->fs_devices;
2272
2273 list_del_rcu(&srcdev->dev_list);
2274 list_del(&srcdev->dev_alloc_list);
2275 fs_devices->num_devices--;
2276 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2277 fs_devices->missing_devices--;
2278
2279 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2280 fs_devices->rw_devices--;
2281
2282 if (srcdev->bdev)
2283 fs_devices->open_devices--;
2284 }
2285
btrfs_rm_dev_replace_free_srcdev(struct btrfs_device * srcdev)2286 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2287 {
2288 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2289
2290 mutex_lock(&uuid_mutex);
2291
2292 btrfs_close_bdev(srcdev);
2293 synchronize_rcu();
2294 btrfs_free_device(srcdev);
2295
2296 /* if this is no devs we rather delete the fs_devices */
2297 if (!fs_devices->num_devices) {
2298 /*
2299 * On a mounted FS, num_devices can't be zero unless it's a
2300 * seed. In case of a seed device being replaced, the replace
2301 * target added to the sprout FS, so there will be no more
2302 * device left under the seed FS.
2303 */
2304 ASSERT(fs_devices->seeding);
2305
2306 list_del_init(&fs_devices->seed_list);
2307 close_fs_devices(fs_devices);
2308 free_fs_devices(fs_devices);
2309 }
2310 mutex_unlock(&uuid_mutex);
2311 }
2312
btrfs_destroy_dev_replace_tgtdev(struct btrfs_device * tgtdev)2313 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2314 {
2315 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2316
2317 mutex_lock(&fs_devices->device_list_mutex);
2318
2319 btrfs_sysfs_remove_device(tgtdev);
2320
2321 if (tgtdev->bdev)
2322 fs_devices->open_devices--;
2323
2324 fs_devices->num_devices--;
2325
2326 btrfs_assign_next_active_device(tgtdev, NULL);
2327
2328 list_del_rcu(&tgtdev->dev_list);
2329
2330 mutex_unlock(&fs_devices->device_list_mutex);
2331
2332 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2333 tgtdev->name->str);
2334
2335 btrfs_close_bdev(tgtdev);
2336 synchronize_rcu();
2337 btrfs_free_device(tgtdev);
2338 }
2339
2340 /**
2341 * Populate args from device at path
2342 *
2343 * @fs_info: the filesystem
2344 * @args: the args to populate
2345 * @path: the path to the device
2346 *
2347 * This will read the super block of the device at @path and populate @args with
2348 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2349 * lookup a device to operate on, but need to do it before we take any locks.
2350 * This properly handles the special case of "missing" that a user may pass in,
2351 * and does some basic sanity checks. The caller must make sure that @path is
2352 * properly NUL terminated before calling in, and must call
2353 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2354 * uuid buffers.
2355 *
2356 * Return: 0 for success, -errno for failure
2357 */
btrfs_get_dev_args_from_path(struct btrfs_fs_info * fs_info,struct btrfs_dev_lookup_args * args,const char * path)2358 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2359 struct btrfs_dev_lookup_args *args,
2360 const char *path)
2361 {
2362 struct btrfs_super_block *disk_super;
2363 struct block_device *bdev;
2364 int ret;
2365
2366 if (!path || !path[0])
2367 return -EINVAL;
2368 if (!strcmp(path, "missing")) {
2369 args->missing = true;
2370 return 0;
2371 }
2372
2373 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2374 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2375 if (!args->uuid || !args->fsid) {
2376 btrfs_put_dev_args_from_path(args);
2377 return -ENOMEM;
2378 }
2379
2380 ret = btrfs_get_bdev_and_sb(path, FMODE_READ, fs_info->bdev_holder, 0,
2381 &bdev, &disk_super);
2382 if (ret)
2383 return ret;
2384 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2385 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2386 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2387 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2388 else
2389 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2390 btrfs_release_disk_super(disk_super);
2391 blkdev_put(bdev, FMODE_READ);
2392 return 0;
2393 }
2394
2395 /*
2396 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2397 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2398 * that don't need to be freed.
2399 */
btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args * args)2400 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2401 {
2402 kfree(args->uuid);
2403 kfree(args->fsid);
2404 args->uuid = NULL;
2405 args->fsid = NULL;
2406 }
2407
btrfs_find_device_by_devspec(struct btrfs_fs_info * fs_info,u64 devid,const char * device_path)2408 struct btrfs_device *btrfs_find_device_by_devspec(
2409 struct btrfs_fs_info *fs_info, u64 devid,
2410 const char *device_path)
2411 {
2412 BTRFS_DEV_LOOKUP_ARGS(args);
2413 struct btrfs_device *device;
2414 int ret;
2415
2416 if (devid) {
2417 args.devid = devid;
2418 device = btrfs_find_device(fs_info->fs_devices, &args);
2419 if (!device)
2420 return ERR_PTR(-ENOENT);
2421 return device;
2422 }
2423
2424 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2425 if (ret)
2426 return ERR_PTR(ret);
2427 device = btrfs_find_device(fs_info->fs_devices, &args);
2428 btrfs_put_dev_args_from_path(&args);
2429 if (!device)
2430 return ERR_PTR(-ENOENT);
2431 return device;
2432 }
2433
2434 /*
2435 * does all the dirty work required for changing file system's UUID.
2436 */
btrfs_prepare_sprout(struct btrfs_fs_info * fs_info)2437 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2438 {
2439 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2440 struct btrfs_fs_devices *old_devices;
2441 struct btrfs_fs_devices *seed_devices;
2442 struct btrfs_super_block *disk_super = fs_info->super_copy;
2443 struct btrfs_device *device;
2444 u64 super_flags;
2445
2446 lockdep_assert_held(&uuid_mutex);
2447 if (!fs_devices->seeding)
2448 return -EINVAL;
2449
2450 /*
2451 * Private copy of the seed devices, anchored at
2452 * fs_info->fs_devices->seed_list
2453 */
2454 seed_devices = alloc_fs_devices(NULL, NULL);
2455 if (IS_ERR(seed_devices))
2456 return PTR_ERR(seed_devices);
2457
2458 /*
2459 * It's necessary to retain a copy of the original seed fs_devices in
2460 * fs_uuids so that filesystems which have been seeded can successfully
2461 * reference the seed device from open_seed_devices. This also supports
2462 * multiple fs seed.
2463 */
2464 old_devices = clone_fs_devices(fs_devices);
2465 if (IS_ERR(old_devices)) {
2466 kfree(seed_devices);
2467 return PTR_ERR(old_devices);
2468 }
2469
2470 list_add(&old_devices->fs_list, &fs_uuids);
2471
2472 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2473 seed_devices->opened = 1;
2474 INIT_LIST_HEAD(&seed_devices->devices);
2475 INIT_LIST_HEAD(&seed_devices->alloc_list);
2476 mutex_init(&seed_devices->device_list_mutex);
2477
2478 mutex_lock(&fs_devices->device_list_mutex);
2479 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2480 synchronize_rcu);
2481 list_for_each_entry(device, &seed_devices->devices, dev_list)
2482 device->fs_devices = seed_devices;
2483
2484 fs_devices->seeding = false;
2485 fs_devices->num_devices = 0;
2486 fs_devices->open_devices = 0;
2487 fs_devices->missing_devices = 0;
2488 fs_devices->rotating = false;
2489 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2490
2491 generate_random_uuid(fs_devices->fsid);
2492 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2493 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2494 mutex_unlock(&fs_devices->device_list_mutex);
2495
2496 super_flags = btrfs_super_flags(disk_super) &
2497 ~BTRFS_SUPER_FLAG_SEEDING;
2498 btrfs_set_super_flags(disk_super, super_flags);
2499
2500 return 0;
2501 }
2502
2503 /*
2504 * Store the expected generation for seed devices in device items.
2505 */
btrfs_finish_sprout(struct btrfs_trans_handle * trans)2506 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2507 {
2508 BTRFS_DEV_LOOKUP_ARGS(args);
2509 struct btrfs_fs_info *fs_info = trans->fs_info;
2510 struct btrfs_root *root = fs_info->chunk_root;
2511 struct btrfs_path *path;
2512 struct extent_buffer *leaf;
2513 struct btrfs_dev_item *dev_item;
2514 struct btrfs_device *device;
2515 struct btrfs_key key;
2516 u8 fs_uuid[BTRFS_FSID_SIZE];
2517 u8 dev_uuid[BTRFS_UUID_SIZE];
2518 int ret;
2519
2520 path = btrfs_alloc_path();
2521 if (!path)
2522 return -ENOMEM;
2523
2524 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2525 key.offset = 0;
2526 key.type = BTRFS_DEV_ITEM_KEY;
2527
2528 while (1) {
2529 btrfs_reserve_chunk_metadata(trans, false);
2530 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2531 btrfs_trans_release_chunk_metadata(trans);
2532 if (ret < 0)
2533 goto error;
2534
2535 leaf = path->nodes[0];
2536 next_slot:
2537 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2538 ret = btrfs_next_leaf(root, path);
2539 if (ret > 0)
2540 break;
2541 if (ret < 0)
2542 goto error;
2543 leaf = path->nodes[0];
2544 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2545 btrfs_release_path(path);
2546 continue;
2547 }
2548
2549 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2550 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2551 key.type != BTRFS_DEV_ITEM_KEY)
2552 break;
2553
2554 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2555 struct btrfs_dev_item);
2556 args.devid = btrfs_device_id(leaf, dev_item);
2557 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2558 BTRFS_UUID_SIZE);
2559 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2560 BTRFS_FSID_SIZE);
2561 args.uuid = dev_uuid;
2562 args.fsid = fs_uuid;
2563 device = btrfs_find_device(fs_info->fs_devices, &args);
2564 BUG_ON(!device); /* Logic error */
2565
2566 if (device->fs_devices->seeding) {
2567 btrfs_set_device_generation(leaf, dev_item,
2568 device->generation);
2569 btrfs_mark_buffer_dirty(leaf);
2570 }
2571
2572 path->slots[0]++;
2573 goto next_slot;
2574 }
2575 ret = 0;
2576 error:
2577 btrfs_free_path(path);
2578 return ret;
2579 }
2580
btrfs_init_new_device(struct btrfs_fs_info * fs_info,const char * device_path)2581 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2582 {
2583 struct btrfs_root *root = fs_info->dev_root;
2584 struct request_queue *q;
2585 struct btrfs_trans_handle *trans;
2586 struct btrfs_device *device;
2587 struct block_device *bdev;
2588 struct super_block *sb = fs_info->sb;
2589 struct rcu_string *name;
2590 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2591 u64 orig_super_total_bytes;
2592 u64 orig_super_num_devices;
2593 int seeding_dev = 0;
2594 int ret = 0;
2595 bool locked = false;
2596
2597 if (sb_rdonly(sb) && !fs_devices->seeding)
2598 return -EROFS;
2599
2600 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2601 fs_info->bdev_holder);
2602 if (IS_ERR(bdev))
2603 return PTR_ERR(bdev);
2604
2605 if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2606 ret = -EINVAL;
2607 goto error;
2608 }
2609
2610 if (fs_devices->seeding) {
2611 seeding_dev = 1;
2612 down_write(&sb->s_umount);
2613 mutex_lock(&uuid_mutex);
2614 locked = true;
2615 }
2616
2617 sync_blockdev(bdev);
2618
2619 rcu_read_lock();
2620 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2621 if (device->bdev == bdev) {
2622 ret = -EEXIST;
2623 rcu_read_unlock();
2624 goto error;
2625 }
2626 }
2627 rcu_read_unlock();
2628
2629 device = btrfs_alloc_device(fs_info, NULL, NULL);
2630 if (IS_ERR(device)) {
2631 /* we can safely leave the fs_devices entry around */
2632 ret = PTR_ERR(device);
2633 goto error;
2634 }
2635
2636 name = rcu_string_strdup(device_path, GFP_KERNEL);
2637 if (!name) {
2638 ret = -ENOMEM;
2639 goto error_free_device;
2640 }
2641 rcu_assign_pointer(device->name, name);
2642
2643 device->fs_info = fs_info;
2644 device->bdev = bdev;
2645
2646 ret = btrfs_get_dev_zone_info(device);
2647 if (ret)
2648 goto error_free_device;
2649
2650 trans = btrfs_start_transaction(root, 0);
2651 if (IS_ERR(trans)) {
2652 ret = PTR_ERR(trans);
2653 goto error_free_zone;
2654 }
2655
2656 q = bdev_get_queue(bdev);
2657 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2658 device->generation = trans->transid;
2659 device->io_width = fs_info->sectorsize;
2660 device->io_align = fs_info->sectorsize;
2661 device->sector_size = fs_info->sectorsize;
2662 device->total_bytes =
2663 round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2664 device->disk_total_bytes = device->total_bytes;
2665 device->commit_total_bytes = device->total_bytes;
2666 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2667 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2668 device->mode = FMODE_EXCL;
2669 device->dev_stats_valid = 1;
2670 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2671
2672 if (seeding_dev) {
2673 btrfs_clear_sb_rdonly(sb);
2674 ret = btrfs_prepare_sprout(fs_info);
2675 if (ret) {
2676 btrfs_abort_transaction(trans, ret);
2677 goto error_trans;
2678 }
2679 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2680 device);
2681 }
2682
2683 device->fs_devices = fs_devices;
2684
2685 mutex_lock(&fs_devices->device_list_mutex);
2686 mutex_lock(&fs_info->chunk_mutex);
2687 list_add_rcu(&device->dev_list, &fs_devices->devices);
2688 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2689 fs_devices->num_devices++;
2690 fs_devices->open_devices++;
2691 fs_devices->rw_devices++;
2692 fs_devices->total_devices++;
2693 fs_devices->total_rw_bytes += device->total_bytes;
2694
2695 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2696
2697 if (!blk_queue_nonrot(q))
2698 fs_devices->rotating = true;
2699
2700 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2701 btrfs_set_super_total_bytes(fs_info->super_copy,
2702 round_down(orig_super_total_bytes + device->total_bytes,
2703 fs_info->sectorsize));
2704
2705 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2706 btrfs_set_super_num_devices(fs_info->super_copy,
2707 orig_super_num_devices + 1);
2708
2709 /*
2710 * we've got more storage, clear any full flags on the space
2711 * infos
2712 */
2713 btrfs_clear_space_info_full(fs_info);
2714
2715 mutex_unlock(&fs_info->chunk_mutex);
2716
2717 /* Add sysfs device entry */
2718 btrfs_sysfs_add_device(device);
2719
2720 mutex_unlock(&fs_devices->device_list_mutex);
2721
2722 if (seeding_dev) {
2723 mutex_lock(&fs_info->chunk_mutex);
2724 ret = init_first_rw_device(trans);
2725 mutex_unlock(&fs_info->chunk_mutex);
2726 if (ret) {
2727 btrfs_abort_transaction(trans, ret);
2728 goto error_sysfs;
2729 }
2730 }
2731
2732 ret = btrfs_add_dev_item(trans, device);
2733 if (ret) {
2734 btrfs_abort_transaction(trans, ret);
2735 goto error_sysfs;
2736 }
2737
2738 if (seeding_dev) {
2739 ret = btrfs_finish_sprout(trans);
2740 if (ret) {
2741 btrfs_abort_transaction(trans, ret);
2742 goto error_sysfs;
2743 }
2744
2745 /*
2746 * fs_devices now represents the newly sprouted filesystem and
2747 * its fsid has been changed by btrfs_prepare_sprout
2748 */
2749 btrfs_sysfs_update_sprout_fsid(fs_devices);
2750 }
2751
2752 ret = btrfs_commit_transaction(trans);
2753
2754 if (seeding_dev) {
2755 mutex_unlock(&uuid_mutex);
2756 up_write(&sb->s_umount);
2757 locked = false;
2758
2759 if (ret) /* transaction commit */
2760 return ret;
2761
2762 ret = btrfs_relocate_sys_chunks(fs_info);
2763 if (ret < 0)
2764 btrfs_handle_fs_error(fs_info, ret,
2765 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2766 trans = btrfs_attach_transaction(root);
2767 if (IS_ERR(trans)) {
2768 if (PTR_ERR(trans) == -ENOENT)
2769 return 0;
2770 ret = PTR_ERR(trans);
2771 trans = NULL;
2772 goto error_sysfs;
2773 }
2774 ret = btrfs_commit_transaction(trans);
2775 }
2776
2777 /*
2778 * Now that we have written a new super block to this device, check all
2779 * other fs_devices list if device_path alienates any other scanned
2780 * device.
2781 * We can ignore the return value as it typically returns -EINVAL and
2782 * only succeeds if the device was an alien.
2783 */
2784 btrfs_forget_devices(device_path);
2785
2786 /* Update ctime/mtime for blkid or udev */
2787 update_dev_time(device_path);
2788
2789 return ret;
2790
2791 error_sysfs:
2792 btrfs_sysfs_remove_device(device);
2793 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2794 mutex_lock(&fs_info->chunk_mutex);
2795 list_del_rcu(&device->dev_list);
2796 list_del(&device->dev_alloc_list);
2797 fs_info->fs_devices->num_devices--;
2798 fs_info->fs_devices->open_devices--;
2799 fs_info->fs_devices->rw_devices--;
2800 fs_info->fs_devices->total_devices--;
2801 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2802 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2803 btrfs_set_super_total_bytes(fs_info->super_copy,
2804 orig_super_total_bytes);
2805 btrfs_set_super_num_devices(fs_info->super_copy,
2806 orig_super_num_devices);
2807 mutex_unlock(&fs_info->chunk_mutex);
2808 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2809 error_trans:
2810 if (seeding_dev)
2811 btrfs_set_sb_rdonly(sb);
2812 if (trans)
2813 btrfs_end_transaction(trans);
2814 error_free_zone:
2815 btrfs_destroy_dev_zone_info(device);
2816 error_free_device:
2817 btrfs_free_device(device);
2818 error:
2819 blkdev_put(bdev, FMODE_EXCL);
2820 if (locked) {
2821 mutex_unlock(&uuid_mutex);
2822 up_write(&sb->s_umount);
2823 }
2824 return ret;
2825 }
2826
btrfs_update_device(struct btrfs_trans_handle * trans,struct btrfs_device * device)2827 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2828 struct btrfs_device *device)
2829 {
2830 int ret;
2831 struct btrfs_path *path;
2832 struct btrfs_root *root = device->fs_info->chunk_root;
2833 struct btrfs_dev_item *dev_item;
2834 struct extent_buffer *leaf;
2835 struct btrfs_key key;
2836
2837 path = btrfs_alloc_path();
2838 if (!path)
2839 return -ENOMEM;
2840
2841 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2842 key.type = BTRFS_DEV_ITEM_KEY;
2843 key.offset = device->devid;
2844
2845 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2846 if (ret < 0)
2847 goto out;
2848
2849 if (ret > 0) {
2850 ret = -ENOENT;
2851 goto out;
2852 }
2853
2854 leaf = path->nodes[0];
2855 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2856
2857 btrfs_set_device_id(leaf, dev_item, device->devid);
2858 btrfs_set_device_type(leaf, dev_item, device->type);
2859 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2860 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2861 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2862 btrfs_set_device_total_bytes(leaf, dev_item,
2863 btrfs_device_get_disk_total_bytes(device));
2864 btrfs_set_device_bytes_used(leaf, dev_item,
2865 btrfs_device_get_bytes_used(device));
2866 btrfs_mark_buffer_dirty(leaf);
2867
2868 out:
2869 btrfs_free_path(path);
2870 return ret;
2871 }
2872
btrfs_grow_device(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 new_size)2873 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2874 struct btrfs_device *device, u64 new_size)
2875 {
2876 struct btrfs_fs_info *fs_info = device->fs_info;
2877 struct btrfs_super_block *super_copy = fs_info->super_copy;
2878 u64 old_total;
2879 u64 diff;
2880 int ret;
2881
2882 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2883 return -EACCES;
2884
2885 new_size = round_down(new_size, fs_info->sectorsize);
2886
2887 mutex_lock(&fs_info->chunk_mutex);
2888 old_total = btrfs_super_total_bytes(super_copy);
2889 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2890
2891 if (new_size <= device->total_bytes ||
2892 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2893 mutex_unlock(&fs_info->chunk_mutex);
2894 return -EINVAL;
2895 }
2896
2897 btrfs_set_super_total_bytes(super_copy,
2898 round_down(old_total + diff, fs_info->sectorsize));
2899 device->fs_devices->total_rw_bytes += diff;
2900
2901 btrfs_device_set_total_bytes(device, new_size);
2902 btrfs_device_set_disk_total_bytes(device, new_size);
2903 btrfs_clear_space_info_full(device->fs_info);
2904 if (list_empty(&device->post_commit_list))
2905 list_add_tail(&device->post_commit_list,
2906 &trans->transaction->dev_update_list);
2907 mutex_unlock(&fs_info->chunk_mutex);
2908
2909 btrfs_reserve_chunk_metadata(trans, false);
2910 ret = btrfs_update_device(trans, device);
2911 btrfs_trans_release_chunk_metadata(trans);
2912
2913 return ret;
2914 }
2915
btrfs_free_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)2916 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2917 {
2918 struct btrfs_fs_info *fs_info = trans->fs_info;
2919 struct btrfs_root *root = fs_info->chunk_root;
2920 int ret;
2921 struct btrfs_path *path;
2922 struct btrfs_key key;
2923
2924 path = btrfs_alloc_path();
2925 if (!path)
2926 return -ENOMEM;
2927
2928 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2929 key.offset = chunk_offset;
2930 key.type = BTRFS_CHUNK_ITEM_KEY;
2931
2932 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2933 if (ret < 0)
2934 goto out;
2935 else if (ret > 0) { /* Logic error or corruption */
2936 btrfs_handle_fs_error(fs_info, -ENOENT,
2937 "Failed lookup while freeing chunk.");
2938 ret = -ENOENT;
2939 goto out;
2940 }
2941
2942 ret = btrfs_del_item(trans, root, path);
2943 if (ret < 0)
2944 btrfs_handle_fs_error(fs_info, ret,
2945 "Failed to delete chunk item.");
2946 out:
2947 btrfs_free_path(path);
2948 return ret;
2949 }
2950
btrfs_del_sys_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)2951 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2952 {
2953 struct btrfs_super_block *super_copy = fs_info->super_copy;
2954 struct btrfs_disk_key *disk_key;
2955 struct btrfs_chunk *chunk;
2956 u8 *ptr;
2957 int ret = 0;
2958 u32 num_stripes;
2959 u32 array_size;
2960 u32 len = 0;
2961 u32 cur;
2962 struct btrfs_key key;
2963
2964 lockdep_assert_held(&fs_info->chunk_mutex);
2965 array_size = btrfs_super_sys_array_size(super_copy);
2966
2967 ptr = super_copy->sys_chunk_array;
2968 cur = 0;
2969
2970 while (cur < array_size) {
2971 disk_key = (struct btrfs_disk_key *)ptr;
2972 btrfs_disk_key_to_cpu(&key, disk_key);
2973
2974 len = sizeof(*disk_key);
2975
2976 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2977 chunk = (struct btrfs_chunk *)(ptr + len);
2978 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2979 len += btrfs_chunk_item_size(num_stripes);
2980 } else {
2981 ret = -EIO;
2982 break;
2983 }
2984 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2985 key.offset == chunk_offset) {
2986 memmove(ptr, ptr + len, array_size - (cur + len));
2987 array_size -= len;
2988 btrfs_set_super_sys_array_size(super_copy, array_size);
2989 } else {
2990 ptr += len;
2991 cur += len;
2992 }
2993 }
2994 return ret;
2995 }
2996
2997 /*
2998 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2999 * @logical: Logical block offset in bytes.
3000 * @length: Length of extent in bytes.
3001 *
3002 * Return: Chunk mapping or ERR_PTR.
3003 */
btrfs_get_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)3004 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3005 u64 logical, u64 length)
3006 {
3007 struct extent_map_tree *em_tree;
3008 struct extent_map *em;
3009
3010 em_tree = &fs_info->mapping_tree;
3011 read_lock(&em_tree->lock);
3012 em = lookup_extent_mapping(em_tree, logical, length);
3013 read_unlock(&em_tree->lock);
3014
3015 if (!em) {
3016 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3017 logical, length);
3018 return ERR_PTR(-EINVAL);
3019 }
3020
3021 if (em->start > logical || em->start + em->len < logical) {
3022 btrfs_crit(fs_info,
3023 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3024 logical, length, em->start, em->start + em->len);
3025 free_extent_map(em);
3026 return ERR_PTR(-EINVAL);
3027 }
3028
3029 /* callers are responsible for dropping em's ref. */
3030 return em;
3031 }
3032
remove_chunk_item(struct btrfs_trans_handle * trans,struct map_lookup * map,u64 chunk_offset)3033 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3034 struct map_lookup *map, u64 chunk_offset)
3035 {
3036 int i;
3037
3038 /*
3039 * Removing chunk items and updating the device items in the chunks btree
3040 * requires holding the chunk_mutex.
3041 * See the comment at btrfs_chunk_alloc() for the details.
3042 */
3043 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3044
3045 for (i = 0; i < map->num_stripes; i++) {
3046 int ret;
3047
3048 ret = btrfs_update_device(trans, map->stripes[i].dev);
3049 if (ret)
3050 return ret;
3051 }
3052
3053 return btrfs_free_chunk(trans, chunk_offset);
3054 }
3055
btrfs_remove_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)3056 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3057 {
3058 struct btrfs_fs_info *fs_info = trans->fs_info;
3059 struct extent_map *em;
3060 struct map_lookup *map;
3061 u64 dev_extent_len = 0;
3062 int i, ret = 0;
3063 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3064
3065 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3066 if (IS_ERR(em)) {
3067 /*
3068 * This is a logic error, but we don't want to just rely on the
3069 * user having built with ASSERT enabled, so if ASSERT doesn't
3070 * do anything we still error out.
3071 */
3072 ASSERT(0);
3073 return PTR_ERR(em);
3074 }
3075 map = em->map_lookup;
3076
3077 /*
3078 * First delete the device extent items from the devices btree.
3079 * We take the device_list_mutex to avoid racing with the finishing phase
3080 * of a device replace operation. See the comment below before acquiring
3081 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3082 * because that can result in a deadlock when deleting the device extent
3083 * items from the devices btree - COWing an extent buffer from the btree
3084 * may result in allocating a new metadata chunk, which would attempt to
3085 * lock again fs_info->chunk_mutex.
3086 */
3087 mutex_lock(&fs_devices->device_list_mutex);
3088 for (i = 0; i < map->num_stripes; i++) {
3089 struct btrfs_device *device = map->stripes[i].dev;
3090 ret = btrfs_free_dev_extent(trans, device,
3091 map->stripes[i].physical,
3092 &dev_extent_len);
3093 if (ret) {
3094 mutex_unlock(&fs_devices->device_list_mutex);
3095 btrfs_abort_transaction(trans, ret);
3096 goto out;
3097 }
3098
3099 if (device->bytes_used > 0) {
3100 mutex_lock(&fs_info->chunk_mutex);
3101 btrfs_device_set_bytes_used(device,
3102 device->bytes_used - dev_extent_len);
3103 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3104 btrfs_clear_space_info_full(fs_info);
3105 mutex_unlock(&fs_info->chunk_mutex);
3106 }
3107 }
3108 mutex_unlock(&fs_devices->device_list_mutex);
3109
3110 /*
3111 * We acquire fs_info->chunk_mutex for 2 reasons:
3112 *
3113 * 1) Just like with the first phase of the chunk allocation, we must
3114 * reserve system space, do all chunk btree updates and deletions, and
3115 * update the system chunk array in the superblock while holding this
3116 * mutex. This is for similar reasons as explained on the comment at
3117 * the top of btrfs_chunk_alloc();
3118 *
3119 * 2) Prevent races with the final phase of a device replace operation
3120 * that replaces the device object associated with the map's stripes,
3121 * because the device object's id can change at any time during that
3122 * final phase of the device replace operation
3123 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3124 * replaced device and then see it with an ID of
3125 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3126 * the device item, which does not exists on the chunk btree.
3127 * The finishing phase of device replace acquires both the
3128 * device_list_mutex and the chunk_mutex, in that order, so we are
3129 * safe by just acquiring the chunk_mutex.
3130 */
3131 trans->removing_chunk = true;
3132 mutex_lock(&fs_info->chunk_mutex);
3133
3134 check_system_chunk(trans, map->type);
3135
3136 ret = remove_chunk_item(trans, map, chunk_offset);
3137 /*
3138 * Normally we should not get -ENOSPC since we reserved space before
3139 * through the call to check_system_chunk().
3140 *
3141 * Despite our system space_info having enough free space, we may not
3142 * be able to allocate extents from its block groups, because all have
3143 * an incompatible profile, which will force us to allocate a new system
3144 * block group with the right profile, or right after we called
3145 * check_system_space() above, a scrub turned the only system block group
3146 * with enough free space into RO mode.
3147 * This is explained with more detail at do_chunk_alloc().
3148 *
3149 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3150 */
3151 if (ret == -ENOSPC) {
3152 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3153 struct btrfs_block_group *sys_bg;
3154
3155 sys_bg = btrfs_create_chunk(trans, sys_flags);
3156 if (IS_ERR(sys_bg)) {
3157 ret = PTR_ERR(sys_bg);
3158 btrfs_abort_transaction(trans, ret);
3159 goto out;
3160 }
3161
3162 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3163 if (ret) {
3164 btrfs_abort_transaction(trans, ret);
3165 goto out;
3166 }
3167
3168 ret = remove_chunk_item(trans, map, chunk_offset);
3169 if (ret) {
3170 btrfs_abort_transaction(trans, ret);
3171 goto out;
3172 }
3173 } else if (ret) {
3174 btrfs_abort_transaction(trans, ret);
3175 goto out;
3176 }
3177
3178 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3179
3180 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3181 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3182 if (ret) {
3183 btrfs_abort_transaction(trans, ret);
3184 goto out;
3185 }
3186 }
3187
3188 mutex_unlock(&fs_info->chunk_mutex);
3189 trans->removing_chunk = false;
3190
3191 /*
3192 * We are done with chunk btree updates and deletions, so release the
3193 * system space we previously reserved (with check_system_chunk()).
3194 */
3195 btrfs_trans_release_chunk_metadata(trans);
3196
3197 ret = btrfs_remove_block_group(trans, chunk_offset, em);
3198 if (ret) {
3199 btrfs_abort_transaction(trans, ret);
3200 goto out;
3201 }
3202
3203 out:
3204 if (trans->removing_chunk) {
3205 mutex_unlock(&fs_info->chunk_mutex);
3206 trans->removing_chunk = false;
3207 }
3208 /* once for us */
3209 free_extent_map(em);
3210 return ret;
3211 }
3212
btrfs_relocate_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3213 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3214 {
3215 struct btrfs_root *root = fs_info->chunk_root;
3216 struct btrfs_trans_handle *trans;
3217 struct btrfs_block_group *block_group;
3218 u64 length;
3219 int ret;
3220
3221 /*
3222 * Prevent races with automatic removal of unused block groups.
3223 * After we relocate and before we remove the chunk with offset
3224 * chunk_offset, automatic removal of the block group can kick in,
3225 * resulting in a failure when calling btrfs_remove_chunk() below.
3226 *
3227 * Make sure to acquire this mutex before doing a tree search (dev
3228 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3229 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3230 * we release the path used to search the chunk/dev tree and before
3231 * the current task acquires this mutex and calls us.
3232 */
3233 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3234
3235 /* step one, relocate all the extents inside this chunk */
3236 btrfs_scrub_pause(fs_info);
3237 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3238 btrfs_scrub_continue(fs_info);
3239 if (ret)
3240 return ret;
3241
3242 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3243 if (!block_group)
3244 return -ENOENT;
3245 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3246 length = block_group->length;
3247 btrfs_put_block_group(block_group);
3248
3249 /*
3250 * On a zoned file system, discard the whole block group, this will
3251 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3252 * resetting the zone fails, don't treat it as a fatal problem from the
3253 * filesystem's point of view.
3254 */
3255 if (btrfs_is_zoned(fs_info)) {
3256 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3257 if (ret)
3258 btrfs_info(fs_info,
3259 "failed to reset zone %llu after relocation",
3260 chunk_offset);
3261 }
3262
3263 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3264 chunk_offset);
3265 if (IS_ERR(trans)) {
3266 ret = PTR_ERR(trans);
3267 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3268 return ret;
3269 }
3270
3271 /*
3272 * step two, delete the device extents and the
3273 * chunk tree entries
3274 */
3275 ret = btrfs_remove_chunk(trans, chunk_offset);
3276 btrfs_end_transaction(trans);
3277 return ret;
3278 }
3279
btrfs_relocate_sys_chunks(struct btrfs_fs_info * fs_info)3280 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3281 {
3282 struct btrfs_root *chunk_root = fs_info->chunk_root;
3283 struct btrfs_path *path;
3284 struct extent_buffer *leaf;
3285 struct btrfs_chunk *chunk;
3286 struct btrfs_key key;
3287 struct btrfs_key found_key;
3288 u64 chunk_type;
3289 bool retried = false;
3290 int failed = 0;
3291 int ret;
3292
3293 path = btrfs_alloc_path();
3294 if (!path)
3295 return -ENOMEM;
3296
3297 again:
3298 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3299 key.offset = (u64)-1;
3300 key.type = BTRFS_CHUNK_ITEM_KEY;
3301
3302 while (1) {
3303 mutex_lock(&fs_info->reclaim_bgs_lock);
3304 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3305 if (ret < 0) {
3306 mutex_unlock(&fs_info->reclaim_bgs_lock);
3307 goto error;
3308 }
3309 BUG_ON(ret == 0); /* Corruption */
3310
3311 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3312 key.type);
3313 if (ret)
3314 mutex_unlock(&fs_info->reclaim_bgs_lock);
3315 if (ret < 0)
3316 goto error;
3317 if (ret > 0)
3318 break;
3319
3320 leaf = path->nodes[0];
3321 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3322
3323 chunk = btrfs_item_ptr(leaf, path->slots[0],
3324 struct btrfs_chunk);
3325 chunk_type = btrfs_chunk_type(leaf, chunk);
3326 btrfs_release_path(path);
3327
3328 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3329 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3330 if (ret == -ENOSPC)
3331 failed++;
3332 else
3333 BUG_ON(ret);
3334 }
3335 mutex_unlock(&fs_info->reclaim_bgs_lock);
3336
3337 if (found_key.offset == 0)
3338 break;
3339 key.offset = found_key.offset - 1;
3340 }
3341 ret = 0;
3342 if (failed && !retried) {
3343 failed = 0;
3344 retried = true;
3345 goto again;
3346 } else if (WARN_ON(failed && retried)) {
3347 ret = -ENOSPC;
3348 }
3349 error:
3350 btrfs_free_path(path);
3351 return ret;
3352 }
3353
3354 /*
3355 * return 1 : allocate a data chunk successfully,
3356 * return <0: errors during allocating a data chunk,
3357 * return 0 : no need to allocate a data chunk.
3358 */
btrfs_may_alloc_data_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3359 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3360 u64 chunk_offset)
3361 {
3362 struct btrfs_block_group *cache;
3363 u64 bytes_used;
3364 u64 chunk_type;
3365
3366 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3367 ASSERT(cache);
3368 chunk_type = cache->flags;
3369 btrfs_put_block_group(cache);
3370
3371 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3372 return 0;
3373
3374 spin_lock(&fs_info->data_sinfo->lock);
3375 bytes_used = fs_info->data_sinfo->bytes_used;
3376 spin_unlock(&fs_info->data_sinfo->lock);
3377
3378 if (!bytes_used) {
3379 struct btrfs_trans_handle *trans;
3380 int ret;
3381
3382 trans = btrfs_join_transaction(fs_info->tree_root);
3383 if (IS_ERR(trans))
3384 return PTR_ERR(trans);
3385
3386 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3387 btrfs_end_transaction(trans);
3388 if (ret < 0)
3389 return ret;
3390 return 1;
3391 }
3392
3393 return 0;
3394 }
3395
insert_balance_item(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl)3396 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3397 struct btrfs_balance_control *bctl)
3398 {
3399 struct btrfs_root *root = fs_info->tree_root;
3400 struct btrfs_trans_handle *trans;
3401 struct btrfs_balance_item *item;
3402 struct btrfs_disk_balance_args disk_bargs;
3403 struct btrfs_path *path;
3404 struct extent_buffer *leaf;
3405 struct btrfs_key key;
3406 int ret, err;
3407
3408 path = btrfs_alloc_path();
3409 if (!path)
3410 return -ENOMEM;
3411
3412 trans = btrfs_start_transaction(root, 0);
3413 if (IS_ERR(trans)) {
3414 btrfs_free_path(path);
3415 return PTR_ERR(trans);
3416 }
3417
3418 key.objectid = BTRFS_BALANCE_OBJECTID;
3419 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3420 key.offset = 0;
3421
3422 ret = btrfs_insert_empty_item(trans, root, path, &key,
3423 sizeof(*item));
3424 if (ret)
3425 goto out;
3426
3427 leaf = path->nodes[0];
3428 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3429
3430 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3431
3432 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3433 btrfs_set_balance_data(leaf, item, &disk_bargs);
3434 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3435 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3436 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3437 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3438
3439 btrfs_set_balance_flags(leaf, item, bctl->flags);
3440
3441 btrfs_mark_buffer_dirty(leaf);
3442 out:
3443 btrfs_free_path(path);
3444 err = btrfs_commit_transaction(trans);
3445 if (err && !ret)
3446 ret = err;
3447 return ret;
3448 }
3449
del_balance_item(struct btrfs_fs_info * fs_info)3450 static int del_balance_item(struct btrfs_fs_info *fs_info)
3451 {
3452 struct btrfs_root *root = fs_info->tree_root;
3453 struct btrfs_trans_handle *trans;
3454 struct btrfs_path *path;
3455 struct btrfs_key key;
3456 int ret, err;
3457
3458 path = btrfs_alloc_path();
3459 if (!path)
3460 return -ENOMEM;
3461
3462 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3463 if (IS_ERR(trans)) {
3464 btrfs_free_path(path);
3465 return PTR_ERR(trans);
3466 }
3467
3468 key.objectid = BTRFS_BALANCE_OBJECTID;
3469 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3470 key.offset = 0;
3471
3472 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3473 if (ret < 0)
3474 goto out;
3475 if (ret > 0) {
3476 ret = -ENOENT;
3477 goto out;
3478 }
3479
3480 ret = btrfs_del_item(trans, root, path);
3481 out:
3482 btrfs_free_path(path);
3483 err = btrfs_commit_transaction(trans);
3484 if (err && !ret)
3485 ret = err;
3486 return ret;
3487 }
3488
3489 /*
3490 * This is a heuristic used to reduce the number of chunks balanced on
3491 * resume after balance was interrupted.
3492 */
update_balance_args(struct btrfs_balance_control * bctl)3493 static void update_balance_args(struct btrfs_balance_control *bctl)
3494 {
3495 /*
3496 * Turn on soft mode for chunk types that were being converted.
3497 */
3498 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3499 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3500 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3501 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3502 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3503 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3504
3505 /*
3506 * Turn on usage filter if is not already used. The idea is
3507 * that chunks that we have already balanced should be
3508 * reasonably full. Don't do it for chunks that are being
3509 * converted - that will keep us from relocating unconverted
3510 * (albeit full) chunks.
3511 */
3512 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3513 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3514 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3515 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3516 bctl->data.usage = 90;
3517 }
3518 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3519 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3520 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3521 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3522 bctl->sys.usage = 90;
3523 }
3524 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3525 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3526 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3527 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3528 bctl->meta.usage = 90;
3529 }
3530 }
3531
3532 /*
3533 * Clear the balance status in fs_info and delete the balance item from disk.
3534 */
reset_balance_state(struct btrfs_fs_info * fs_info)3535 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3536 {
3537 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3538 int ret;
3539
3540 BUG_ON(!fs_info->balance_ctl);
3541
3542 spin_lock(&fs_info->balance_lock);
3543 fs_info->balance_ctl = NULL;
3544 spin_unlock(&fs_info->balance_lock);
3545
3546 kfree(bctl);
3547 ret = del_balance_item(fs_info);
3548 if (ret)
3549 btrfs_handle_fs_error(fs_info, ret, NULL);
3550 }
3551
3552 /*
3553 * Balance filters. Return 1 if chunk should be filtered out
3554 * (should not be balanced).
3555 */
chunk_profiles_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3556 static int chunk_profiles_filter(u64 chunk_type,
3557 struct btrfs_balance_args *bargs)
3558 {
3559 chunk_type = chunk_to_extended(chunk_type) &
3560 BTRFS_EXTENDED_PROFILE_MASK;
3561
3562 if (bargs->profiles & chunk_type)
3563 return 0;
3564
3565 return 1;
3566 }
3567
chunk_usage_range_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3568 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3569 struct btrfs_balance_args *bargs)
3570 {
3571 struct btrfs_block_group *cache;
3572 u64 chunk_used;
3573 u64 user_thresh_min;
3574 u64 user_thresh_max;
3575 int ret = 1;
3576
3577 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3578 chunk_used = cache->used;
3579
3580 if (bargs->usage_min == 0)
3581 user_thresh_min = 0;
3582 else
3583 user_thresh_min = div_factor_fine(cache->length,
3584 bargs->usage_min);
3585
3586 if (bargs->usage_max == 0)
3587 user_thresh_max = 1;
3588 else if (bargs->usage_max > 100)
3589 user_thresh_max = cache->length;
3590 else
3591 user_thresh_max = div_factor_fine(cache->length,
3592 bargs->usage_max);
3593
3594 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3595 ret = 0;
3596
3597 btrfs_put_block_group(cache);
3598 return ret;
3599 }
3600
chunk_usage_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3601 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3602 u64 chunk_offset, struct btrfs_balance_args *bargs)
3603 {
3604 struct btrfs_block_group *cache;
3605 u64 chunk_used, user_thresh;
3606 int ret = 1;
3607
3608 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3609 chunk_used = cache->used;
3610
3611 if (bargs->usage_min == 0)
3612 user_thresh = 1;
3613 else if (bargs->usage > 100)
3614 user_thresh = cache->length;
3615 else
3616 user_thresh = div_factor_fine(cache->length, bargs->usage);
3617
3618 if (chunk_used < user_thresh)
3619 ret = 0;
3620
3621 btrfs_put_block_group(cache);
3622 return ret;
3623 }
3624
chunk_devid_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3625 static int chunk_devid_filter(struct extent_buffer *leaf,
3626 struct btrfs_chunk *chunk,
3627 struct btrfs_balance_args *bargs)
3628 {
3629 struct btrfs_stripe *stripe;
3630 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3631 int i;
3632
3633 for (i = 0; i < num_stripes; i++) {
3634 stripe = btrfs_stripe_nr(chunk, i);
3635 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3636 return 0;
3637 }
3638
3639 return 1;
3640 }
3641
calc_data_stripes(u64 type,int num_stripes)3642 static u64 calc_data_stripes(u64 type, int num_stripes)
3643 {
3644 const int index = btrfs_bg_flags_to_raid_index(type);
3645 const int ncopies = btrfs_raid_array[index].ncopies;
3646 const int nparity = btrfs_raid_array[index].nparity;
3647
3648 return (num_stripes - nparity) / ncopies;
3649 }
3650
3651 /* [pstart, pend) */
chunk_drange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3652 static int chunk_drange_filter(struct extent_buffer *leaf,
3653 struct btrfs_chunk *chunk,
3654 struct btrfs_balance_args *bargs)
3655 {
3656 struct btrfs_stripe *stripe;
3657 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3658 u64 stripe_offset;
3659 u64 stripe_length;
3660 u64 type;
3661 int factor;
3662 int i;
3663
3664 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3665 return 0;
3666
3667 type = btrfs_chunk_type(leaf, chunk);
3668 factor = calc_data_stripes(type, num_stripes);
3669
3670 for (i = 0; i < num_stripes; i++) {
3671 stripe = btrfs_stripe_nr(chunk, i);
3672 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3673 continue;
3674
3675 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3676 stripe_length = btrfs_chunk_length(leaf, chunk);
3677 stripe_length = div_u64(stripe_length, factor);
3678
3679 if (stripe_offset < bargs->pend &&
3680 stripe_offset + stripe_length > bargs->pstart)
3681 return 0;
3682 }
3683
3684 return 1;
3685 }
3686
3687 /* [vstart, vend) */
chunk_vrange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)3688 static int chunk_vrange_filter(struct extent_buffer *leaf,
3689 struct btrfs_chunk *chunk,
3690 u64 chunk_offset,
3691 struct btrfs_balance_args *bargs)
3692 {
3693 if (chunk_offset < bargs->vend &&
3694 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3695 /* at least part of the chunk is inside this vrange */
3696 return 0;
3697
3698 return 1;
3699 }
3700
chunk_stripes_range_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3701 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3702 struct btrfs_chunk *chunk,
3703 struct btrfs_balance_args *bargs)
3704 {
3705 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3706
3707 if (bargs->stripes_min <= num_stripes
3708 && num_stripes <= bargs->stripes_max)
3709 return 0;
3710
3711 return 1;
3712 }
3713
chunk_soft_convert_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3714 static int chunk_soft_convert_filter(u64 chunk_type,
3715 struct btrfs_balance_args *bargs)
3716 {
3717 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3718 return 0;
3719
3720 chunk_type = chunk_to_extended(chunk_type) &
3721 BTRFS_EXTENDED_PROFILE_MASK;
3722
3723 if (bargs->target == chunk_type)
3724 return 1;
3725
3726 return 0;
3727 }
3728
should_balance_chunk(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset)3729 static int should_balance_chunk(struct extent_buffer *leaf,
3730 struct btrfs_chunk *chunk, u64 chunk_offset)
3731 {
3732 struct btrfs_fs_info *fs_info = leaf->fs_info;
3733 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3734 struct btrfs_balance_args *bargs = NULL;
3735 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3736
3737 /* type filter */
3738 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3739 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3740 return 0;
3741 }
3742
3743 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3744 bargs = &bctl->data;
3745 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3746 bargs = &bctl->sys;
3747 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3748 bargs = &bctl->meta;
3749
3750 /* profiles filter */
3751 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3752 chunk_profiles_filter(chunk_type, bargs)) {
3753 return 0;
3754 }
3755
3756 /* usage filter */
3757 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3758 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3759 return 0;
3760 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3761 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3762 return 0;
3763 }
3764
3765 /* devid filter */
3766 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3767 chunk_devid_filter(leaf, chunk, bargs)) {
3768 return 0;
3769 }
3770
3771 /* drange filter, makes sense only with devid filter */
3772 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3773 chunk_drange_filter(leaf, chunk, bargs)) {
3774 return 0;
3775 }
3776
3777 /* vrange filter */
3778 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3779 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3780 return 0;
3781 }
3782
3783 /* stripes filter */
3784 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3785 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3786 return 0;
3787 }
3788
3789 /* soft profile changing mode */
3790 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3791 chunk_soft_convert_filter(chunk_type, bargs)) {
3792 return 0;
3793 }
3794
3795 /*
3796 * limited by count, must be the last filter
3797 */
3798 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3799 if (bargs->limit == 0)
3800 return 0;
3801 else
3802 bargs->limit--;
3803 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3804 /*
3805 * Same logic as the 'limit' filter; the minimum cannot be
3806 * determined here because we do not have the global information
3807 * about the count of all chunks that satisfy the filters.
3808 */
3809 if (bargs->limit_max == 0)
3810 return 0;
3811 else
3812 bargs->limit_max--;
3813 }
3814
3815 return 1;
3816 }
3817
__btrfs_balance(struct btrfs_fs_info * fs_info)3818 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3819 {
3820 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3821 struct btrfs_root *chunk_root = fs_info->chunk_root;
3822 u64 chunk_type;
3823 struct btrfs_chunk *chunk;
3824 struct btrfs_path *path = NULL;
3825 struct btrfs_key key;
3826 struct btrfs_key found_key;
3827 struct extent_buffer *leaf;
3828 int slot;
3829 int ret;
3830 int enospc_errors = 0;
3831 bool counting = true;
3832 /* The single value limit and min/max limits use the same bytes in the */
3833 u64 limit_data = bctl->data.limit;
3834 u64 limit_meta = bctl->meta.limit;
3835 u64 limit_sys = bctl->sys.limit;
3836 u32 count_data = 0;
3837 u32 count_meta = 0;
3838 u32 count_sys = 0;
3839 int chunk_reserved = 0;
3840
3841 path = btrfs_alloc_path();
3842 if (!path) {
3843 ret = -ENOMEM;
3844 goto error;
3845 }
3846
3847 /* zero out stat counters */
3848 spin_lock(&fs_info->balance_lock);
3849 memset(&bctl->stat, 0, sizeof(bctl->stat));
3850 spin_unlock(&fs_info->balance_lock);
3851 again:
3852 if (!counting) {
3853 /*
3854 * The single value limit and min/max limits use the same bytes
3855 * in the
3856 */
3857 bctl->data.limit = limit_data;
3858 bctl->meta.limit = limit_meta;
3859 bctl->sys.limit = limit_sys;
3860 }
3861 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3862 key.offset = (u64)-1;
3863 key.type = BTRFS_CHUNK_ITEM_KEY;
3864
3865 while (1) {
3866 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3867 atomic_read(&fs_info->balance_cancel_req)) {
3868 ret = -ECANCELED;
3869 goto error;
3870 }
3871
3872 mutex_lock(&fs_info->reclaim_bgs_lock);
3873 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3874 if (ret < 0) {
3875 mutex_unlock(&fs_info->reclaim_bgs_lock);
3876 goto error;
3877 }
3878
3879 /*
3880 * this shouldn't happen, it means the last relocate
3881 * failed
3882 */
3883 if (ret == 0)
3884 BUG(); /* FIXME break ? */
3885
3886 ret = btrfs_previous_item(chunk_root, path, 0,
3887 BTRFS_CHUNK_ITEM_KEY);
3888 if (ret) {
3889 mutex_unlock(&fs_info->reclaim_bgs_lock);
3890 ret = 0;
3891 break;
3892 }
3893
3894 leaf = path->nodes[0];
3895 slot = path->slots[0];
3896 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3897
3898 if (found_key.objectid != key.objectid) {
3899 mutex_unlock(&fs_info->reclaim_bgs_lock);
3900 break;
3901 }
3902
3903 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3904 chunk_type = btrfs_chunk_type(leaf, chunk);
3905
3906 if (!counting) {
3907 spin_lock(&fs_info->balance_lock);
3908 bctl->stat.considered++;
3909 spin_unlock(&fs_info->balance_lock);
3910 }
3911
3912 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3913
3914 btrfs_release_path(path);
3915 if (!ret) {
3916 mutex_unlock(&fs_info->reclaim_bgs_lock);
3917 goto loop;
3918 }
3919
3920 if (counting) {
3921 mutex_unlock(&fs_info->reclaim_bgs_lock);
3922 spin_lock(&fs_info->balance_lock);
3923 bctl->stat.expected++;
3924 spin_unlock(&fs_info->balance_lock);
3925
3926 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3927 count_data++;
3928 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3929 count_sys++;
3930 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3931 count_meta++;
3932
3933 goto loop;
3934 }
3935
3936 /*
3937 * Apply limit_min filter, no need to check if the LIMITS
3938 * filter is used, limit_min is 0 by default
3939 */
3940 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3941 count_data < bctl->data.limit_min)
3942 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3943 count_meta < bctl->meta.limit_min)
3944 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3945 count_sys < bctl->sys.limit_min)) {
3946 mutex_unlock(&fs_info->reclaim_bgs_lock);
3947 goto loop;
3948 }
3949
3950 if (!chunk_reserved) {
3951 /*
3952 * We may be relocating the only data chunk we have,
3953 * which could potentially end up with losing data's
3954 * raid profile, so lets allocate an empty one in
3955 * advance.
3956 */
3957 ret = btrfs_may_alloc_data_chunk(fs_info,
3958 found_key.offset);
3959 if (ret < 0) {
3960 mutex_unlock(&fs_info->reclaim_bgs_lock);
3961 goto error;
3962 } else if (ret == 1) {
3963 chunk_reserved = 1;
3964 }
3965 }
3966
3967 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3968 mutex_unlock(&fs_info->reclaim_bgs_lock);
3969 if (ret == -ENOSPC) {
3970 enospc_errors++;
3971 } else if (ret == -ETXTBSY) {
3972 btrfs_info(fs_info,
3973 "skipping relocation of block group %llu due to active swapfile",
3974 found_key.offset);
3975 ret = 0;
3976 } else if (ret) {
3977 goto error;
3978 } else {
3979 spin_lock(&fs_info->balance_lock);
3980 bctl->stat.completed++;
3981 spin_unlock(&fs_info->balance_lock);
3982 }
3983 loop:
3984 if (found_key.offset == 0)
3985 break;
3986 key.offset = found_key.offset - 1;
3987 }
3988
3989 if (counting) {
3990 btrfs_release_path(path);
3991 counting = false;
3992 goto again;
3993 }
3994 error:
3995 btrfs_free_path(path);
3996 if (enospc_errors) {
3997 btrfs_info(fs_info, "%d enospc errors during balance",
3998 enospc_errors);
3999 if (!ret)
4000 ret = -ENOSPC;
4001 }
4002
4003 return ret;
4004 }
4005
4006 /**
4007 * alloc_profile_is_valid - see if a given profile is valid and reduced
4008 * @flags: profile to validate
4009 * @extended: if true @flags is treated as an extended profile
4010 */
alloc_profile_is_valid(u64 flags,int extended)4011 static int alloc_profile_is_valid(u64 flags, int extended)
4012 {
4013 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4014 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4015
4016 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4017
4018 /* 1) check that all other bits are zeroed */
4019 if (flags & ~mask)
4020 return 0;
4021
4022 /* 2) see if profile is reduced */
4023 if (flags == 0)
4024 return !extended; /* "0" is valid for usual profiles */
4025
4026 return has_single_bit_set(flags);
4027 }
4028
balance_need_close(struct btrfs_fs_info * fs_info)4029 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
4030 {
4031 /* cancel requested || normal exit path */
4032 return atomic_read(&fs_info->balance_cancel_req) ||
4033 (atomic_read(&fs_info->balance_pause_req) == 0 &&
4034 atomic_read(&fs_info->balance_cancel_req) == 0);
4035 }
4036
4037 /*
4038 * Validate target profile against allowed profiles and return true if it's OK.
4039 * Otherwise print the error message and return false.
4040 */
validate_convert_profile(struct btrfs_fs_info * fs_info,const struct btrfs_balance_args * bargs,u64 allowed,const char * type)4041 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4042 const struct btrfs_balance_args *bargs,
4043 u64 allowed, const char *type)
4044 {
4045 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4046 return true;
4047
4048 if (fs_info->sectorsize < PAGE_SIZE &&
4049 bargs->target & BTRFS_BLOCK_GROUP_RAID56_MASK) {
4050 btrfs_err(fs_info,
4051 "RAID56 is not yet supported for sectorsize %u with page size %lu",
4052 fs_info->sectorsize, PAGE_SIZE);
4053 return false;
4054 }
4055 /* Profile is valid and does not have bits outside of the allowed set */
4056 if (alloc_profile_is_valid(bargs->target, 1) &&
4057 (bargs->target & ~allowed) == 0)
4058 return true;
4059
4060 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4061 type, btrfs_bg_type_to_raid_name(bargs->target));
4062 return false;
4063 }
4064
4065 /*
4066 * Fill @buf with textual description of balance filter flags @bargs, up to
4067 * @size_buf including the terminating null. The output may be trimmed if it
4068 * does not fit into the provided buffer.
4069 */
describe_balance_args(struct btrfs_balance_args * bargs,char * buf,u32 size_buf)4070 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4071 u32 size_buf)
4072 {
4073 int ret;
4074 u32 size_bp = size_buf;
4075 char *bp = buf;
4076 u64 flags = bargs->flags;
4077 char tmp_buf[128] = {'\0'};
4078
4079 if (!flags)
4080 return;
4081
4082 #define CHECK_APPEND_NOARG(a) \
4083 do { \
4084 ret = snprintf(bp, size_bp, (a)); \
4085 if (ret < 0 || ret >= size_bp) \
4086 goto out_overflow; \
4087 size_bp -= ret; \
4088 bp += ret; \
4089 } while (0)
4090
4091 #define CHECK_APPEND_1ARG(a, v1) \
4092 do { \
4093 ret = snprintf(bp, size_bp, (a), (v1)); \
4094 if (ret < 0 || ret >= size_bp) \
4095 goto out_overflow; \
4096 size_bp -= ret; \
4097 bp += ret; \
4098 } while (0)
4099
4100 #define CHECK_APPEND_2ARG(a, v1, v2) \
4101 do { \
4102 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4103 if (ret < 0 || ret >= size_bp) \
4104 goto out_overflow; \
4105 size_bp -= ret; \
4106 bp += ret; \
4107 } while (0)
4108
4109 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4110 CHECK_APPEND_1ARG("convert=%s,",
4111 btrfs_bg_type_to_raid_name(bargs->target));
4112
4113 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4114 CHECK_APPEND_NOARG("soft,");
4115
4116 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4117 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4118 sizeof(tmp_buf));
4119 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4120 }
4121
4122 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4123 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4124
4125 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4126 CHECK_APPEND_2ARG("usage=%u..%u,",
4127 bargs->usage_min, bargs->usage_max);
4128
4129 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4130 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4131
4132 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4133 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4134 bargs->pstart, bargs->pend);
4135
4136 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4137 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4138 bargs->vstart, bargs->vend);
4139
4140 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4141 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4142
4143 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4144 CHECK_APPEND_2ARG("limit=%u..%u,",
4145 bargs->limit_min, bargs->limit_max);
4146
4147 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4148 CHECK_APPEND_2ARG("stripes=%u..%u,",
4149 bargs->stripes_min, bargs->stripes_max);
4150
4151 #undef CHECK_APPEND_2ARG
4152 #undef CHECK_APPEND_1ARG
4153 #undef CHECK_APPEND_NOARG
4154
4155 out_overflow:
4156
4157 if (size_bp < size_buf)
4158 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4159 else
4160 buf[0] = '\0';
4161 }
4162
describe_balance_start_or_resume(struct btrfs_fs_info * fs_info)4163 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4164 {
4165 u32 size_buf = 1024;
4166 char tmp_buf[192] = {'\0'};
4167 char *buf;
4168 char *bp;
4169 u32 size_bp = size_buf;
4170 int ret;
4171 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4172
4173 buf = kzalloc(size_buf, GFP_KERNEL);
4174 if (!buf)
4175 return;
4176
4177 bp = buf;
4178
4179 #define CHECK_APPEND_1ARG(a, v1) \
4180 do { \
4181 ret = snprintf(bp, size_bp, (a), (v1)); \
4182 if (ret < 0 || ret >= size_bp) \
4183 goto out_overflow; \
4184 size_bp -= ret; \
4185 bp += ret; \
4186 } while (0)
4187
4188 if (bctl->flags & BTRFS_BALANCE_FORCE)
4189 CHECK_APPEND_1ARG("%s", "-f ");
4190
4191 if (bctl->flags & BTRFS_BALANCE_DATA) {
4192 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4193 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4194 }
4195
4196 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4197 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4198 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4199 }
4200
4201 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4202 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4203 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4204 }
4205
4206 #undef CHECK_APPEND_1ARG
4207
4208 out_overflow:
4209
4210 if (size_bp < size_buf)
4211 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4212 btrfs_info(fs_info, "balance: %s %s",
4213 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4214 "resume" : "start", buf);
4215
4216 kfree(buf);
4217 }
4218
4219 /*
4220 * Should be called with balance mutexe held
4221 */
btrfs_balance(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl,struct btrfs_ioctl_balance_args * bargs)4222 int btrfs_balance(struct btrfs_fs_info *fs_info,
4223 struct btrfs_balance_control *bctl,
4224 struct btrfs_ioctl_balance_args *bargs)
4225 {
4226 u64 meta_target, data_target;
4227 u64 allowed;
4228 int mixed = 0;
4229 int ret;
4230 u64 num_devices;
4231 unsigned seq;
4232 bool reducing_redundancy;
4233 int i;
4234
4235 if (btrfs_fs_closing(fs_info) ||
4236 atomic_read(&fs_info->balance_pause_req) ||
4237 btrfs_should_cancel_balance(fs_info)) {
4238 ret = -EINVAL;
4239 goto out;
4240 }
4241
4242 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4243 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4244 mixed = 1;
4245
4246 /*
4247 * In case of mixed groups both data and meta should be picked,
4248 * and identical options should be given for both of them.
4249 */
4250 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4251 if (mixed && (bctl->flags & allowed)) {
4252 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4253 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4254 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4255 btrfs_err(fs_info,
4256 "balance: mixed groups data and metadata options must be the same");
4257 ret = -EINVAL;
4258 goto out;
4259 }
4260 }
4261
4262 /*
4263 * rw_devices will not change at the moment, device add/delete/replace
4264 * are exclusive
4265 */
4266 num_devices = fs_info->fs_devices->rw_devices;
4267
4268 /*
4269 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4270 * special bit for it, to make it easier to distinguish. Thus we need
4271 * to set it manually, or balance would refuse the profile.
4272 */
4273 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4274 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4275 if (num_devices >= btrfs_raid_array[i].devs_min)
4276 allowed |= btrfs_raid_array[i].bg_flag;
4277
4278 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4279 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4280 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4281 ret = -EINVAL;
4282 goto out;
4283 }
4284
4285 /*
4286 * Allow to reduce metadata or system integrity only if force set for
4287 * profiles with redundancy (copies, parity)
4288 */
4289 allowed = 0;
4290 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4291 if (btrfs_raid_array[i].ncopies >= 2 ||
4292 btrfs_raid_array[i].tolerated_failures >= 1)
4293 allowed |= btrfs_raid_array[i].bg_flag;
4294 }
4295 do {
4296 seq = read_seqbegin(&fs_info->profiles_lock);
4297
4298 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4299 (fs_info->avail_system_alloc_bits & allowed) &&
4300 !(bctl->sys.target & allowed)) ||
4301 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4302 (fs_info->avail_metadata_alloc_bits & allowed) &&
4303 !(bctl->meta.target & allowed)))
4304 reducing_redundancy = true;
4305 else
4306 reducing_redundancy = false;
4307
4308 /* if we're not converting, the target field is uninitialized */
4309 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4310 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4311 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4312 bctl->data.target : fs_info->avail_data_alloc_bits;
4313 } while (read_seqretry(&fs_info->profiles_lock, seq));
4314
4315 if (reducing_redundancy) {
4316 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4317 btrfs_info(fs_info,
4318 "balance: force reducing metadata redundancy");
4319 } else {
4320 btrfs_err(fs_info,
4321 "balance: reduces metadata redundancy, use --force if you want this");
4322 ret = -EINVAL;
4323 goto out;
4324 }
4325 }
4326
4327 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4328 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4329 btrfs_warn(fs_info,
4330 "balance: metadata profile %s has lower redundancy than data profile %s",
4331 btrfs_bg_type_to_raid_name(meta_target),
4332 btrfs_bg_type_to_raid_name(data_target));
4333 }
4334
4335 ret = insert_balance_item(fs_info, bctl);
4336 if (ret && ret != -EEXIST)
4337 goto out;
4338
4339 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4340 BUG_ON(ret == -EEXIST);
4341 BUG_ON(fs_info->balance_ctl);
4342 spin_lock(&fs_info->balance_lock);
4343 fs_info->balance_ctl = bctl;
4344 spin_unlock(&fs_info->balance_lock);
4345 } else {
4346 BUG_ON(ret != -EEXIST);
4347 spin_lock(&fs_info->balance_lock);
4348 update_balance_args(bctl);
4349 spin_unlock(&fs_info->balance_lock);
4350 }
4351
4352 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4353 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4354 describe_balance_start_or_resume(fs_info);
4355 mutex_unlock(&fs_info->balance_mutex);
4356
4357 ret = __btrfs_balance(fs_info);
4358
4359 mutex_lock(&fs_info->balance_mutex);
4360 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4361 btrfs_info(fs_info, "balance: paused");
4362 /*
4363 * Balance can be canceled by:
4364 *
4365 * - Regular cancel request
4366 * Then ret == -ECANCELED and balance_cancel_req > 0
4367 *
4368 * - Fatal signal to "btrfs" process
4369 * Either the signal caught by wait_reserve_ticket() and callers
4370 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4371 * got -ECANCELED.
4372 * Either way, in this case balance_cancel_req = 0, and
4373 * ret == -EINTR or ret == -ECANCELED.
4374 *
4375 * So here we only check the return value to catch canceled balance.
4376 */
4377 else if (ret == -ECANCELED || ret == -EINTR)
4378 btrfs_info(fs_info, "balance: canceled");
4379 else
4380 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4381
4382 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4383
4384 if (bargs) {
4385 memset(bargs, 0, sizeof(*bargs));
4386 btrfs_update_ioctl_balance_args(fs_info, bargs);
4387 }
4388
4389 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4390 balance_need_close(fs_info)) {
4391 reset_balance_state(fs_info);
4392 btrfs_exclop_finish(fs_info);
4393 }
4394
4395 wake_up(&fs_info->balance_wait_q);
4396
4397 return ret;
4398 out:
4399 if (bctl->flags & BTRFS_BALANCE_RESUME)
4400 reset_balance_state(fs_info);
4401 else
4402 kfree(bctl);
4403 btrfs_exclop_finish(fs_info);
4404
4405 return ret;
4406 }
4407
balance_kthread(void * data)4408 static int balance_kthread(void *data)
4409 {
4410 struct btrfs_fs_info *fs_info = data;
4411 int ret = 0;
4412
4413 mutex_lock(&fs_info->balance_mutex);
4414 if (fs_info->balance_ctl)
4415 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4416 mutex_unlock(&fs_info->balance_mutex);
4417
4418 return ret;
4419 }
4420
btrfs_resume_balance_async(struct btrfs_fs_info * fs_info)4421 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4422 {
4423 struct task_struct *tsk;
4424
4425 mutex_lock(&fs_info->balance_mutex);
4426 if (!fs_info->balance_ctl) {
4427 mutex_unlock(&fs_info->balance_mutex);
4428 return 0;
4429 }
4430 mutex_unlock(&fs_info->balance_mutex);
4431
4432 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4433 btrfs_info(fs_info, "balance: resume skipped");
4434 return 0;
4435 }
4436
4437 /*
4438 * A ro->rw remount sequence should continue with the paused balance
4439 * regardless of who pauses it, system or the user as of now, so set
4440 * the resume flag.
4441 */
4442 spin_lock(&fs_info->balance_lock);
4443 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4444 spin_unlock(&fs_info->balance_lock);
4445
4446 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4447 return PTR_ERR_OR_ZERO(tsk);
4448 }
4449
btrfs_recover_balance(struct btrfs_fs_info * fs_info)4450 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4451 {
4452 struct btrfs_balance_control *bctl;
4453 struct btrfs_balance_item *item;
4454 struct btrfs_disk_balance_args disk_bargs;
4455 struct btrfs_path *path;
4456 struct extent_buffer *leaf;
4457 struct btrfs_key key;
4458 int ret;
4459
4460 path = btrfs_alloc_path();
4461 if (!path)
4462 return -ENOMEM;
4463
4464 key.objectid = BTRFS_BALANCE_OBJECTID;
4465 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4466 key.offset = 0;
4467
4468 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4469 if (ret < 0)
4470 goto out;
4471 if (ret > 0) { /* ret = -ENOENT; */
4472 ret = 0;
4473 goto out;
4474 }
4475
4476 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4477 if (!bctl) {
4478 ret = -ENOMEM;
4479 goto out;
4480 }
4481
4482 leaf = path->nodes[0];
4483 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4484
4485 bctl->flags = btrfs_balance_flags(leaf, item);
4486 bctl->flags |= BTRFS_BALANCE_RESUME;
4487
4488 btrfs_balance_data(leaf, item, &disk_bargs);
4489 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4490 btrfs_balance_meta(leaf, item, &disk_bargs);
4491 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4492 btrfs_balance_sys(leaf, item, &disk_bargs);
4493 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4494
4495 /*
4496 * This should never happen, as the paused balance state is recovered
4497 * during mount without any chance of other exclusive ops to collide.
4498 *
4499 * This gives the exclusive op status to balance and keeps in paused
4500 * state until user intervention (cancel or umount). If the ownership
4501 * cannot be assigned, show a message but do not fail. The balance
4502 * is in a paused state and must have fs_info::balance_ctl properly
4503 * set up.
4504 */
4505 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4506 btrfs_warn(fs_info,
4507 "balance: cannot set exclusive op status, resume manually");
4508
4509 btrfs_release_path(path);
4510
4511 mutex_lock(&fs_info->balance_mutex);
4512 BUG_ON(fs_info->balance_ctl);
4513 spin_lock(&fs_info->balance_lock);
4514 fs_info->balance_ctl = bctl;
4515 spin_unlock(&fs_info->balance_lock);
4516 mutex_unlock(&fs_info->balance_mutex);
4517 out:
4518 btrfs_free_path(path);
4519 return ret;
4520 }
4521
btrfs_pause_balance(struct btrfs_fs_info * fs_info)4522 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4523 {
4524 int ret = 0;
4525
4526 mutex_lock(&fs_info->balance_mutex);
4527 if (!fs_info->balance_ctl) {
4528 mutex_unlock(&fs_info->balance_mutex);
4529 return -ENOTCONN;
4530 }
4531
4532 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4533 atomic_inc(&fs_info->balance_pause_req);
4534 mutex_unlock(&fs_info->balance_mutex);
4535
4536 wait_event(fs_info->balance_wait_q,
4537 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4538
4539 mutex_lock(&fs_info->balance_mutex);
4540 /* we are good with balance_ctl ripped off from under us */
4541 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4542 atomic_dec(&fs_info->balance_pause_req);
4543 } else {
4544 ret = -ENOTCONN;
4545 }
4546
4547 mutex_unlock(&fs_info->balance_mutex);
4548 return ret;
4549 }
4550
btrfs_cancel_balance(struct btrfs_fs_info * fs_info)4551 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4552 {
4553 mutex_lock(&fs_info->balance_mutex);
4554 if (!fs_info->balance_ctl) {
4555 mutex_unlock(&fs_info->balance_mutex);
4556 return -ENOTCONN;
4557 }
4558
4559 /*
4560 * A paused balance with the item stored on disk can be resumed at
4561 * mount time if the mount is read-write. Otherwise it's still paused
4562 * and we must not allow cancelling as it deletes the item.
4563 */
4564 if (sb_rdonly(fs_info->sb)) {
4565 mutex_unlock(&fs_info->balance_mutex);
4566 return -EROFS;
4567 }
4568
4569 atomic_inc(&fs_info->balance_cancel_req);
4570 /*
4571 * if we are running just wait and return, balance item is
4572 * deleted in btrfs_balance in this case
4573 */
4574 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4575 mutex_unlock(&fs_info->balance_mutex);
4576 wait_event(fs_info->balance_wait_q,
4577 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4578 mutex_lock(&fs_info->balance_mutex);
4579 } else {
4580 mutex_unlock(&fs_info->balance_mutex);
4581 /*
4582 * Lock released to allow other waiters to continue, we'll
4583 * reexamine the status again.
4584 */
4585 mutex_lock(&fs_info->balance_mutex);
4586
4587 if (fs_info->balance_ctl) {
4588 reset_balance_state(fs_info);
4589 btrfs_exclop_finish(fs_info);
4590 btrfs_info(fs_info, "balance: canceled");
4591 }
4592 }
4593
4594 BUG_ON(fs_info->balance_ctl ||
4595 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4596 atomic_dec(&fs_info->balance_cancel_req);
4597 mutex_unlock(&fs_info->balance_mutex);
4598 return 0;
4599 }
4600
btrfs_uuid_scan_kthread(void * data)4601 int btrfs_uuid_scan_kthread(void *data)
4602 {
4603 struct btrfs_fs_info *fs_info = data;
4604 struct btrfs_root *root = fs_info->tree_root;
4605 struct btrfs_key key;
4606 struct btrfs_path *path = NULL;
4607 int ret = 0;
4608 struct extent_buffer *eb;
4609 int slot;
4610 struct btrfs_root_item root_item;
4611 u32 item_size;
4612 struct btrfs_trans_handle *trans = NULL;
4613 bool closing = false;
4614
4615 path = btrfs_alloc_path();
4616 if (!path) {
4617 ret = -ENOMEM;
4618 goto out;
4619 }
4620
4621 key.objectid = 0;
4622 key.type = BTRFS_ROOT_ITEM_KEY;
4623 key.offset = 0;
4624
4625 while (1) {
4626 if (btrfs_fs_closing(fs_info)) {
4627 closing = true;
4628 break;
4629 }
4630 ret = btrfs_search_forward(root, &key, path,
4631 BTRFS_OLDEST_GENERATION);
4632 if (ret) {
4633 if (ret > 0)
4634 ret = 0;
4635 break;
4636 }
4637
4638 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4639 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4640 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4641 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4642 goto skip;
4643
4644 eb = path->nodes[0];
4645 slot = path->slots[0];
4646 item_size = btrfs_item_size_nr(eb, slot);
4647 if (item_size < sizeof(root_item))
4648 goto skip;
4649
4650 read_extent_buffer(eb, &root_item,
4651 btrfs_item_ptr_offset(eb, slot),
4652 (int)sizeof(root_item));
4653 if (btrfs_root_refs(&root_item) == 0)
4654 goto skip;
4655
4656 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4657 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4658 if (trans)
4659 goto update_tree;
4660
4661 btrfs_release_path(path);
4662 /*
4663 * 1 - subvol uuid item
4664 * 1 - received_subvol uuid item
4665 */
4666 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4667 if (IS_ERR(trans)) {
4668 ret = PTR_ERR(trans);
4669 break;
4670 }
4671 continue;
4672 } else {
4673 goto skip;
4674 }
4675 update_tree:
4676 btrfs_release_path(path);
4677 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4678 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4679 BTRFS_UUID_KEY_SUBVOL,
4680 key.objectid);
4681 if (ret < 0) {
4682 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4683 ret);
4684 break;
4685 }
4686 }
4687
4688 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4689 ret = btrfs_uuid_tree_add(trans,
4690 root_item.received_uuid,
4691 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4692 key.objectid);
4693 if (ret < 0) {
4694 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4695 ret);
4696 break;
4697 }
4698 }
4699
4700 skip:
4701 btrfs_release_path(path);
4702 if (trans) {
4703 ret = btrfs_end_transaction(trans);
4704 trans = NULL;
4705 if (ret)
4706 break;
4707 }
4708
4709 if (key.offset < (u64)-1) {
4710 key.offset++;
4711 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4712 key.offset = 0;
4713 key.type = BTRFS_ROOT_ITEM_KEY;
4714 } else if (key.objectid < (u64)-1) {
4715 key.offset = 0;
4716 key.type = BTRFS_ROOT_ITEM_KEY;
4717 key.objectid++;
4718 } else {
4719 break;
4720 }
4721 cond_resched();
4722 }
4723
4724 out:
4725 btrfs_free_path(path);
4726 if (trans && !IS_ERR(trans))
4727 btrfs_end_transaction(trans);
4728 if (ret)
4729 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4730 else if (!closing)
4731 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4732 up(&fs_info->uuid_tree_rescan_sem);
4733 return 0;
4734 }
4735
btrfs_create_uuid_tree(struct btrfs_fs_info * fs_info)4736 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4737 {
4738 struct btrfs_trans_handle *trans;
4739 struct btrfs_root *tree_root = fs_info->tree_root;
4740 struct btrfs_root *uuid_root;
4741 struct task_struct *task;
4742 int ret;
4743
4744 /*
4745 * 1 - root node
4746 * 1 - root item
4747 */
4748 trans = btrfs_start_transaction(tree_root, 2);
4749 if (IS_ERR(trans))
4750 return PTR_ERR(trans);
4751
4752 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4753 if (IS_ERR(uuid_root)) {
4754 ret = PTR_ERR(uuid_root);
4755 btrfs_abort_transaction(trans, ret);
4756 btrfs_end_transaction(trans);
4757 return ret;
4758 }
4759
4760 fs_info->uuid_root = uuid_root;
4761
4762 ret = btrfs_commit_transaction(trans);
4763 if (ret)
4764 return ret;
4765
4766 down(&fs_info->uuid_tree_rescan_sem);
4767 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4768 if (IS_ERR(task)) {
4769 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4770 btrfs_warn(fs_info, "failed to start uuid_scan task");
4771 up(&fs_info->uuid_tree_rescan_sem);
4772 return PTR_ERR(task);
4773 }
4774
4775 return 0;
4776 }
4777
4778 /*
4779 * shrinking a device means finding all of the device extents past
4780 * the new size, and then following the back refs to the chunks.
4781 * The chunk relocation code actually frees the device extent
4782 */
btrfs_shrink_device(struct btrfs_device * device,u64 new_size)4783 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4784 {
4785 struct btrfs_fs_info *fs_info = device->fs_info;
4786 struct btrfs_root *root = fs_info->dev_root;
4787 struct btrfs_trans_handle *trans;
4788 struct btrfs_dev_extent *dev_extent = NULL;
4789 struct btrfs_path *path;
4790 u64 length;
4791 u64 chunk_offset;
4792 int ret;
4793 int slot;
4794 int failed = 0;
4795 bool retried = false;
4796 struct extent_buffer *l;
4797 struct btrfs_key key;
4798 struct btrfs_super_block *super_copy = fs_info->super_copy;
4799 u64 old_total = btrfs_super_total_bytes(super_copy);
4800 u64 old_size = btrfs_device_get_total_bytes(device);
4801 u64 diff;
4802 u64 start;
4803
4804 new_size = round_down(new_size, fs_info->sectorsize);
4805 start = new_size;
4806 diff = round_down(old_size - new_size, fs_info->sectorsize);
4807
4808 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4809 return -EINVAL;
4810
4811 path = btrfs_alloc_path();
4812 if (!path)
4813 return -ENOMEM;
4814
4815 path->reada = READA_BACK;
4816
4817 trans = btrfs_start_transaction(root, 0);
4818 if (IS_ERR(trans)) {
4819 btrfs_free_path(path);
4820 return PTR_ERR(trans);
4821 }
4822
4823 mutex_lock(&fs_info->chunk_mutex);
4824
4825 btrfs_device_set_total_bytes(device, new_size);
4826 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4827 device->fs_devices->total_rw_bytes -= diff;
4828 atomic64_sub(diff, &fs_info->free_chunk_space);
4829 }
4830
4831 /*
4832 * Once the device's size has been set to the new size, ensure all
4833 * in-memory chunks are synced to disk so that the loop below sees them
4834 * and relocates them accordingly.
4835 */
4836 if (contains_pending_extent(device, &start, diff)) {
4837 mutex_unlock(&fs_info->chunk_mutex);
4838 ret = btrfs_commit_transaction(trans);
4839 if (ret)
4840 goto done;
4841 } else {
4842 mutex_unlock(&fs_info->chunk_mutex);
4843 btrfs_end_transaction(trans);
4844 }
4845
4846 again:
4847 key.objectid = device->devid;
4848 key.offset = (u64)-1;
4849 key.type = BTRFS_DEV_EXTENT_KEY;
4850
4851 do {
4852 mutex_lock(&fs_info->reclaim_bgs_lock);
4853 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4854 if (ret < 0) {
4855 mutex_unlock(&fs_info->reclaim_bgs_lock);
4856 goto done;
4857 }
4858
4859 ret = btrfs_previous_item(root, path, 0, key.type);
4860 if (ret) {
4861 mutex_unlock(&fs_info->reclaim_bgs_lock);
4862 if (ret < 0)
4863 goto done;
4864 ret = 0;
4865 btrfs_release_path(path);
4866 break;
4867 }
4868
4869 l = path->nodes[0];
4870 slot = path->slots[0];
4871 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4872
4873 if (key.objectid != device->devid) {
4874 mutex_unlock(&fs_info->reclaim_bgs_lock);
4875 btrfs_release_path(path);
4876 break;
4877 }
4878
4879 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4880 length = btrfs_dev_extent_length(l, dev_extent);
4881
4882 if (key.offset + length <= new_size) {
4883 mutex_unlock(&fs_info->reclaim_bgs_lock);
4884 btrfs_release_path(path);
4885 break;
4886 }
4887
4888 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4889 btrfs_release_path(path);
4890
4891 /*
4892 * We may be relocating the only data chunk we have,
4893 * which could potentially end up with losing data's
4894 * raid profile, so lets allocate an empty one in
4895 * advance.
4896 */
4897 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4898 if (ret < 0) {
4899 mutex_unlock(&fs_info->reclaim_bgs_lock);
4900 goto done;
4901 }
4902
4903 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4904 mutex_unlock(&fs_info->reclaim_bgs_lock);
4905 if (ret == -ENOSPC) {
4906 failed++;
4907 } else if (ret) {
4908 if (ret == -ETXTBSY) {
4909 btrfs_warn(fs_info,
4910 "could not shrink block group %llu due to active swapfile",
4911 chunk_offset);
4912 }
4913 goto done;
4914 }
4915 } while (key.offset-- > 0);
4916
4917 if (failed && !retried) {
4918 failed = 0;
4919 retried = true;
4920 goto again;
4921 } else if (failed && retried) {
4922 ret = -ENOSPC;
4923 goto done;
4924 }
4925
4926 /* Shrinking succeeded, else we would be at "done". */
4927 trans = btrfs_start_transaction(root, 0);
4928 if (IS_ERR(trans)) {
4929 ret = PTR_ERR(trans);
4930 goto done;
4931 }
4932
4933 mutex_lock(&fs_info->chunk_mutex);
4934 /* Clear all state bits beyond the shrunk device size */
4935 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4936 CHUNK_STATE_MASK);
4937
4938 btrfs_device_set_disk_total_bytes(device, new_size);
4939 if (list_empty(&device->post_commit_list))
4940 list_add_tail(&device->post_commit_list,
4941 &trans->transaction->dev_update_list);
4942
4943 WARN_ON(diff > old_total);
4944 btrfs_set_super_total_bytes(super_copy,
4945 round_down(old_total - diff, fs_info->sectorsize));
4946 mutex_unlock(&fs_info->chunk_mutex);
4947
4948 btrfs_reserve_chunk_metadata(trans, false);
4949 /* Now btrfs_update_device() will change the on-disk size. */
4950 ret = btrfs_update_device(trans, device);
4951 btrfs_trans_release_chunk_metadata(trans);
4952 if (ret < 0) {
4953 btrfs_abort_transaction(trans, ret);
4954 btrfs_end_transaction(trans);
4955 } else {
4956 ret = btrfs_commit_transaction(trans);
4957 }
4958 done:
4959 btrfs_free_path(path);
4960 if (ret) {
4961 mutex_lock(&fs_info->chunk_mutex);
4962 btrfs_device_set_total_bytes(device, old_size);
4963 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4964 device->fs_devices->total_rw_bytes += diff;
4965 atomic64_add(diff, &fs_info->free_chunk_space);
4966 mutex_unlock(&fs_info->chunk_mutex);
4967 }
4968 return ret;
4969 }
4970
btrfs_add_system_chunk(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_chunk * chunk,int item_size)4971 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4972 struct btrfs_key *key,
4973 struct btrfs_chunk *chunk, int item_size)
4974 {
4975 struct btrfs_super_block *super_copy = fs_info->super_copy;
4976 struct btrfs_disk_key disk_key;
4977 u32 array_size;
4978 u8 *ptr;
4979
4980 lockdep_assert_held(&fs_info->chunk_mutex);
4981
4982 array_size = btrfs_super_sys_array_size(super_copy);
4983 if (array_size + item_size + sizeof(disk_key)
4984 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
4985 return -EFBIG;
4986
4987 ptr = super_copy->sys_chunk_array + array_size;
4988 btrfs_cpu_key_to_disk(&disk_key, key);
4989 memcpy(ptr, &disk_key, sizeof(disk_key));
4990 ptr += sizeof(disk_key);
4991 memcpy(ptr, chunk, item_size);
4992 item_size += sizeof(disk_key);
4993 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4994
4995 return 0;
4996 }
4997
4998 /*
4999 * sort the devices in descending order by max_avail, total_avail
5000 */
btrfs_cmp_device_info(const void * a,const void * b)5001 static int btrfs_cmp_device_info(const void *a, const void *b)
5002 {
5003 const struct btrfs_device_info *di_a = a;
5004 const struct btrfs_device_info *di_b = b;
5005
5006 if (di_a->max_avail > di_b->max_avail)
5007 return -1;
5008 if (di_a->max_avail < di_b->max_avail)
5009 return 1;
5010 if (di_a->total_avail > di_b->total_avail)
5011 return -1;
5012 if (di_a->total_avail < di_b->total_avail)
5013 return 1;
5014 return 0;
5015 }
5016
check_raid56_incompat_flag(struct btrfs_fs_info * info,u64 type)5017 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5018 {
5019 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5020 return;
5021
5022 btrfs_set_fs_incompat(info, RAID56);
5023 }
5024
check_raid1c34_incompat_flag(struct btrfs_fs_info * info,u64 type)5025 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5026 {
5027 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5028 return;
5029
5030 btrfs_set_fs_incompat(info, RAID1C34);
5031 }
5032
5033 /*
5034 * Structure used internally for btrfs_create_chunk() function.
5035 * Wraps needed parameters.
5036 */
5037 struct alloc_chunk_ctl {
5038 u64 start;
5039 u64 type;
5040 /* Total number of stripes to allocate */
5041 int num_stripes;
5042 /* sub_stripes info for map */
5043 int sub_stripes;
5044 /* Stripes per device */
5045 int dev_stripes;
5046 /* Maximum number of devices to use */
5047 int devs_max;
5048 /* Minimum number of devices to use */
5049 int devs_min;
5050 /* ndevs has to be a multiple of this */
5051 int devs_increment;
5052 /* Number of copies */
5053 int ncopies;
5054 /* Number of stripes worth of bytes to store parity information */
5055 int nparity;
5056 u64 max_stripe_size;
5057 u64 max_chunk_size;
5058 u64 dev_extent_min;
5059 u64 stripe_size;
5060 u64 chunk_size;
5061 int ndevs;
5062 };
5063
init_alloc_chunk_ctl_policy_regular(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5064 static void init_alloc_chunk_ctl_policy_regular(
5065 struct btrfs_fs_devices *fs_devices,
5066 struct alloc_chunk_ctl *ctl)
5067 {
5068 u64 type = ctl->type;
5069
5070 if (type & BTRFS_BLOCK_GROUP_DATA) {
5071 ctl->max_stripe_size = SZ_1G;
5072 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
5073 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5074 /* For larger filesystems, use larger metadata chunks */
5075 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
5076 ctl->max_stripe_size = SZ_1G;
5077 else
5078 ctl->max_stripe_size = SZ_256M;
5079 ctl->max_chunk_size = ctl->max_stripe_size;
5080 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5081 ctl->max_stripe_size = SZ_32M;
5082 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5083 ctl->devs_max = min_t(int, ctl->devs_max,
5084 BTRFS_MAX_DEVS_SYS_CHUNK);
5085 } else {
5086 BUG();
5087 }
5088
5089 /* We don't want a chunk larger than 10% of writable space */
5090 ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5091 ctl->max_chunk_size);
5092 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5093 }
5094
init_alloc_chunk_ctl_policy_zoned(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5095 static void init_alloc_chunk_ctl_policy_zoned(
5096 struct btrfs_fs_devices *fs_devices,
5097 struct alloc_chunk_ctl *ctl)
5098 {
5099 u64 zone_size = fs_devices->fs_info->zone_size;
5100 u64 limit;
5101 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5102 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5103 u64 min_chunk_size = min_data_stripes * zone_size;
5104 u64 type = ctl->type;
5105
5106 ctl->max_stripe_size = zone_size;
5107 if (type & BTRFS_BLOCK_GROUP_DATA) {
5108 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5109 zone_size);
5110 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5111 ctl->max_chunk_size = ctl->max_stripe_size;
5112 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5113 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5114 ctl->devs_max = min_t(int, ctl->devs_max,
5115 BTRFS_MAX_DEVS_SYS_CHUNK);
5116 } else {
5117 BUG();
5118 }
5119
5120 /* We don't want a chunk larger than 10% of writable space */
5121 limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5122 zone_size),
5123 min_chunk_size);
5124 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5125 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5126 }
5127
init_alloc_chunk_ctl(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5128 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5129 struct alloc_chunk_ctl *ctl)
5130 {
5131 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5132
5133 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5134 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5135 ctl->devs_max = btrfs_raid_array[index].devs_max;
5136 if (!ctl->devs_max)
5137 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5138 ctl->devs_min = btrfs_raid_array[index].devs_min;
5139 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5140 ctl->ncopies = btrfs_raid_array[index].ncopies;
5141 ctl->nparity = btrfs_raid_array[index].nparity;
5142 ctl->ndevs = 0;
5143
5144 switch (fs_devices->chunk_alloc_policy) {
5145 case BTRFS_CHUNK_ALLOC_REGULAR:
5146 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5147 break;
5148 case BTRFS_CHUNK_ALLOC_ZONED:
5149 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5150 break;
5151 default:
5152 BUG();
5153 }
5154 }
5155
gather_device_info(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5156 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5157 struct alloc_chunk_ctl *ctl,
5158 struct btrfs_device_info *devices_info)
5159 {
5160 struct btrfs_fs_info *info = fs_devices->fs_info;
5161 struct btrfs_device *device;
5162 u64 total_avail;
5163 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5164 int ret;
5165 int ndevs = 0;
5166 u64 max_avail;
5167 u64 dev_offset;
5168
5169 /*
5170 * in the first pass through the devices list, we gather information
5171 * about the available holes on each device.
5172 */
5173 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5174 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5175 WARN(1, KERN_ERR
5176 "BTRFS: read-only device in alloc_list\n");
5177 continue;
5178 }
5179
5180 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5181 &device->dev_state) ||
5182 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5183 continue;
5184
5185 if (device->total_bytes > device->bytes_used)
5186 total_avail = device->total_bytes - device->bytes_used;
5187 else
5188 total_avail = 0;
5189
5190 /* If there is no space on this device, skip it. */
5191 if (total_avail < ctl->dev_extent_min)
5192 continue;
5193
5194 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5195 &max_avail);
5196 if (ret && ret != -ENOSPC)
5197 return ret;
5198
5199 if (ret == 0)
5200 max_avail = dev_extent_want;
5201
5202 if (max_avail < ctl->dev_extent_min) {
5203 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5204 btrfs_debug(info,
5205 "%s: devid %llu has no free space, have=%llu want=%llu",
5206 __func__, device->devid, max_avail,
5207 ctl->dev_extent_min);
5208 continue;
5209 }
5210
5211 if (ndevs == fs_devices->rw_devices) {
5212 WARN(1, "%s: found more than %llu devices\n",
5213 __func__, fs_devices->rw_devices);
5214 break;
5215 }
5216 devices_info[ndevs].dev_offset = dev_offset;
5217 devices_info[ndevs].max_avail = max_avail;
5218 devices_info[ndevs].total_avail = total_avail;
5219 devices_info[ndevs].dev = device;
5220 ++ndevs;
5221 }
5222 ctl->ndevs = ndevs;
5223
5224 /*
5225 * now sort the devices by hole size / available space
5226 */
5227 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5228 btrfs_cmp_device_info, NULL);
5229
5230 return 0;
5231 }
5232
decide_stripe_size_regular(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5233 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5234 struct btrfs_device_info *devices_info)
5235 {
5236 /* Number of stripes that count for block group size */
5237 int data_stripes;
5238
5239 /*
5240 * The primary goal is to maximize the number of stripes, so use as
5241 * many devices as possible, even if the stripes are not maximum sized.
5242 *
5243 * The DUP profile stores more than one stripe per device, the
5244 * max_avail is the total size so we have to adjust.
5245 */
5246 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5247 ctl->dev_stripes);
5248 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5249
5250 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5251 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5252
5253 /*
5254 * Use the number of data stripes to figure out how big this chunk is
5255 * really going to be in terms of logical address space, and compare
5256 * that answer with the max chunk size. If it's higher, we try to
5257 * reduce stripe_size.
5258 */
5259 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5260 /*
5261 * Reduce stripe_size, round it up to a 16MB boundary again and
5262 * then use it, unless it ends up being even bigger than the
5263 * previous value we had already.
5264 */
5265 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5266 data_stripes), SZ_16M),
5267 ctl->stripe_size);
5268 }
5269
5270 /* Align to BTRFS_STRIPE_LEN */
5271 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5272 ctl->chunk_size = ctl->stripe_size * data_stripes;
5273
5274 return 0;
5275 }
5276
decide_stripe_size_zoned(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5277 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5278 struct btrfs_device_info *devices_info)
5279 {
5280 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5281 /* Number of stripes that count for block group size */
5282 int data_stripes;
5283
5284 /*
5285 * It should hold because:
5286 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5287 */
5288 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5289
5290 ctl->stripe_size = zone_size;
5291 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5292 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5293
5294 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5295 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5296 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5297 ctl->stripe_size) + ctl->nparity,
5298 ctl->dev_stripes);
5299 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5300 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5301 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5302 }
5303
5304 ctl->chunk_size = ctl->stripe_size * data_stripes;
5305
5306 return 0;
5307 }
5308
decide_stripe_size(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5309 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5310 struct alloc_chunk_ctl *ctl,
5311 struct btrfs_device_info *devices_info)
5312 {
5313 struct btrfs_fs_info *info = fs_devices->fs_info;
5314
5315 /*
5316 * Round down to number of usable stripes, devs_increment can be any
5317 * number so we can't use round_down() that requires power of 2, while
5318 * rounddown is safe.
5319 */
5320 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5321
5322 if (ctl->ndevs < ctl->devs_min) {
5323 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5324 btrfs_debug(info,
5325 "%s: not enough devices with free space: have=%d minimum required=%d",
5326 __func__, ctl->ndevs, ctl->devs_min);
5327 }
5328 return -ENOSPC;
5329 }
5330
5331 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5332
5333 switch (fs_devices->chunk_alloc_policy) {
5334 case BTRFS_CHUNK_ALLOC_REGULAR:
5335 return decide_stripe_size_regular(ctl, devices_info);
5336 case BTRFS_CHUNK_ALLOC_ZONED:
5337 return decide_stripe_size_zoned(ctl, devices_info);
5338 default:
5339 BUG();
5340 }
5341 }
5342
create_chunk(struct btrfs_trans_handle * trans,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5343 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5344 struct alloc_chunk_ctl *ctl,
5345 struct btrfs_device_info *devices_info)
5346 {
5347 struct btrfs_fs_info *info = trans->fs_info;
5348 struct map_lookup *map = NULL;
5349 struct extent_map_tree *em_tree;
5350 struct btrfs_block_group *block_group;
5351 struct extent_map *em;
5352 u64 start = ctl->start;
5353 u64 type = ctl->type;
5354 int ret;
5355 int i;
5356 int j;
5357
5358 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5359 if (!map)
5360 return ERR_PTR(-ENOMEM);
5361 map->num_stripes = ctl->num_stripes;
5362
5363 for (i = 0; i < ctl->ndevs; ++i) {
5364 for (j = 0; j < ctl->dev_stripes; ++j) {
5365 int s = i * ctl->dev_stripes + j;
5366 map->stripes[s].dev = devices_info[i].dev;
5367 map->stripes[s].physical = devices_info[i].dev_offset +
5368 j * ctl->stripe_size;
5369 }
5370 }
5371 map->stripe_len = BTRFS_STRIPE_LEN;
5372 map->io_align = BTRFS_STRIPE_LEN;
5373 map->io_width = BTRFS_STRIPE_LEN;
5374 map->type = type;
5375 map->sub_stripes = ctl->sub_stripes;
5376
5377 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5378
5379 em = alloc_extent_map();
5380 if (!em) {
5381 kfree(map);
5382 return ERR_PTR(-ENOMEM);
5383 }
5384 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5385 em->map_lookup = map;
5386 em->start = start;
5387 em->len = ctl->chunk_size;
5388 em->block_start = 0;
5389 em->block_len = em->len;
5390 em->orig_block_len = ctl->stripe_size;
5391
5392 em_tree = &info->mapping_tree;
5393 write_lock(&em_tree->lock);
5394 ret = add_extent_mapping(em_tree, em, 0);
5395 if (ret) {
5396 write_unlock(&em_tree->lock);
5397 free_extent_map(em);
5398 return ERR_PTR(ret);
5399 }
5400 write_unlock(&em_tree->lock);
5401
5402 block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5403 if (IS_ERR(block_group))
5404 goto error_del_extent;
5405
5406 for (i = 0; i < map->num_stripes; i++) {
5407 struct btrfs_device *dev = map->stripes[i].dev;
5408
5409 btrfs_device_set_bytes_used(dev,
5410 dev->bytes_used + ctl->stripe_size);
5411 if (list_empty(&dev->post_commit_list))
5412 list_add_tail(&dev->post_commit_list,
5413 &trans->transaction->dev_update_list);
5414 }
5415
5416 atomic64_sub(ctl->stripe_size * map->num_stripes,
5417 &info->free_chunk_space);
5418
5419 free_extent_map(em);
5420 check_raid56_incompat_flag(info, type);
5421 check_raid1c34_incompat_flag(info, type);
5422
5423 return block_group;
5424
5425 error_del_extent:
5426 write_lock(&em_tree->lock);
5427 remove_extent_mapping(em_tree, em);
5428 write_unlock(&em_tree->lock);
5429
5430 /* One for our allocation */
5431 free_extent_map(em);
5432 /* One for the tree reference */
5433 free_extent_map(em);
5434
5435 return block_group;
5436 }
5437
btrfs_create_chunk(struct btrfs_trans_handle * trans,u64 type)5438 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5439 u64 type)
5440 {
5441 struct btrfs_fs_info *info = trans->fs_info;
5442 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5443 struct btrfs_device_info *devices_info = NULL;
5444 struct alloc_chunk_ctl ctl;
5445 struct btrfs_block_group *block_group;
5446 int ret;
5447
5448 lockdep_assert_held(&info->chunk_mutex);
5449
5450 if (!alloc_profile_is_valid(type, 0)) {
5451 ASSERT(0);
5452 return ERR_PTR(-EINVAL);
5453 }
5454
5455 if (list_empty(&fs_devices->alloc_list)) {
5456 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5457 btrfs_debug(info, "%s: no writable device", __func__);
5458 return ERR_PTR(-ENOSPC);
5459 }
5460
5461 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5462 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5463 ASSERT(0);
5464 return ERR_PTR(-EINVAL);
5465 }
5466
5467 ctl.start = find_next_chunk(info);
5468 ctl.type = type;
5469 init_alloc_chunk_ctl(fs_devices, &ctl);
5470
5471 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5472 GFP_NOFS);
5473 if (!devices_info)
5474 return ERR_PTR(-ENOMEM);
5475
5476 ret = gather_device_info(fs_devices, &ctl, devices_info);
5477 if (ret < 0) {
5478 block_group = ERR_PTR(ret);
5479 goto out;
5480 }
5481
5482 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5483 if (ret < 0) {
5484 block_group = ERR_PTR(ret);
5485 goto out;
5486 }
5487
5488 block_group = create_chunk(trans, &ctl, devices_info);
5489
5490 out:
5491 kfree(devices_info);
5492 return block_group;
5493 }
5494
5495 /*
5496 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5497 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5498 * chunks.
5499 *
5500 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5501 * phases.
5502 */
btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle * trans,struct btrfs_block_group * bg)5503 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5504 struct btrfs_block_group *bg)
5505 {
5506 struct btrfs_fs_info *fs_info = trans->fs_info;
5507 struct btrfs_root *extent_root = fs_info->extent_root;
5508 struct btrfs_root *chunk_root = fs_info->chunk_root;
5509 struct btrfs_key key;
5510 struct btrfs_chunk *chunk;
5511 struct btrfs_stripe *stripe;
5512 struct extent_map *em;
5513 struct map_lookup *map;
5514 size_t item_size;
5515 int i;
5516 int ret;
5517
5518 /*
5519 * We take the chunk_mutex for 2 reasons:
5520 *
5521 * 1) Updates and insertions in the chunk btree must be done while holding
5522 * the chunk_mutex, as well as updating the system chunk array in the
5523 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5524 * details;
5525 *
5526 * 2) To prevent races with the final phase of a device replace operation
5527 * that replaces the device object associated with the map's stripes,
5528 * because the device object's id can change at any time during that
5529 * final phase of the device replace operation
5530 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5531 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5532 * which would cause a failure when updating the device item, which does
5533 * not exists, or persisting a stripe of the chunk item with such ID.
5534 * Here we can't use the device_list_mutex because our caller already
5535 * has locked the chunk_mutex, and the final phase of device replace
5536 * acquires both mutexes - first the device_list_mutex and then the
5537 * chunk_mutex. Using any of those two mutexes protects us from a
5538 * concurrent device replace.
5539 */
5540 lockdep_assert_held(&fs_info->chunk_mutex);
5541
5542 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5543 if (IS_ERR(em)) {
5544 ret = PTR_ERR(em);
5545 btrfs_abort_transaction(trans, ret);
5546 return ret;
5547 }
5548
5549 map = em->map_lookup;
5550 item_size = btrfs_chunk_item_size(map->num_stripes);
5551
5552 chunk = kzalloc(item_size, GFP_NOFS);
5553 if (!chunk) {
5554 ret = -ENOMEM;
5555 btrfs_abort_transaction(trans, ret);
5556 goto out;
5557 }
5558
5559 for (i = 0; i < map->num_stripes; i++) {
5560 struct btrfs_device *device = map->stripes[i].dev;
5561
5562 ret = btrfs_update_device(trans, device);
5563 if (ret)
5564 goto out;
5565 }
5566
5567 stripe = &chunk->stripe;
5568 for (i = 0; i < map->num_stripes; i++) {
5569 struct btrfs_device *device = map->stripes[i].dev;
5570 const u64 dev_offset = map->stripes[i].physical;
5571
5572 btrfs_set_stack_stripe_devid(stripe, device->devid);
5573 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5574 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5575 stripe++;
5576 }
5577
5578 btrfs_set_stack_chunk_length(chunk, bg->length);
5579 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5580 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5581 btrfs_set_stack_chunk_type(chunk, map->type);
5582 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5583 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5584 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5585 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5586 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5587
5588 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5589 key.type = BTRFS_CHUNK_ITEM_KEY;
5590 key.offset = bg->start;
5591
5592 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5593 if (ret)
5594 goto out;
5595
5596 bg->chunk_item_inserted = 1;
5597
5598 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5599 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5600 if (ret)
5601 goto out;
5602 }
5603
5604 out:
5605 kfree(chunk);
5606 free_extent_map(em);
5607 return ret;
5608 }
5609
init_first_rw_device(struct btrfs_trans_handle * trans)5610 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5611 {
5612 struct btrfs_fs_info *fs_info = trans->fs_info;
5613 u64 alloc_profile;
5614 struct btrfs_block_group *meta_bg;
5615 struct btrfs_block_group *sys_bg;
5616
5617 /*
5618 * When adding a new device for sprouting, the seed device is read-only
5619 * so we must first allocate a metadata and a system chunk. But before
5620 * adding the block group items to the extent, device and chunk btrees,
5621 * we must first:
5622 *
5623 * 1) Create both chunks without doing any changes to the btrees, as
5624 * otherwise we would get -ENOSPC since the block groups from the
5625 * seed device are read-only;
5626 *
5627 * 2) Add the device item for the new sprout device - finishing the setup
5628 * of a new block group requires updating the device item in the chunk
5629 * btree, so it must exist when we attempt to do it. The previous step
5630 * ensures this does not fail with -ENOSPC.
5631 *
5632 * After that we can add the block group items to their btrees:
5633 * update existing device item in the chunk btree, add a new block group
5634 * item to the extent btree, add a new chunk item to the chunk btree and
5635 * finally add the new device extent items to the devices btree.
5636 */
5637
5638 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5639 meta_bg = btrfs_create_chunk(trans, alloc_profile);
5640 if (IS_ERR(meta_bg))
5641 return PTR_ERR(meta_bg);
5642
5643 alloc_profile = btrfs_system_alloc_profile(fs_info);
5644 sys_bg = btrfs_create_chunk(trans, alloc_profile);
5645 if (IS_ERR(sys_bg))
5646 return PTR_ERR(sys_bg);
5647
5648 return 0;
5649 }
5650
btrfs_chunk_max_errors(struct map_lookup * map)5651 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5652 {
5653 const int index = btrfs_bg_flags_to_raid_index(map->type);
5654
5655 return btrfs_raid_array[index].tolerated_failures;
5656 }
5657
btrfs_chunk_writeable(struct btrfs_fs_info * fs_info,u64 chunk_offset)5658 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5659 {
5660 struct extent_map *em;
5661 struct map_lookup *map;
5662 int miss_ndevs = 0;
5663 int i;
5664 bool ret = true;
5665
5666 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5667 if (IS_ERR(em))
5668 return false;
5669
5670 map = em->map_lookup;
5671 for (i = 0; i < map->num_stripes; i++) {
5672 if (test_bit(BTRFS_DEV_STATE_MISSING,
5673 &map->stripes[i].dev->dev_state)) {
5674 miss_ndevs++;
5675 continue;
5676 }
5677 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5678 &map->stripes[i].dev->dev_state)) {
5679 ret = false;
5680 goto end;
5681 }
5682 }
5683
5684 /*
5685 * If the number of missing devices is larger than max errors, we can
5686 * not write the data into that chunk successfully.
5687 */
5688 if (miss_ndevs > btrfs_chunk_max_errors(map))
5689 ret = false;
5690 end:
5691 free_extent_map(em);
5692 return ret;
5693 }
5694
btrfs_mapping_tree_free(struct extent_map_tree * tree)5695 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5696 {
5697 struct extent_map *em;
5698
5699 while (1) {
5700 write_lock(&tree->lock);
5701 em = lookup_extent_mapping(tree, 0, (u64)-1);
5702 if (em)
5703 remove_extent_mapping(tree, em);
5704 write_unlock(&tree->lock);
5705 if (!em)
5706 break;
5707 /* once for us */
5708 free_extent_map(em);
5709 /* once for the tree */
5710 free_extent_map(em);
5711 }
5712 }
5713
btrfs_num_copies(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5714 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5715 {
5716 struct extent_map *em;
5717 struct map_lookup *map;
5718 int ret;
5719
5720 em = btrfs_get_chunk_map(fs_info, logical, len);
5721 if (IS_ERR(em))
5722 /*
5723 * We could return errors for these cases, but that could get
5724 * ugly and we'd probably do the same thing which is just not do
5725 * anything else and exit, so return 1 so the callers don't try
5726 * to use other copies.
5727 */
5728 return 1;
5729
5730 map = em->map_lookup;
5731 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5732 ret = map->num_stripes;
5733 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5734 ret = map->sub_stripes;
5735 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5736 ret = 2;
5737 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5738 /*
5739 * There could be two corrupted data stripes, we need
5740 * to loop retry in order to rebuild the correct data.
5741 *
5742 * Fail a stripe at a time on every retry except the
5743 * stripe under reconstruction.
5744 */
5745 ret = map->num_stripes;
5746 else
5747 ret = 1;
5748 free_extent_map(em);
5749
5750 down_read(&fs_info->dev_replace.rwsem);
5751 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5752 fs_info->dev_replace.tgtdev)
5753 ret++;
5754 up_read(&fs_info->dev_replace.rwsem);
5755
5756 return ret;
5757 }
5758
btrfs_full_stripe_len(struct btrfs_fs_info * fs_info,u64 logical)5759 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5760 u64 logical)
5761 {
5762 struct extent_map *em;
5763 struct map_lookup *map;
5764 unsigned long len = fs_info->sectorsize;
5765
5766 em = btrfs_get_chunk_map(fs_info, logical, len);
5767
5768 if (!WARN_ON(IS_ERR(em))) {
5769 map = em->map_lookup;
5770 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5771 len = map->stripe_len * nr_data_stripes(map);
5772 free_extent_map(em);
5773 }
5774 return len;
5775 }
5776
btrfs_is_parity_mirror(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5777 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5778 {
5779 struct extent_map *em;
5780 struct map_lookup *map;
5781 int ret = 0;
5782
5783 em = btrfs_get_chunk_map(fs_info, logical, len);
5784
5785 if(!WARN_ON(IS_ERR(em))) {
5786 map = em->map_lookup;
5787 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5788 ret = 1;
5789 free_extent_map(em);
5790 }
5791 return ret;
5792 }
5793
find_live_mirror(struct btrfs_fs_info * fs_info,struct map_lookup * map,int first,int dev_replace_is_ongoing)5794 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5795 struct map_lookup *map, int first,
5796 int dev_replace_is_ongoing)
5797 {
5798 int i;
5799 int num_stripes;
5800 int preferred_mirror;
5801 int tolerance;
5802 struct btrfs_device *srcdev;
5803
5804 ASSERT((map->type &
5805 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5806
5807 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5808 num_stripes = map->sub_stripes;
5809 else
5810 num_stripes = map->num_stripes;
5811
5812 switch (fs_info->fs_devices->read_policy) {
5813 default:
5814 /* Shouldn't happen, just warn and use pid instead of failing */
5815 btrfs_warn_rl(fs_info,
5816 "unknown read_policy type %u, reset to pid",
5817 fs_info->fs_devices->read_policy);
5818 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5819 fallthrough;
5820 case BTRFS_READ_POLICY_PID:
5821 preferred_mirror = first + (current->pid % num_stripes);
5822 break;
5823 }
5824
5825 if (dev_replace_is_ongoing &&
5826 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5827 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5828 srcdev = fs_info->dev_replace.srcdev;
5829 else
5830 srcdev = NULL;
5831
5832 /*
5833 * try to avoid the drive that is the source drive for a
5834 * dev-replace procedure, only choose it if no other non-missing
5835 * mirror is available
5836 */
5837 for (tolerance = 0; tolerance < 2; tolerance++) {
5838 if (map->stripes[preferred_mirror].dev->bdev &&
5839 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5840 return preferred_mirror;
5841 for (i = first; i < first + num_stripes; i++) {
5842 if (map->stripes[i].dev->bdev &&
5843 (tolerance || map->stripes[i].dev != srcdev))
5844 return i;
5845 }
5846 }
5847
5848 /* we couldn't find one that doesn't fail. Just return something
5849 * and the io error handling code will clean up eventually
5850 */
5851 return preferred_mirror;
5852 }
5853
5854 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
sort_parity_stripes(struct btrfs_io_context * bioc,int num_stripes)5855 static void sort_parity_stripes(struct btrfs_io_context *bioc, int num_stripes)
5856 {
5857 int i;
5858 int again = 1;
5859
5860 while (again) {
5861 again = 0;
5862 for (i = 0; i < num_stripes - 1; i++) {
5863 /* Swap if parity is on a smaller index */
5864 if (bioc->raid_map[i] > bioc->raid_map[i + 1]) {
5865 swap(bioc->stripes[i], bioc->stripes[i + 1]);
5866 swap(bioc->raid_map[i], bioc->raid_map[i + 1]);
5867 again = 1;
5868 }
5869 }
5870 }
5871 }
5872
alloc_btrfs_io_context(struct btrfs_fs_info * fs_info,int total_stripes,int real_stripes)5873 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5874 int total_stripes,
5875 int real_stripes)
5876 {
5877 struct btrfs_io_context *bioc = kzalloc(
5878 /* The size of btrfs_io_context */
5879 sizeof(struct btrfs_io_context) +
5880 /* Plus the variable array for the stripes */
5881 sizeof(struct btrfs_io_stripe) * (total_stripes) +
5882 /* Plus the variable array for the tgt dev */
5883 sizeof(int) * (real_stripes) +
5884 /*
5885 * Plus the raid_map, which includes both the tgt dev
5886 * and the stripes.
5887 */
5888 sizeof(u64) * (total_stripes),
5889 GFP_NOFS|__GFP_NOFAIL);
5890
5891 atomic_set(&bioc->error, 0);
5892 refcount_set(&bioc->refs, 1);
5893
5894 bioc->fs_info = fs_info;
5895 bioc->tgtdev_map = (int *)(bioc->stripes + total_stripes);
5896 bioc->raid_map = (u64 *)(bioc->tgtdev_map + real_stripes);
5897
5898 return bioc;
5899 }
5900
btrfs_get_bioc(struct btrfs_io_context * bioc)5901 void btrfs_get_bioc(struct btrfs_io_context *bioc)
5902 {
5903 WARN_ON(!refcount_read(&bioc->refs));
5904 refcount_inc(&bioc->refs);
5905 }
5906
btrfs_put_bioc(struct btrfs_io_context * bioc)5907 void btrfs_put_bioc(struct btrfs_io_context *bioc)
5908 {
5909 if (!bioc)
5910 return;
5911 if (refcount_dec_and_test(&bioc->refs))
5912 kfree(bioc);
5913 }
5914
5915 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5916 /*
5917 * Please note that, discard won't be sent to target device of device
5918 * replace.
5919 */
__btrfs_map_block_for_discard(struct btrfs_fs_info * fs_info,u64 logical,u64 * length_ret,struct btrfs_io_context ** bioc_ret)5920 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5921 u64 logical, u64 *length_ret,
5922 struct btrfs_io_context **bioc_ret)
5923 {
5924 struct extent_map *em;
5925 struct map_lookup *map;
5926 struct btrfs_io_context *bioc;
5927 u64 length = *length_ret;
5928 u64 offset;
5929 u64 stripe_nr;
5930 u64 stripe_nr_end;
5931 u64 stripe_end_offset;
5932 u64 stripe_cnt;
5933 u64 stripe_len;
5934 u64 stripe_offset;
5935 u64 num_stripes;
5936 u32 stripe_index;
5937 u32 factor = 0;
5938 u32 sub_stripes = 0;
5939 u64 stripes_per_dev = 0;
5940 u32 remaining_stripes = 0;
5941 u32 last_stripe = 0;
5942 int ret = 0;
5943 int i;
5944
5945 /* Discard always returns a bioc. */
5946 ASSERT(bioc_ret);
5947
5948 em = btrfs_get_chunk_map(fs_info, logical, length);
5949 if (IS_ERR(em))
5950 return PTR_ERR(em);
5951
5952 map = em->map_lookup;
5953 /* we don't discard raid56 yet */
5954 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5955 ret = -EOPNOTSUPP;
5956 goto out;
5957 }
5958
5959 offset = logical - em->start;
5960 length = min_t(u64, em->start + em->len - logical, length);
5961 *length_ret = length;
5962
5963 stripe_len = map->stripe_len;
5964 /*
5965 * stripe_nr counts the total number of stripes we have to stride
5966 * to get to this block
5967 */
5968 stripe_nr = div64_u64(offset, stripe_len);
5969
5970 /* stripe_offset is the offset of this block in its stripe */
5971 stripe_offset = offset - stripe_nr * stripe_len;
5972
5973 stripe_nr_end = round_up(offset + length, map->stripe_len);
5974 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5975 stripe_cnt = stripe_nr_end - stripe_nr;
5976 stripe_end_offset = stripe_nr_end * map->stripe_len -
5977 (offset + length);
5978 /*
5979 * after this, stripe_nr is the number of stripes on this
5980 * device we have to walk to find the data, and stripe_index is
5981 * the number of our device in the stripe array
5982 */
5983 num_stripes = 1;
5984 stripe_index = 0;
5985 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5986 BTRFS_BLOCK_GROUP_RAID10)) {
5987 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5988 sub_stripes = 1;
5989 else
5990 sub_stripes = map->sub_stripes;
5991
5992 factor = map->num_stripes / sub_stripes;
5993 num_stripes = min_t(u64, map->num_stripes,
5994 sub_stripes * stripe_cnt);
5995 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5996 stripe_index *= sub_stripes;
5997 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5998 &remaining_stripes);
5999 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
6000 last_stripe *= sub_stripes;
6001 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6002 BTRFS_BLOCK_GROUP_DUP)) {
6003 num_stripes = map->num_stripes;
6004 } else {
6005 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6006 &stripe_index);
6007 }
6008
6009 bioc = alloc_btrfs_io_context(fs_info, num_stripes, 0);
6010 if (!bioc) {
6011 ret = -ENOMEM;
6012 goto out;
6013 }
6014
6015 for (i = 0; i < num_stripes; i++) {
6016 bioc->stripes[i].physical =
6017 map->stripes[stripe_index].physical +
6018 stripe_offset + stripe_nr * map->stripe_len;
6019 bioc->stripes[i].dev = map->stripes[stripe_index].dev;
6020
6021 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6022 BTRFS_BLOCK_GROUP_RAID10)) {
6023 bioc->stripes[i].length = stripes_per_dev *
6024 map->stripe_len;
6025
6026 if (i / sub_stripes < remaining_stripes)
6027 bioc->stripes[i].length += map->stripe_len;
6028
6029 /*
6030 * Special for the first stripe and
6031 * the last stripe:
6032 *
6033 * |-------|...|-------|
6034 * |----------|
6035 * off end_off
6036 */
6037 if (i < sub_stripes)
6038 bioc->stripes[i].length -= stripe_offset;
6039
6040 if (stripe_index >= last_stripe &&
6041 stripe_index <= (last_stripe +
6042 sub_stripes - 1))
6043 bioc->stripes[i].length -= stripe_end_offset;
6044
6045 if (i == sub_stripes - 1)
6046 stripe_offset = 0;
6047 } else {
6048 bioc->stripes[i].length = length;
6049 }
6050
6051 stripe_index++;
6052 if (stripe_index == map->num_stripes) {
6053 stripe_index = 0;
6054 stripe_nr++;
6055 }
6056 }
6057
6058 *bioc_ret = bioc;
6059 bioc->map_type = map->type;
6060 bioc->num_stripes = num_stripes;
6061 out:
6062 free_extent_map(em);
6063 return ret;
6064 }
6065
6066 /*
6067 * In dev-replace case, for repair case (that's the only case where the mirror
6068 * is selected explicitly when calling btrfs_map_block), blocks left of the
6069 * left cursor can also be read from the target drive.
6070 *
6071 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6072 * array of stripes.
6073 * For READ, it also needs to be supported using the same mirror number.
6074 *
6075 * If the requested block is not left of the left cursor, EIO is returned. This
6076 * can happen because btrfs_num_copies() returns one more in the dev-replace
6077 * case.
6078 */
get_extra_mirror_from_replace(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 srcdev_devid,int * mirror_num,u64 * physical)6079 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6080 u64 logical, u64 length,
6081 u64 srcdev_devid, int *mirror_num,
6082 u64 *physical)
6083 {
6084 struct btrfs_io_context *bioc = NULL;
6085 int num_stripes;
6086 int index_srcdev = 0;
6087 int found = 0;
6088 u64 physical_of_found = 0;
6089 int i;
6090 int ret = 0;
6091
6092 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6093 logical, &length, &bioc, 0, 0);
6094 if (ret) {
6095 ASSERT(bioc == NULL);
6096 return ret;
6097 }
6098
6099 num_stripes = bioc->num_stripes;
6100 if (*mirror_num > num_stripes) {
6101 /*
6102 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6103 * that means that the requested area is not left of the left
6104 * cursor
6105 */
6106 btrfs_put_bioc(bioc);
6107 return -EIO;
6108 }
6109
6110 /*
6111 * process the rest of the function using the mirror_num of the source
6112 * drive. Therefore look it up first. At the end, patch the device
6113 * pointer to the one of the target drive.
6114 */
6115 for (i = 0; i < num_stripes; i++) {
6116 if (bioc->stripes[i].dev->devid != srcdev_devid)
6117 continue;
6118
6119 /*
6120 * In case of DUP, in order to keep it simple, only add the
6121 * mirror with the lowest physical address
6122 */
6123 if (found &&
6124 physical_of_found <= bioc->stripes[i].physical)
6125 continue;
6126
6127 index_srcdev = i;
6128 found = 1;
6129 physical_of_found = bioc->stripes[i].physical;
6130 }
6131
6132 btrfs_put_bioc(bioc);
6133
6134 ASSERT(found);
6135 if (!found)
6136 return -EIO;
6137
6138 *mirror_num = index_srcdev + 1;
6139 *physical = physical_of_found;
6140 return ret;
6141 }
6142
is_block_group_to_copy(struct btrfs_fs_info * fs_info,u64 logical)6143 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6144 {
6145 struct btrfs_block_group *cache;
6146 bool ret;
6147
6148 /* Non zoned filesystem does not use "to_copy" flag */
6149 if (!btrfs_is_zoned(fs_info))
6150 return false;
6151
6152 cache = btrfs_lookup_block_group(fs_info, logical);
6153
6154 spin_lock(&cache->lock);
6155 ret = cache->to_copy;
6156 spin_unlock(&cache->lock);
6157
6158 btrfs_put_block_group(cache);
6159 return ret;
6160 }
6161
handle_ops_on_dev_replace(enum btrfs_map_op op,struct btrfs_io_context ** bioc_ret,struct btrfs_dev_replace * dev_replace,u64 logical,int * num_stripes_ret,int * max_errors_ret)6162 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6163 struct btrfs_io_context **bioc_ret,
6164 struct btrfs_dev_replace *dev_replace,
6165 u64 logical,
6166 int *num_stripes_ret, int *max_errors_ret)
6167 {
6168 struct btrfs_io_context *bioc = *bioc_ret;
6169 u64 srcdev_devid = dev_replace->srcdev->devid;
6170 int tgtdev_indexes = 0;
6171 int num_stripes = *num_stripes_ret;
6172 int max_errors = *max_errors_ret;
6173 int i;
6174
6175 if (op == BTRFS_MAP_WRITE) {
6176 int index_where_to_add;
6177
6178 /*
6179 * A block group which have "to_copy" set will eventually
6180 * copied by dev-replace process. We can avoid cloning IO here.
6181 */
6182 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6183 return;
6184
6185 /*
6186 * duplicate the write operations while the dev replace
6187 * procedure is running. Since the copying of the old disk to
6188 * the new disk takes place at run time while the filesystem is
6189 * mounted writable, the regular write operations to the old
6190 * disk have to be duplicated to go to the new disk as well.
6191 *
6192 * Note that device->missing is handled by the caller, and that
6193 * the write to the old disk is already set up in the stripes
6194 * array.
6195 */
6196 index_where_to_add = num_stripes;
6197 for (i = 0; i < num_stripes; i++) {
6198 if (bioc->stripes[i].dev->devid == srcdev_devid) {
6199 /* write to new disk, too */
6200 struct btrfs_io_stripe *new =
6201 bioc->stripes + index_where_to_add;
6202 struct btrfs_io_stripe *old =
6203 bioc->stripes + i;
6204
6205 new->physical = old->physical;
6206 new->length = old->length;
6207 new->dev = dev_replace->tgtdev;
6208 bioc->tgtdev_map[i] = index_where_to_add;
6209 index_where_to_add++;
6210 max_errors++;
6211 tgtdev_indexes++;
6212 }
6213 }
6214 num_stripes = index_where_to_add;
6215 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6216 int index_srcdev = 0;
6217 int found = 0;
6218 u64 physical_of_found = 0;
6219
6220 /*
6221 * During the dev-replace procedure, the target drive can also
6222 * be used to read data in case it is needed to repair a corrupt
6223 * block elsewhere. This is possible if the requested area is
6224 * left of the left cursor. In this area, the target drive is a
6225 * full copy of the source drive.
6226 */
6227 for (i = 0; i < num_stripes; i++) {
6228 if (bioc->stripes[i].dev->devid == srcdev_devid) {
6229 /*
6230 * In case of DUP, in order to keep it simple,
6231 * only add the mirror with the lowest physical
6232 * address
6233 */
6234 if (found &&
6235 physical_of_found <= bioc->stripes[i].physical)
6236 continue;
6237 index_srcdev = i;
6238 found = 1;
6239 physical_of_found = bioc->stripes[i].physical;
6240 }
6241 }
6242 if (found) {
6243 struct btrfs_io_stripe *tgtdev_stripe =
6244 bioc->stripes + num_stripes;
6245
6246 tgtdev_stripe->physical = physical_of_found;
6247 tgtdev_stripe->length =
6248 bioc->stripes[index_srcdev].length;
6249 tgtdev_stripe->dev = dev_replace->tgtdev;
6250 bioc->tgtdev_map[index_srcdev] = num_stripes;
6251
6252 tgtdev_indexes++;
6253 num_stripes++;
6254 }
6255 }
6256
6257 *num_stripes_ret = num_stripes;
6258 *max_errors_ret = max_errors;
6259 bioc->num_tgtdevs = tgtdev_indexes;
6260 *bioc_ret = bioc;
6261 }
6262
need_full_stripe(enum btrfs_map_op op)6263 static bool need_full_stripe(enum btrfs_map_op op)
6264 {
6265 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6266 }
6267
6268 /*
6269 * Calculate the geometry of a particular (address, len) tuple. This
6270 * information is used to calculate how big a particular bio can get before it
6271 * straddles a stripe.
6272 *
6273 * @fs_info: the filesystem
6274 * @em: mapping containing the logical extent
6275 * @op: type of operation - write or read
6276 * @logical: address that we want to figure out the geometry of
6277 * @io_geom: pointer used to return values
6278 *
6279 * Returns < 0 in case a chunk for the given logical address cannot be found,
6280 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6281 */
btrfs_get_io_geometry(struct btrfs_fs_info * fs_info,struct extent_map * em,enum btrfs_map_op op,u64 logical,struct btrfs_io_geometry * io_geom)6282 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6283 enum btrfs_map_op op, u64 logical,
6284 struct btrfs_io_geometry *io_geom)
6285 {
6286 struct map_lookup *map;
6287 u64 len;
6288 u64 offset;
6289 u64 stripe_offset;
6290 u64 stripe_nr;
6291 u64 stripe_len;
6292 u64 raid56_full_stripe_start = (u64)-1;
6293 int data_stripes;
6294
6295 ASSERT(op != BTRFS_MAP_DISCARD);
6296
6297 map = em->map_lookup;
6298 /* Offset of this logical address in the chunk */
6299 offset = logical - em->start;
6300 /* Len of a stripe in a chunk */
6301 stripe_len = map->stripe_len;
6302 /* Stripe where this block falls in */
6303 stripe_nr = div64_u64(offset, stripe_len);
6304 /* Offset of stripe in the chunk */
6305 stripe_offset = stripe_nr * stripe_len;
6306 if (offset < stripe_offset) {
6307 btrfs_crit(fs_info,
6308 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
6309 stripe_offset, offset, em->start, logical, stripe_len);
6310 return -EINVAL;
6311 }
6312
6313 /* stripe_offset is the offset of this block in its stripe */
6314 stripe_offset = offset - stripe_offset;
6315 data_stripes = nr_data_stripes(map);
6316
6317 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6318 u64 max_len = stripe_len - stripe_offset;
6319
6320 /*
6321 * In case of raid56, we need to know the stripe aligned start
6322 */
6323 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6324 unsigned long full_stripe_len = stripe_len * data_stripes;
6325 raid56_full_stripe_start = offset;
6326
6327 /*
6328 * Allow a write of a full stripe, but make sure we
6329 * don't allow straddling of stripes
6330 */
6331 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6332 full_stripe_len);
6333 raid56_full_stripe_start *= full_stripe_len;
6334
6335 /*
6336 * For writes to RAID[56], allow a full stripeset across
6337 * all disks. For other RAID types and for RAID[56]
6338 * reads, just allow a single stripe (on a single disk).
6339 */
6340 if (op == BTRFS_MAP_WRITE) {
6341 max_len = stripe_len * data_stripes -
6342 (offset - raid56_full_stripe_start);
6343 }
6344 }
6345 len = min_t(u64, em->len - offset, max_len);
6346 } else {
6347 len = em->len - offset;
6348 }
6349
6350 io_geom->len = len;
6351 io_geom->offset = offset;
6352 io_geom->stripe_len = stripe_len;
6353 io_geom->stripe_nr = stripe_nr;
6354 io_geom->stripe_offset = stripe_offset;
6355 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6356
6357 return 0;
6358 }
6359
__btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_io_context ** bioc_ret,int mirror_num,int need_raid_map)6360 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6361 enum btrfs_map_op op,
6362 u64 logical, u64 *length,
6363 struct btrfs_io_context **bioc_ret,
6364 int mirror_num, int need_raid_map)
6365 {
6366 struct extent_map *em;
6367 struct map_lookup *map;
6368 u64 stripe_offset;
6369 u64 stripe_nr;
6370 u64 stripe_len;
6371 u32 stripe_index;
6372 int data_stripes;
6373 int i;
6374 int ret = 0;
6375 int num_stripes;
6376 int max_errors = 0;
6377 int tgtdev_indexes = 0;
6378 struct btrfs_io_context *bioc = NULL;
6379 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6380 int dev_replace_is_ongoing = 0;
6381 int num_alloc_stripes;
6382 int patch_the_first_stripe_for_dev_replace = 0;
6383 u64 physical_to_patch_in_first_stripe = 0;
6384 u64 raid56_full_stripe_start = (u64)-1;
6385 struct btrfs_io_geometry geom;
6386
6387 ASSERT(bioc_ret);
6388 ASSERT(op != BTRFS_MAP_DISCARD);
6389
6390 em = btrfs_get_chunk_map(fs_info, logical, *length);
6391 ASSERT(!IS_ERR(em));
6392
6393 ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6394 if (ret < 0)
6395 return ret;
6396
6397 map = em->map_lookup;
6398
6399 *length = geom.len;
6400 stripe_len = geom.stripe_len;
6401 stripe_nr = geom.stripe_nr;
6402 stripe_offset = geom.stripe_offset;
6403 raid56_full_stripe_start = geom.raid56_stripe_offset;
6404 data_stripes = nr_data_stripes(map);
6405
6406 down_read(&dev_replace->rwsem);
6407 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6408 /*
6409 * Hold the semaphore for read during the whole operation, write is
6410 * requested at commit time but must wait.
6411 */
6412 if (!dev_replace_is_ongoing)
6413 up_read(&dev_replace->rwsem);
6414
6415 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6416 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6417 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6418 dev_replace->srcdev->devid,
6419 &mirror_num,
6420 &physical_to_patch_in_first_stripe);
6421 if (ret)
6422 goto out;
6423 else
6424 patch_the_first_stripe_for_dev_replace = 1;
6425 } else if (mirror_num > map->num_stripes) {
6426 mirror_num = 0;
6427 }
6428
6429 num_stripes = 1;
6430 stripe_index = 0;
6431 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6432 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6433 &stripe_index);
6434 if (!need_full_stripe(op))
6435 mirror_num = 1;
6436 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6437 if (need_full_stripe(op))
6438 num_stripes = map->num_stripes;
6439 else if (mirror_num)
6440 stripe_index = mirror_num - 1;
6441 else {
6442 stripe_index = find_live_mirror(fs_info, map, 0,
6443 dev_replace_is_ongoing);
6444 mirror_num = stripe_index + 1;
6445 }
6446
6447 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6448 if (need_full_stripe(op)) {
6449 num_stripes = map->num_stripes;
6450 } else if (mirror_num) {
6451 stripe_index = mirror_num - 1;
6452 } else {
6453 mirror_num = 1;
6454 }
6455
6456 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6457 u32 factor = map->num_stripes / map->sub_stripes;
6458
6459 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6460 stripe_index *= map->sub_stripes;
6461
6462 if (need_full_stripe(op))
6463 num_stripes = map->sub_stripes;
6464 else if (mirror_num)
6465 stripe_index += mirror_num - 1;
6466 else {
6467 int old_stripe_index = stripe_index;
6468 stripe_index = find_live_mirror(fs_info, map,
6469 stripe_index,
6470 dev_replace_is_ongoing);
6471 mirror_num = stripe_index - old_stripe_index + 1;
6472 }
6473
6474 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6475 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6476 /* push stripe_nr back to the start of the full stripe */
6477 stripe_nr = div64_u64(raid56_full_stripe_start,
6478 stripe_len * data_stripes);
6479
6480 /* RAID[56] write or recovery. Return all stripes */
6481 num_stripes = map->num_stripes;
6482 max_errors = nr_parity_stripes(map);
6483
6484 *length = map->stripe_len;
6485 stripe_index = 0;
6486 stripe_offset = 0;
6487 } else {
6488 /*
6489 * Mirror #0 or #1 means the original data block.
6490 * Mirror #2 is RAID5 parity block.
6491 * Mirror #3 is RAID6 Q block.
6492 */
6493 stripe_nr = div_u64_rem(stripe_nr,
6494 data_stripes, &stripe_index);
6495 if (mirror_num > 1)
6496 stripe_index = data_stripes + mirror_num - 2;
6497
6498 /* We distribute the parity blocks across stripes */
6499 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6500 &stripe_index);
6501 if (!need_full_stripe(op) && mirror_num <= 1)
6502 mirror_num = 1;
6503 }
6504 } else {
6505 /*
6506 * after this, stripe_nr is the number of stripes on this
6507 * device we have to walk to find the data, and stripe_index is
6508 * the number of our device in the stripe array
6509 */
6510 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6511 &stripe_index);
6512 mirror_num = stripe_index + 1;
6513 }
6514 if (stripe_index >= map->num_stripes) {
6515 btrfs_crit(fs_info,
6516 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6517 stripe_index, map->num_stripes);
6518 ret = -EINVAL;
6519 goto out;
6520 }
6521
6522 num_alloc_stripes = num_stripes;
6523 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6524 if (op == BTRFS_MAP_WRITE)
6525 num_alloc_stripes <<= 1;
6526 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6527 num_alloc_stripes++;
6528 tgtdev_indexes = num_stripes;
6529 }
6530
6531 bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes, tgtdev_indexes);
6532 if (!bioc) {
6533 ret = -ENOMEM;
6534 goto out;
6535 }
6536
6537 for (i = 0; i < num_stripes; i++) {
6538 bioc->stripes[i].physical = map->stripes[stripe_index].physical +
6539 stripe_offset + stripe_nr * map->stripe_len;
6540 bioc->stripes[i].dev = map->stripes[stripe_index].dev;
6541 stripe_index++;
6542 }
6543
6544 /* Build raid_map */
6545 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6546 (need_full_stripe(op) || mirror_num > 1)) {
6547 u64 tmp;
6548 unsigned rot;
6549
6550 /* Work out the disk rotation on this stripe-set */
6551 div_u64_rem(stripe_nr, num_stripes, &rot);
6552
6553 /* Fill in the logical address of each stripe */
6554 tmp = stripe_nr * data_stripes;
6555 for (i = 0; i < data_stripes; i++)
6556 bioc->raid_map[(i + rot) % num_stripes] =
6557 em->start + (tmp + i) * map->stripe_len;
6558
6559 bioc->raid_map[(i + rot) % map->num_stripes] = RAID5_P_STRIPE;
6560 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6561 bioc->raid_map[(i + rot + 1) % num_stripes] =
6562 RAID6_Q_STRIPE;
6563
6564 sort_parity_stripes(bioc, num_stripes);
6565 }
6566
6567 if (need_full_stripe(op))
6568 max_errors = btrfs_chunk_max_errors(map);
6569
6570 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6571 need_full_stripe(op)) {
6572 handle_ops_on_dev_replace(op, &bioc, dev_replace, logical,
6573 &num_stripes, &max_errors);
6574 }
6575
6576 *bioc_ret = bioc;
6577 bioc->map_type = map->type;
6578 bioc->num_stripes = num_stripes;
6579 bioc->max_errors = max_errors;
6580 bioc->mirror_num = mirror_num;
6581
6582 /*
6583 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6584 * mirror_num == num_stripes + 1 && dev_replace target drive is
6585 * available as a mirror
6586 */
6587 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6588 WARN_ON(num_stripes > 1);
6589 bioc->stripes[0].dev = dev_replace->tgtdev;
6590 bioc->stripes[0].physical = physical_to_patch_in_first_stripe;
6591 bioc->mirror_num = map->num_stripes + 1;
6592 }
6593 out:
6594 if (dev_replace_is_ongoing) {
6595 lockdep_assert_held(&dev_replace->rwsem);
6596 /* Unlock and let waiting writers proceed */
6597 up_read(&dev_replace->rwsem);
6598 }
6599 free_extent_map(em);
6600 return ret;
6601 }
6602
btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_io_context ** bioc_ret,int mirror_num)6603 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6604 u64 logical, u64 *length,
6605 struct btrfs_io_context **bioc_ret, int mirror_num)
6606 {
6607 if (op == BTRFS_MAP_DISCARD)
6608 return __btrfs_map_block_for_discard(fs_info, logical,
6609 length, bioc_ret);
6610
6611 return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6612 mirror_num, 0);
6613 }
6614
6615 /* For Scrub/replace */
btrfs_map_sblock(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_io_context ** bioc_ret)6616 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6617 u64 logical, u64 *length,
6618 struct btrfs_io_context **bioc_ret)
6619 {
6620 return __btrfs_map_block(fs_info, op, logical, length, bioc_ret, 0, 1);
6621 }
6622
btrfs_end_bioc(struct btrfs_io_context * bioc,struct bio * bio)6623 static inline void btrfs_end_bioc(struct btrfs_io_context *bioc, struct bio *bio)
6624 {
6625 bio->bi_private = bioc->private;
6626 bio->bi_end_io = bioc->end_io;
6627 bio_endio(bio);
6628
6629 btrfs_put_bioc(bioc);
6630 }
6631
btrfs_end_bio(struct bio * bio)6632 static void btrfs_end_bio(struct bio *bio)
6633 {
6634 struct btrfs_io_context *bioc = bio->bi_private;
6635 int is_orig_bio = 0;
6636
6637 if (bio->bi_status) {
6638 atomic_inc(&bioc->error);
6639 if (bio->bi_status == BLK_STS_IOERR ||
6640 bio->bi_status == BLK_STS_TARGET) {
6641 struct btrfs_device *dev = btrfs_bio(bio)->device;
6642
6643 ASSERT(dev->bdev);
6644 if (btrfs_op(bio) == BTRFS_MAP_WRITE)
6645 btrfs_dev_stat_inc_and_print(dev,
6646 BTRFS_DEV_STAT_WRITE_ERRS);
6647 else if (!(bio->bi_opf & REQ_RAHEAD))
6648 btrfs_dev_stat_inc_and_print(dev,
6649 BTRFS_DEV_STAT_READ_ERRS);
6650 if (bio->bi_opf & REQ_PREFLUSH)
6651 btrfs_dev_stat_inc_and_print(dev,
6652 BTRFS_DEV_STAT_FLUSH_ERRS);
6653 }
6654 }
6655
6656 if (bio == bioc->orig_bio)
6657 is_orig_bio = 1;
6658
6659 btrfs_bio_counter_dec(bioc->fs_info);
6660
6661 if (atomic_dec_and_test(&bioc->stripes_pending)) {
6662 if (!is_orig_bio) {
6663 bio_put(bio);
6664 bio = bioc->orig_bio;
6665 }
6666
6667 btrfs_bio(bio)->mirror_num = bioc->mirror_num;
6668 /* only send an error to the higher layers if it is
6669 * beyond the tolerance of the btrfs bio
6670 */
6671 if (atomic_read(&bioc->error) > bioc->max_errors) {
6672 bio->bi_status = BLK_STS_IOERR;
6673 } else {
6674 /*
6675 * this bio is actually up to date, we didn't
6676 * go over the max number of errors
6677 */
6678 bio->bi_status = BLK_STS_OK;
6679 }
6680
6681 btrfs_end_bioc(bioc, bio);
6682 } else if (!is_orig_bio) {
6683 bio_put(bio);
6684 }
6685 }
6686
submit_stripe_bio(struct btrfs_io_context * bioc,struct bio * bio,u64 physical,struct btrfs_device * dev)6687 static void submit_stripe_bio(struct btrfs_io_context *bioc, struct bio *bio,
6688 u64 physical, struct btrfs_device *dev)
6689 {
6690 struct btrfs_fs_info *fs_info = bioc->fs_info;
6691
6692 bio->bi_private = bioc;
6693 btrfs_bio(bio)->device = dev;
6694 bio->bi_end_io = btrfs_end_bio;
6695 bio->bi_iter.bi_sector = physical >> 9;
6696 /*
6697 * For zone append writing, bi_sector must point the beginning of the
6698 * zone
6699 */
6700 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6701 if (btrfs_dev_is_sequential(dev, physical)) {
6702 u64 zone_start = round_down(physical, fs_info->zone_size);
6703
6704 bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6705 } else {
6706 bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6707 bio->bi_opf |= REQ_OP_WRITE;
6708 }
6709 }
6710 btrfs_debug_in_rcu(fs_info,
6711 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6712 bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6713 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6714 dev->devid, bio->bi_iter.bi_size);
6715 bio_set_dev(bio, dev->bdev);
6716
6717 btrfs_bio_counter_inc_noblocked(fs_info);
6718
6719 btrfsic_submit_bio(bio);
6720 }
6721
bioc_error(struct btrfs_io_context * bioc,struct bio * bio,u64 logical)6722 static void bioc_error(struct btrfs_io_context *bioc, struct bio *bio, u64 logical)
6723 {
6724 atomic_inc(&bioc->error);
6725 if (atomic_dec_and_test(&bioc->stripes_pending)) {
6726 /* Should be the original bio. */
6727 WARN_ON(bio != bioc->orig_bio);
6728
6729 btrfs_bio(bio)->mirror_num = bioc->mirror_num;
6730 bio->bi_iter.bi_sector = logical >> 9;
6731 if (atomic_read(&bioc->error) > bioc->max_errors)
6732 bio->bi_status = BLK_STS_IOERR;
6733 else
6734 bio->bi_status = BLK_STS_OK;
6735 btrfs_end_bioc(bioc, bio);
6736 }
6737 }
6738
btrfs_map_bio(struct btrfs_fs_info * fs_info,struct bio * bio,int mirror_num)6739 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6740 int mirror_num)
6741 {
6742 struct btrfs_device *dev;
6743 struct bio *first_bio = bio;
6744 u64 logical = bio->bi_iter.bi_sector << 9;
6745 u64 length = 0;
6746 u64 map_length;
6747 int ret;
6748 int dev_nr;
6749 int total_devs;
6750 struct btrfs_io_context *bioc = NULL;
6751
6752 length = bio->bi_iter.bi_size;
6753 map_length = length;
6754
6755 btrfs_bio_counter_inc_blocked(fs_info);
6756 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6757 &map_length, &bioc, mirror_num, 1);
6758 if (ret) {
6759 btrfs_bio_counter_dec(fs_info);
6760 return errno_to_blk_status(ret);
6761 }
6762
6763 total_devs = bioc->num_stripes;
6764 bioc->orig_bio = first_bio;
6765 bioc->private = first_bio->bi_private;
6766 bioc->end_io = first_bio->bi_end_io;
6767 atomic_set(&bioc->stripes_pending, bioc->num_stripes);
6768
6769 if ((bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6770 ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
6771 /* In this case, map_length has been set to the length of
6772 a single stripe; not the whole write */
6773 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
6774 ret = raid56_parity_write(bio, bioc, map_length);
6775 } else {
6776 ret = raid56_parity_recover(bio, bioc, map_length,
6777 mirror_num, 1);
6778 }
6779
6780 btrfs_bio_counter_dec(fs_info);
6781 return errno_to_blk_status(ret);
6782 }
6783
6784 if (map_length < length) {
6785 btrfs_crit(fs_info,
6786 "mapping failed logical %llu bio len %llu len %llu",
6787 logical, length, map_length);
6788 BUG();
6789 }
6790
6791 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6792 dev = bioc->stripes[dev_nr].dev;
6793 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6794 &dev->dev_state) ||
6795 (btrfs_op(first_bio) == BTRFS_MAP_WRITE &&
6796 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6797 bioc_error(bioc, first_bio, logical);
6798 continue;
6799 }
6800
6801 if (dev_nr < total_devs - 1)
6802 bio = btrfs_bio_clone(first_bio);
6803 else
6804 bio = first_bio;
6805
6806 submit_stripe_bio(bioc, bio, bioc->stripes[dev_nr].physical, dev);
6807 }
6808 btrfs_bio_counter_dec(fs_info);
6809 return BLK_STS_OK;
6810 }
6811
dev_args_match_fs_devices(const struct btrfs_dev_lookup_args * args,const struct btrfs_fs_devices * fs_devices)6812 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6813 const struct btrfs_fs_devices *fs_devices)
6814 {
6815 if (args->fsid == NULL)
6816 return true;
6817 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6818 return true;
6819 return false;
6820 }
6821
dev_args_match_device(const struct btrfs_dev_lookup_args * args,const struct btrfs_device * device)6822 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6823 const struct btrfs_device *device)
6824 {
6825 ASSERT((args->devid != (u64)-1) || args->missing);
6826
6827 if ((args->devid != (u64)-1) && device->devid != args->devid)
6828 return false;
6829 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6830 return false;
6831 if (!args->missing)
6832 return true;
6833 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6834 !device->bdev)
6835 return true;
6836 return false;
6837 }
6838
6839 /*
6840 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6841 * return NULL.
6842 *
6843 * If devid and uuid are both specified, the match must be exact, otherwise
6844 * only devid is used.
6845 */
btrfs_find_device(const struct btrfs_fs_devices * fs_devices,const struct btrfs_dev_lookup_args * args)6846 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6847 const struct btrfs_dev_lookup_args *args)
6848 {
6849 struct btrfs_device *device;
6850 struct btrfs_fs_devices *seed_devs;
6851
6852 if (dev_args_match_fs_devices(args, fs_devices)) {
6853 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6854 if (dev_args_match_device(args, device))
6855 return device;
6856 }
6857 }
6858
6859 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6860 if (!dev_args_match_fs_devices(args, seed_devs))
6861 continue;
6862 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6863 if (dev_args_match_device(args, device))
6864 return device;
6865 }
6866 }
6867
6868 return NULL;
6869 }
6870
add_missing_dev(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * dev_uuid)6871 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6872 u64 devid, u8 *dev_uuid)
6873 {
6874 struct btrfs_device *device;
6875 unsigned int nofs_flag;
6876
6877 /*
6878 * We call this under the chunk_mutex, so we want to use NOFS for this
6879 * allocation, however we don't want to change btrfs_alloc_device() to
6880 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6881 * places.
6882 */
6883 nofs_flag = memalloc_nofs_save();
6884 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6885 memalloc_nofs_restore(nofs_flag);
6886 if (IS_ERR(device))
6887 return device;
6888
6889 list_add(&device->dev_list, &fs_devices->devices);
6890 device->fs_devices = fs_devices;
6891 fs_devices->num_devices++;
6892
6893 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6894 fs_devices->missing_devices++;
6895
6896 return device;
6897 }
6898
6899 /**
6900 * btrfs_alloc_device - allocate struct btrfs_device
6901 * @fs_info: used only for generating a new devid, can be NULL if
6902 * devid is provided (i.e. @devid != NULL).
6903 * @devid: a pointer to devid for this device. If NULL a new devid
6904 * is generated.
6905 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6906 * is generated.
6907 *
6908 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6909 * on error. Returned struct is not linked onto any lists and must be
6910 * destroyed with btrfs_free_device.
6911 */
btrfs_alloc_device(struct btrfs_fs_info * fs_info,const u64 * devid,const u8 * uuid)6912 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6913 const u64 *devid,
6914 const u8 *uuid)
6915 {
6916 struct btrfs_device *dev;
6917 u64 tmp;
6918
6919 if (WARN_ON(!devid && !fs_info))
6920 return ERR_PTR(-EINVAL);
6921
6922 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6923 if (!dev)
6924 return ERR_PTR(-ENOMEM);
6925
6926 /*
6927 * Preallocate a bio that's always going to be used for flushing device
6928 * barriers and matches the device lifespan
6929 */
6930 dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0);
6931 if (!dev->flush_bio) {
6932 kfree(dev);
6933 return ERR_PTR(-ENOMEM);
6934 }
6935
6936 INIT_LIST_HEAD(&dev->dev_list);
6937 INIT_LIST_HEAD(&dev->dev_alloc_list);
6938 INIT_LIST_HEAD(&dev->post_commit_list);
6939
6940 atomic_set(&dev->reada_in_flight, 0);
6941 atomic_set(&dev->dev_stats_ccnt, 0);
6942 btrfs_device_data_ordered_init(dev);
6943 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6944 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6945 extent_io_tree_init(fs_info, &dev->alloc_state,
6946 IO_TREE_DEVICE_ALLOC_STATE, NULL);
6947
6948 if (devid)
6949 tmp = *devid;
6950 else {
6951 int ret;
6952
6953 ret = find_next_devid(fs_info, &tmp);
6954 if (ret) {
6955 btrfs_free_device(dev);
6956 return ERR_PTR(ret);
6957 }
6958 }
6959 dev->devid = tmp;
6960
6961 if (uuid)
6962 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6963 else
6964 generate_random_uuid(dev->uuid);
6965
6966 return dev;
6967 }
6968
btrfs_report_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid,bool error)6969 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6970 u64 devid, u8 *uuid, bool error)
6971 {
6972 if (error)
6973 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6974 devid, uuid);
6975 else
6976 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6977 devid, uuid);
6978 }
6979
calc_stripe_length(u64 type,u64 chunk_len,int num_stripes)6980 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6981 {
6982 const int data_stripes = calc_data_stripes(type, num_stripes);
6983
6984 return div_u64(chunk_len, data_stripes);
6985 }
6986
6987 #if BITS_PER_LONG == 32
6988 /*
6989 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6990 * can't be accessed on 32bit systems.
6991 *
6992 * This function do mount time check to reject the fs if it already has
6993 * metadata chunk beyond that limit.
6994 */
check_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)6995 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6996 u64 logical, u64 length, u64 type)
6997 {
6998 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6999 return 0;
7000
7001 if (logical + length < MAX_LFS_FILESIZE)
7002 return 0;
7003
7004 btrfs_err_32bit_limit(fs_info);
7005 return -EOVERFLOW;
7006 }
7007
7008 /*
7009 * This is to give early warning for any metadata chunk reaching
7010 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
7011 * Although we can still access the metadata, it's not going to be possible
7012 * once the limit is reached.
7013 */
warn_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)7014 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7015 u64 logical, u64 length, u64 type)
7016 {
7017 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7018 return;
7019
7020 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
7021 return;
7022
7023 btrfs_warn_32bit_limit(fs_info);
7024 }
7025 #endif
7026
read_one_chunk(struct btrfs_key * key,struct extent_buffer * leaf,struct btrfs_chunk * chunk)7027 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
7028 struct btrfs_chunk *chunk)
7029 {
7030 BTRFS_DEV_LOOKUP_ARGS(args);
7031 struct btrfs_fs_info *fs_info = leaf->fs_info;
7032 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7033 struct map_lookup *map;
7034 struct extent_map *em;
7035 u64 logical;
7036 u64 length;
7037 u64 devid;
7038 u64 type;
7039 u8 uuid[BTRFS_UUID_SIZE];
7040 int num_stripes;
7041 int ret;
7042 int i;
7043
7044 logical = key->offset;
7045 length = btrfs_chunk_length(leaf, chunk);
7046 type = btrfs_chunk_type(leaf, chunk);
7047 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7048
7049 #if BITS_PER_LONG == 32
7050 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7051 if (ret < 0)
7052 return ret;
7053 warn_32bit_meta_chunk(fs_info, logical, length, type);
7054 #endif
7055
7056 /*
7057 * Only need to verify chunk item if we're reading from sys chunk array,
7058 * as chunk item in tree block is already verified by tree-checker.
7059 */
7060 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
7061 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
7062 if (ret)
7063 return ret;
7064 }
7065
7066 read_lock(&map_tree->lock);
7067 em = lookup_extent_mapping(map_tree, logical, 1);
7068 read_unlock(&map_tree->lock);
7069
7070 /* already mapped? */
7071 if (em && em->start <= logical && em->start + em->len > logical) {
7072 free_extent_map(em);
7073 return 0;
7074 } else if (em) {
7075 free_extent_map(em);
7076 }
7077
7078 em = alloc_extent_map();
7079 if (!em)
7080 return -ENOMEM;
7081 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
7082 if (!map) {
7083 free_extent_map(em);
7084 return -ENOMEM;
7085 }
7086
7087 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
7088 em->map_lookup = map;
7089 em->start = logical;
7090 em->len = length;
7091 em->orig_start = 0;
7092 em->block_start = 0;
7093 em->block_len = em->len;
7094
7095 map->num_stripes = num_stripes;
7096 map->io_width = btrfs_chunk_io_width(leaf, chunk);
7097 map->io_align = btrfs_chunk_io_align(leaf, chunk);
7098 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
7099 map->type = type;
7100 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
7101 map->verified_stripes = 0;
7102 em->orig_block_len = calc_stripe_length(type, em->len,
7103 map->num_stripes);
7104 for (i = 0; i < num_stripes; i++) {
7105 map->stripes[i].physical =
7106 btrfs_stripe_offset_nr(leaf, chunk, i);
7107 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7108 args.devid = devid;
7109 read_extent_buffer(leaf, uuid, (unsigned long)
7110 btrfs_stripe_dev_uuid_nr(chunk, i),
7111 BTRFS_UUID_SIZE);
7112 args.uuid = uuid;
7113 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7114 if (!map->stripes[i].dev &&
7115 !btrfs_test_opt(fs_info, DEGRADED)) {
7116 free_extent_map(em);
7117 btrfs_report_missing_device(fs_info, devid, uuid, true);
7118 return -ENOENT;
7119 }
7120 if (!map->stripes[i].dev) {
7121 map->stripes[i].dev =
7122 add_missing_dev(fs_info->fs_devices, devid,
7123 uuid);
7124 if (IS_ERR(map->stripes[i].dev)) {
7125 free_extent_map(em);
7126 btrfs_err(fs_info,
7127 "failed to init missing dev %llu: %ld",
7128 devid, PTR_ERR(map->stripes[i].dev));
7129 return PTR_ERR(map->stripes[i].dev);
7130 }
7131 btrfs_report_missing_device(fs_info, devid, uuid, false);
7132 }
7133 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7134 &(map->stripes[i].dev->dev_state));
7135
7136 }
7137
7138 write_lock(&map_tree->lock);
7139 ret = add_extent_mapping(map_tree, em, 0);
7140 write_unlock(&map_tree->lock);
7141 if (ret < 0) {
7142 btrfs_err(fs_info,
7143 "failed to add chunk map, start=%llu len=%llu: %d",
7144 em->start, em->len, ret);
7145 }
7146 free_extent_map(em);
7147
7148 return ret;
7149 }
7150
fill_device_from_item(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item,struct btrfs_device * device)7151 static void fill_device_from_item(struct extent_buffer *leaf,
7152 struct btrfs_dev_item *dev_item,
7153 struct btrfs_device *device)
7154 {
7155 unsigned long ptr;
7156
7157 device->devid = btrfs_device_id(leaf, dev_item);
7158 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7159 device->total_bytes = device->disk_total_bytes;
7160 device->commit_total_bytes = device->disk_total_bytes;
7161 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7162 device->commit_bytes_used = device->bytes_used;
7163 device->type = btrfs_device_type(leaf, dev_item);
7164 device->io_align = btrfs_device_io_align(leaf, dev_item);
7165 device->io_width = btrfs_device_io_width(leaf, dev_item);
7166 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7167 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7168 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7169
7170 ptr = btrfs_device_uuid(dev_item);
7171 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7172 }
7173
open_seed_devices(struct btrfs_fs_info * fs_info,u8 * fsid)7174 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7175 u8 *fsid)
7176 {
7177 struct btrfs_fs_devices *fs_devices;
7178 int ret;
7179
7180 lockdep_assert_held(&uuid_mutex);
7181 ASSERT(fsid);
7182
7183 /* This will match only for multi-device seed fs */
7184 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7185 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7186 return fs_devices;
7187
7188
7189 fs_devices = find_fsid(fsid, NULL);
7190 if (!fs_devices) {
7191 if (!btrfs_test_opt(fs_info, DEGRADED))
7192 return ERR_PTR(-ENOENT);
7193
7194 fs_devices = alloc_fs_devices(fsid, NULL);
7195 if (IS_ERR(fs_devices))
7196 return fs_devices;
7197
7198 fs_devices->seeding = true;
7199 fs_devices->opened = 1;
7200 return fs_devices;
7201 }
7202
7203 /*
7204 * Upon first call for a seed fs fsid, just create a private copy of the
7205 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7206 */
7207 fs_devices = clone_fs_devices(fs_devices);
7208 if (IS_ERR(fs_devices))
7209 return fs_devices;
7210
7211 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7212 if (ret) {
7213 free_fs_devices(fs_devices);
7214 return ERR_PTR(ret);
7215 }
7216
7217 if (!fs_devices->seeding) {
7218 close_fs_devices(fs_devices);
7219 free_fs_devices(fs_devices);
7220 return ERR_PTR(-EINVAL);
7221 }
7222
7223 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7224
7225 return fs_devices;
7226 }
7227
read_one_dev(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item)7228 static int read_one_dev(struct extent_buffer *leaf,
7229 struct btrfs_dev_item *dev_item)
7230 {
7231 BTRFS_DEV_LOOKUP_ARGS(args);
7232 struct btrfs_fs_info *fs_info = leaf->fs_info;
7233 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7234 struct btrfs_device *device;
7235 u64 devid;
7236 int ret;
7237 u8 fs_uuid[BTRFS_FSID_SIZE];
7238 u8 dev_uuid[BTRFS_UUID_SIZE];
7239
7240 devid = args.devid = btrfs_device_id(leaf, dev_item);
7241 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7242 BTRFS_UUID_SIZE);
7243 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7244 BTRFS_FSID_SIZE);
7245 args.uuid = dev_uuid;
7246 args.fsid = fs_uuid;
7247
7248 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7249 fs_devices = open_seed_devices(fs_info, fs_uuid);
7250 if (IS_ERR(fs_devices))
7251 return PTR_ERR(fs_devices);
7252 }
7253
7254 device = btrfs_find_device(fs_info->fs_devices, &args);
7255 if (!device) {
7256 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7257 btrfs_report_missing_device(fs_info, devid,
7258 dev_uuid, true);
7259 return -ENOENT;
7260 }
7261
7262 device = add_missing_dev(fs_devices, devid, dev_uuid);
7263 if (IS_ERR(device)) {
7264 btrfs_err(fs_info,
7265 "failed to add missing dev %llu: %ld",
7266 devid, PTR_ERR(device));
7267 return PTR_ERR(device);
7268 }
7269 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7270 } else {
7271 if (!device->bdev) {
7272 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7273 btrfs_report_missing_device(fs_info,
7274 devid, dev_uuid, true);
7275 return -ENOENT;
7276 }
7277 btrfs_report_missing_device(fs_info, devid,
7278 dev_uuid, false);
7279 }
7280
7281 if (!device->bdev &&
7282 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7283 /*
7284 * this happens when a device that was properly setup
7285 * in the device info lists suddenly goes bad.
7286 * device->bdev is NULL, and so we have to set
7287 * device->missing to one here
7288 */
7289 device->fs_devices->missing_devices++;
7290 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7291 }
7292
7293 /* Move the device to its own fs_devices */
7294 if (device->fs_devices != fs_devices) {
7295 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7296 &device->dev_state));
7297
7298 list_move(&device->dev_list, &fs_devices->devices);
7299 device->fs_devices->num_devices--;
7300 fs_devices->num_devices++;
7301
7302 device->fs_devices->missing_devices--;
7303 fs_devices->missing_devices++;
7304
7305 device->fs_devices = fs_devices;
7306 }
7307 }
7308
7309 if (device->fs_devices != fs_info->fs_devices) {
7310 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7311 if (device->generation !=
7312 btrfs_device_generation(leaf, dev_item))
7313 return -EINVAL;
7314 }
7315
7316 fill_device_from_item(leaf, dev_item, device);
7317 if (device->bdev) {
7318 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7319
7320 if (device->total_bytes > max_total_bytes) {
7321 btrfs_err(fs_info,
7322 "device total_bytes should be at most %llu but found %llu",
7323 max_total_bytes, device->total_bytes);
7324 return -EINVAL;
7325 }
7326 }
7327 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7328 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7329 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7330 device->fs_devices->total_rw_bytes += device->total_bytes;
7331 atomic64_add(device->total_bytes - device->bytes_used,
7332 &fs_info->free_chunk_space);
7333 }
7334 ret = 0;
7335 return ret;
7336 }
7337
btrfs_read_sys_array(struct btrfs_fs_info * fs_info)7338 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7339 {
7340 struct btrfs_root *root = fs_info->tree_root;
7341 struct btrfs_super_block *super_copy = fs_info->super_copy;
7342 struct extent_buffer *sb;
7343 struct btrfs_disk_key *disk_key;
7344 struct btrfs_chunk *chunk;
7345 u8 *array_ptr;
7346 unsigned long sb_array_offset;
7347 int ret = 0;
7348 u32 num_stripes;
7349 u32 array_size;
7350 u32 len = 0;
7351 u32 cur_offset;
7352 u64 type;
7353 struct btrfs_key key;
7354
7355 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7356 /*
7357 * This will create extent buffer of nodesize, superblock size is
7358 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7359 * overallocate but we can keep it as-is, only the first page is used.
7360 */
7361 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
7362 root->root_key.objectid, 0);
7363 if (IS_ERR(sb))
7364 return PTR_ERR(sb);
7365 set_extent_buffer_uptodate(sb);
7366 /*
7367 * The sb extent buffer is artificial and just used to read the system array.
7368 * set_extent_buffer_uptodate() call does not properly mark all it's
7369 * pages up-to-date when the page is larger: extent does not cover the
7370 * whole page and consequently check_page_uptodate does not find all
7371 * the page's extents up-to-date (the hole beyond sb),
7372 * write_extent_buffer then triggers a WARN_ON.
7373 *
7374 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7375 * but sb spans only this function. Add an explicit SetPageUptodate call
7376 * to silence the warning eg. on PowerPC 64.
7377 */
7378 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7379 SetPageUptodate(sb->pages[0]);
7380
7381 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7382 array_size = btrfs_super_sys_array_size(super_copy);
7383
7384 array_ptr = super_copy->sys_chunk_array;
7385 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7386 cur_offset = 0;
7387
7388 while (cur_offset < array_size) {
7389 disk_key = (struct btrfs_disk_key *)array_ptr;
7390 len = sizeof(*disk_key);
7391 if (cur_offset + len > array_size)
7392 goto out_short_read;
7393
7394 btrfs_disk_key_to_cpu(&key, disk_key);
7395
7396 array_ptr += len;
7397 sb_array_offset += len;
7398 cur_offset += len;
7399
7400 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7401 btrfs_err(fs_info,
7402 "unexpected item type %u in sys_array at offset %u",
7403 (u32)key.type, cur_offset);
7404 ret = -EIO;
7405 break;
7406 }
7407
7408 chunk = (struct btrfs_chunk *)sb_array_offset;
7409 /*
7410 * At least one btrfs_chunk with one stripe must be present,
7411 * exact stripe count check comes afterwards
7412 */
7413 len = btrfs_chunk_item_size(1);
7414 if (cur_offset + len > array_size)
7415 goto out_short_read;
7416
7417 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7418 if (!num_stripes) {
7419 btrfs_err(fs_info,
7420 "invalid number of stripes %u in sys_array at offset %u",
7421 num_stripes, cur_offset);
7422 ret = -EIO;
7423 break;
7424 }
7425
7426 type = btrfs_chunk_type(sb, chunk);
7427 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7428 btrfs_err(fs_info,
7429 "invalid chunk type %llu in sys_array at offset %u",
7430 type, cur_offset);
7431 ret = -EIO;
7432 break;
7433 }
7434
7435 len = btrfs_chunk_item_size(num_stripes);
7436 if (cur_offset + len > array_size)
7437 goto out_short_read;
7438
7439 ret = read_one_chunk(&key, sb, chunk);
7440 if (ret)
7441 break;
7442
7443 array_ptr += len;
7444 sb_array_offset += len;
7445 cur_offset += len;
7446 }
7447 clear_extent_buffer_uptodate(sb);
7448 free_extent_buffer_stale(sb);
7449 return ret;
7450
7451 out_short_read:
7452 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7453 len, cur_offset);
7454 clear_extent_buffer_uptodate(sb);
7455 free_extent_buffer_stale(sb);
7456 return -EIO;
7457 }
7458
7459 /*
7460 * Check if all chunks in the fs are OK for read-write degraded mount
7461 *
7462 * If the @failing_dev is specified, it's accounted as missing.
7463 *
7464 * Return true if all chunks meet the minimal RW mount requirements.
7465 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7466 */
btrfs_check_rw_degradable(struct btrfs_fs_info * fs_info,struct btrfs_device * failing_dev)7467 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7468 struct btrfs_device *failing_dev)
7469 {
7470 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7471 struct extent_map *em;
7472 u64 next_start = 0;
7473 bool ret = true;
7474
7475 read_lock(&map_tree->lock);
7476 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7477 read_unlock(&map_tree->lock);
7478 /* No chunk at all? Return false anyway */
7479 if (!em) {
7480 ret = false;
7481 goto out;
7482 }
7483 while (em) {
7484 struct map_lookup *map;
7485 int missing = 0;
7486 int max_tolerated;
7487 int i;
7488
7489 map = em->map_lookup;
7490 max_tolerated =
7491 btrfs_get_num_tolerated_disk_barrier_failures(
7492 map->type);
7493 for (i = 0; i < map->num_stripes; i++) {
7494 struct btrfs_device *dev = map->stripes[i].dev;
7495
7496 if (!dev || !dev->bdev ||
7497 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7498 dev->last_flush_error)
7499 missing++;
7500 else if (failing_dev && failing_dev == dev)
7501 missing++;
7502 }
7503 if (missing > max_tolerated) {
7504 if (!failing_dev)
7505 btrfs_warn(fs_info,
7506 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7507 em->start, missing, max_tolerated);
7508 free_extent_map(em);
7509 ret = false;
7510 goto out;
7511 }
7512 next_start = extent_map_end(em);
7513 free_extent_map(em);
7514
7515 read_lock(&map_tree->lock);
7516 em = lookup_extent_mapping(map_tree, next_start,
7517 (u64)(-1) - next_start);
7518 read_unlock(&map_tree->lock);
7519 }
7520 out:
7521 return ret;
7522 }
7523
readahead_tree_node_children(struct extent_buffer * node)7524 static void readahead_tree_node_children(struct extent_buffer *node)
7525 {
7526 int i;
7527 const int nr_items = btrfs_header_nritems(node);
7528
7529 for (i = 0; i < nr_items; i++)
7530 btrfs_readahead_node_child(node, i);
7531 }
7532
btrfs_read_chunk_tree(struct btrfs_fs_info * fs_info)7533 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7534 {
7535 struct btrfs_root *root = fs_info->chunk_root;
7536 struct btrfs_path *path;
7537 struct extent_buffer *leaf;
7538 struct btrfs_key key;
7539 struct btrfs_key found_key;
7540 int ret;
7541 int slot;
7542 u64 total_dev = 0;
7543 u64 last_ra_node = 0;
7544
7545 path = btrfs_alloc_path();
7546 if (!path)
7547 return -ENOMEM;
7548
7549 /*
7550 * uuid_mutex is needed only if we are mounting a sprout FS
7551 * otherwise we don't need it.
7552 */
7553 mutex_lock(&uuid_mutex);
7554
7555 /*
7556 * It is possible for mount and umount to race in such a way that
7557 * we execute this code path, but open_fs_devices failed to clear
7558 * total_rw_bytes. We certainly want it cleared before reading the
7559 * device items, so clear it here.
7560 */
7561 fs_info->fs_devices->total_rw_bytes = 0;
7562
7563 /*
7564 * Lockdep complains about possible circular locking dependency between
7565 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7566 * used for freeze procection of a fs (struct super_block.s_writers),
7567 * which we take when starting a transaction, and extent buffers of the
7568 * chunk tree if we call read_one_dev() while holding a lock on an
7569 * extent buffer of the chunk tree. Since we are mounting the filesystem
7570 * and at this point there can't be any concurrent task modifying the
7571 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7572 */
7573 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7574 path->skip_locking = 1;
7575
7576 /*
7577 * Read all device items, and then all the chunk items. All
7578 * device items are found before any chunk item (their object id
7579 * is smaller than the lowest possible object id for a chunk
7580 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7581 */
7582 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7583 key.offset = 0;
7584 key.type = 0;
7585 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7586 if (ret < 0)
7587 goto error;
7588 while (1) {
7589 struct extent_buffer *node;
7590
7591 leaf = path->nodes[0];
7592 slot = path->slots[0];
7593 if (slot >= btrfs_header_nritems(leaf)) {
7594 ret = btrfs_next_leaf(root, path);
7595 if (ret == 0)
7596 continue;
7597 if (ret < 0)
7598 goto error;
7599 break;
7600 }
7601 node = path->nodes[1];
7602 if (node) {
7603 if (last_ra_node != node->start) {
7604 readahead_tree_node_children(node);
7605 last_ra_node = node->start;
7606 }
7607 }
7608 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7609 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7610 struct btrfs_dev_item *dev_item;
7611 dev_item = btrfs_item_ptr(leaf, slot,
7612 struct btrfs_dev_item);
7613 ret = read_one_dev(leaf, dev_item);
7614 if (ret)
7615 goto error;
7616 total_dev++;
7617 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7618 struct btrfs_chunk *chunk;
7619
7620 /*
7621 * We are only called at mount time, so no need to take
7622 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7623 * we always lock first fs_info->chunk_mutex before
7624 * acquiring any locks on the chunk tree. This is a
7625 * requirement for chunk allocation, see the comment on
7626 * top of btrfs_chunk_alloc() for details.
7627 */
7628 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7629 ret = read_one_chunk(&found_key, leaf, chunk);
7630 if (ret)
7631 goto error;
7632 }
7633 path->slots[0]++;
7634 }
7635
7636 /*
7637 * After loading chunk tree, we've got all device information,
7638 * do another round of validation checks.
7639 */
7640 if (total_dev != fs_info->fs_devices->total_devices) {
7641 btrfs_err(fs_info,
7642 "super_num_devices %llu mismatch with num_devices %llu found here",
7643 btrfs_super_num_devices(fs_info->super_copy),
7644 total_dev);
7645 ret = -EINVAL;
7646 goto error;
7647 }
7648 if (btrfs_super_total_bytes(fs_info->super_copy) <
7649 fs_info->fs_devices->total_rw_bytes) {
7650 btrfs_err(fs_info,
7651 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7652 btrfs_super_total_bytes(fs_info->super_copy),
7653 fs_info->fs_devices->total_rw_bytes);
7654 ret = -EINVAL;
7655 goto error;
7656 }
7657 ret = 0;
7658 error:
7659 mutex_unlock(&uuid_mutex);
7660
7661 btrfs_free_path(path);
7662 return ret;
7663 }
7664
btrfs_init_devices_late(struct btrfs_fs_info * fs_info)7665 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7666 {
7667 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7668 struct btrfs_device *device;
7669
7670 fs_devices->fs_info = fs_info;
7671
7672 mutex_lock(&fs_devices->device_list_mutex);
7673 list_for_each_entry(device, &fs_devices->devices, dev_list)
7674 device->fs_info = fs_info;
7675
7676 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7677 list_for_each_entry(device, &seed_devs->devices, dev_list)
7678 device->fs_info = fs_info;
7679
7680 seed_devs->fs_info = fs_info;
7681 }
7682 mutex_unlock(&fs_devices->device_list_mutex);
7683 }
7684
btrfs_dev_stats_value(const struct extent_buffer * eb,const struct btrfs_dev_stats_item * ptr,int index)7685 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7686 const struct btrfs_dev_stats_item *ptr,
7687 int index)
7688 {
7689 u64 val;
7690
7691 read_extent_buffer(eb, &val,
7692 offsetof(struct btrfs_dev_stats_item, values) +
7693 ((unsigned long)ptr) + (index * sizeof(u64)),
7694 sizeof(val));
7695 return val;
7696 }
7697
btrfs_set_dev_stats_value(struct extent_buffer * eb,struct btrfs_dev_stats_item * ptr,int index,u64 val)7698 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7699 struct btrfs_dev_stats_item *ptr,
7700 int index, u64 val)
7701 {
7702 write_extent_buffer(eb, &val,
7703 offsetof(struct btrfs_dev_stats_item, values) +
7704 ((unsigned long)ptr) + (index * sizeof(u64)),
7705 sizeof(val));
7706 }
7707
btrfs_device_init_dev_stats(struct btrfs_device * device,struct btrfs_path * path)7708 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7709 struct btrfs_path *path)
7710 {
7711 struct btrfs_dev_stats_item *ptr;
7712 struct extent_buffer *eb;
7713 struct btrfs_key key;
7714 int item_size;
7715 int i, ret, slot;
7716
7717 if (!device->fs_info->dev_root)
7718 return 0;
7719
7720 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7721 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7722 key.offset = device->devid;
7723 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7724 if (ret) {
7725 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7726 btrfs_dev_stat_set(device, i, 0);
7727 device->dev_stats_valid = 1;
7728 btrfs_release_path(path);
7729 return ret < 0 ? ret : 0;
7730 }
7731 slot = path->slots[0];
7732 eb = path->nodes[0];
7733 item_size = btrfs_item_size_nr(eb, slot);
7734
7735 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7736
7737 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7738 if (item_size >= (1 + i) * sizeof(__le64))
7739 btrfs_dev_stat_set(device, i,
7740 btrfs_dev_stats_value(eb, ptr, i));
7741 else
7742 btrfs_dev_stat_set(device, i, 0);
7743 }
7744
7745 device->dev_stats_valid = 1;
7746 btrfs_dev_stat_print_on_load(device);
7747 btrfs_release_path(path);
7748
7749 return 0;
7750 }
7751
btrfs_init_dev_stats(struct btrfs_fs_info * fs_info)7752 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7753 {
7754 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7755 struct btrfs_device *device;
7756 struct btrfs_path *path = NULL;
7757 int ret = 0;
7758
7759 path = btrfs_alloc_path();
7760 if (!path)
7761 return -ENOMEM;
7762
7763 mutex_lock(&fs_devices->device_list_mutex);
7764 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7765 ret = btrfs_device_init_dev_stats(device, path);
7766 if (ret)
7767 goto out;
7768 }
7769 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7770 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7771 ret = btrfs_device_init_dev_stats(device, path);
7772 if (ret)
7773 goto out;
7774 }
7775 }
7776 out:
7777 mutex_unlock(&fs_devices->device_list_mutex);
7778
7779 btrfs_free_path(path);
7780 return ret;
7781 }
7782
update_dev_stat_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)7783 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7784 struct btrfs_device *device)
7785 {
7786 struct btrfs_fs_info *fs_info = trans->fs_info;
7787 struct btrfs_root *dev_root = fs_info->dev_root;
7788 struct btrfs_path *path;
7789 struct btrfs_key key;
7790 struct extent_buffer *eb;
7791 struct btrfs_dev_stats_item *ptr;
7792 int ret;
7793 int i;
7794
7795 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7796 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7797 key.offset = device->devid;
7798
7799 path = btrfs_alloc_path();
7800 if (!path)
7801 return -ENOMEM;
7802 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7803 if (ret < 0) {
7804 btrfs_warn_in_rcu(fs_info,
7805 "error %d while searching for dev_stats item for device %s",
7806 ret, rcu_str_deref(device->name));
7807 goto out;
7808 }
7809
7810 if (ret == 0 &&
7811 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7812 /* need to delete old one and insert a new one */
7813 ret = btrfs_del_item(trans, dev_root, path);
7814 if (ret != 0) {
7815 btrfs_warn_in_rcu(fs_info,
7816 "delete too small dev_stats item for device %s failed %d",
7817 rcu_str_deref(device->name), ret);
7818 goto out;
7819 }
7820 ret = 1;
7821 }
7822
7823 if (ret == 1) {
7824 /* need to insert a new item */
7825 btrfs_release_path(path);
7826 ret = btrfs_insert_empty_item(trans, dev_root, path,
7827 &key, sizeof(*ptr));
7828 if (ret < 0) {
7829 btrfs_warn_in_rcu(fs_info,
7830 "insert dev_stats item for device %s failed %d",
7831 rcu_str_deref(device->name), ret);
7832 goto out;
7833 }
7834 }
7835
7836 eb = path->nodes[0];
7837 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7838 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7839 btrfs_set_dev_stats_value(eb, ptr, i,
7840 btrfs_dev_stat_read(device, i));
7841 btrfs_mark_buffer_dirty(eb);
7842
7843 out:
7844 btrfs_free_path(path);
7845 return ret;
7846 }
7847
7848 /*
7849 * called from commit_transaction. Writes all changed device stats to disk.
7850 */
btrfs_run_dev_stats(struct btrfs_trans_handle * trans)7851 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7852 {
7853 struct btrfs_fs_info *fs_info = trans->fs_info;
7854 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7855 struct btrfs_device *device;
7856 int stats_cnt;
7857 int ret = 0;
7858
7859 mutex_lock(&fs_devices->device_list_mutex);
7860 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7861 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7862 if (!device->dev_stats_valid || stats_cnt == 0)
7863 continue;
7864
7865
7866 /*
7867 * There is a LOAD-LOAD control dependency between the value of
7868 * dev_stats_ccnt and updating the on-disk values which requires
7869 * reading the in-memory counters. Such control dependencies
7870 * require explicit read memory barriers.
7871 *
7872 * This memory barriers pairs with smp_mb__before_atomic in
7873 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7874 * barrier implied by atomic_xchg in
7875 * btrfs_dev_stats_read_and_reset
7876 */
7877 smp_rmb();
7878
7879 ret = update_dev_stat_item(trans, device);
7880 if (!ret)
7881 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7882 }
7883 mutex_unlock(&fs_devices->device_list_mutex);
7884
7885 return ret;
7886 }
7887
btrfs_dev_stat_inc_and_print(struct btrfs_device * dev,int index)7888 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7889 {
7890 btrfs_dev_stat_inc(dev, index);
7891 btrfs_dev_stat_print_on_error(dev);
7892 }
7893
btrfs_dev_stat_print_on_error(struct btrfs_device * dev)7894 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7895 {
7896 if (!dev->dev_stats_valid)
7897 return;
7898 btrfs_err_rl_in_rcu(dev->fs_info,
7899 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7900 rcu_str_deref(dev->name),
7901 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7902 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7903 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7904 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7905 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7906 }
7907
btrfs_dev_stat_print_on_load(struct btrfs_device * dev)7908 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7909 {
7910 int i;
7911
7912 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7913 if (btrfs_dev_stat_read(dev, i) != 0)
7914 break;
7915 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7916 return; /* all values == 0, suppress message */
7917
7918 btrfs_info_in_rcu(dev->fs_info,
7919 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7920 rcu_str_deref(dev->name),
7921 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7922 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7923 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7924 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7925 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7926 }
7927
btrfs_get_dev_stats(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_get_dev_stats * stats)7928 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7929 struct btrfs_ioctl_get_dev_stats *stats)
7930 {
7931 BTRFS_DEV_LOOKUP_ARGS(args);
7932 struct btrfs_device *dev;
7933 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7934 int i;
7935
7936 mutex_lock(&fs_devices->device_list_mutex);
7937 args.devid = stats->devid;
7938 dev = btrfs_find_device(fs_info->fs_devices, &args);
7939 mutex_unlock(&fs_devices->device_list_mutex);
7940
7941 if (!dev) {
7942 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7943 return -ENODEV;
7944 } else if (!dev->dev_stats_valid) {
7945 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7946 return -ENODEV;
7947 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7948 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7949 if (stats->nr_items > i)
7950 stats->values[i] =
7951 btrfs_dev_stat_read_and_reset(dev, i);
7952 else
7953 btrfs_dev_stat_set(dev, i, 0);
7954 }
7955 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7956 current->comm, task_pid_nr(current));
7957 } else {
7958 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7959 if (stats->nr_items > i)
7960 stats->values[i] = btrfs_dev_stat_read(dev, i);
7961 }
7962 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7963 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7964 return 0;
7965 }
7966
7967 /*
7968 * Update the size and bytes used for each device where it changed. This is
7969 * delayed since we would otherwise get errors while writing out the
7970 * superblocks.
7971 *
7972 * Must be invoked during transaction commit.
7973 */
btrfs_commit_device_sizes(struct btrfs_transaction * trans)7974 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7975 {
7976 struct btrfs_device *curr, *next;
7977
7978 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7979
7980 if (list_empty(&trans->dev_update_list))
7981 return;
7982
7983 /*
7984 * We don't need the device_list_mutex here. This list is owned by the
7985 * transaction and the transaction must complete before the device is
7986 * released.
7987 */
7988 mutex_lock(&trans->fs_info->chunk_mutex);
7989 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7990 post_commit_list) {
7991 list_del_init(&curr->post_commit_list);
7992 curr->commit_total_bytes = curr->disk_total_bytes;
7993 curr->commit_bytes_used = curr->bytes_used;
7994 }
7995 mutex_unlock(&trans->fs_info->chunk_mutex);
7996 }
7997
7998 /*
7999 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
8000 */
btrfs_bg_type_to_factor(u64 flags)8001 int btrfs_bg_type_to_factor(u64 flags)
8002 {
8003 const int index = btrfs_bg_flags_to_raid_index(flags);
8004
8005 return btrfs_raid_array[index].ncopies;
8006 }
8007
8008
8009
verify_one_dev_extent(struct btrfs_fs_info * fs_info,u64 chunk_offset,u64 devid,u64 physical_offset,u64 physical_len)8010 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
8011 u64 chunk_offset, u64 devid,
8012 u64 physical_offset, u64 physical_len)
8013 {
8014 struct btrfs_dev_lookup_args args = { .devid = devid };
8015 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8016 struct extent_map *em;
8017 struct map_lookup *map;
8018 struct btrfs_device *dev;
8019 u64 stripe_len;
8020 bool found = false;
8021 int ret = 0;
8022 int i;
8023
8024 read_lock(&em_tree->lock);
8025 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
8026 read_unlock(&em_tree->lock);
8027
8028 if (!em) {
8029 btrfs_err(fs_info,
8030 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
8031 physical_offset, devid);
8032 ret = -EUCLEAN;
8033 goto out;
8034 }
8035
8036 map = em->map_lookup;
8037 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
8038 if (physical_len != stripe_len) {
8039 btrfs_err(fs_info,
8040 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
8041 physical_offset, devid, em->start, physical_len,
8042 stripe_len);
8043 ret = -EUCLEAN;
8044 goto out;
8045 }
8046
8047 for (i = 0; i < map->num_stripes; i++) {
8048 if (map->stripes[i].dev->devid == devid &&
8049 map->stripes[i].physical == physical_offset) {
8050 found = true;
8051 if (map->verified_stripes >= map->num_stripes) {
8052 btrfs_err(fs_info,
8053 "too many dev extents for chunk %llu found",
8054 em->start);
8055 ret = -EUCLEAN;
8056 goto out;
8057 }
8058 map->verified_stripes++;
8059 break;
8060 }
8061 }
8062 if (!found) {
8063 btrfs_err(fs_info,
8064 "dev extent physical offset %llu devid %llu has no corresponding chunk",
8065 physical_offset, devid);
8066 ret = -EUCLEAN;
8067 }
8068
8069 /* Make sure no dev extent is beyond device boundary */
8070 dev = btrfs_find_device(fs_info->fs_devices, &args);
8071 if (!dev) {
8072 btrfs_err(fs_info, "failed to find devid %llu", devid);
8073 ret = -EUCLEAN;
8074 goto out;
8075 }
8076
8077 if (physical_offset + physical_len > dev->disk_total_bytes) {
8078 btrfs_err(fs_info,
8079 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
8080 devid, physical_offset, physical_len,
8081 dev->disk_total_bytes);
8082 ret = -EUCLEAN;
8083 goto out;
8084 }
8085
8086 if (dev->zone_info) {
8087 u64 zone_size = dev->zone_info->zone_size;
8088
8089 if (!IS_ALIGNED(physical_offset, zone_size) ||
8090 !IS_ALIGNED(physical_len, zone_size)) {
8091 btrfs_err(fs_info,
8092 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8093 devid, physical_offset, physical_len);
8094 ret = -EUCLEAN;
8095 goto out;
8096 }
8097 }
8098
8099 out:
8100 free_extent_map(em);
8101 return ret;
8102 }
8103
verify_chunk_dev_extent_mapping(struct btrfs_fs_info * fs_info)8104 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8105 {
8106 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8107 struct extent_map *em;
8108 struct rb_node *node;
8109 int ret = 0;
8110
8111 read_lock(&em_tree->lock);
8112 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
8113 em = rb_entry(node, struct extent_map, rb_node);
8114 if (em->map_lookup->num_stripes !=
8115 em->map_lookup->verified_stripes) {
8116 btrfs_err(fs_info,
8117 "chunk %llu has missing dev extent, have %d expect %d",
8118 em->start, em->map_lookup->verified_stripes,
8119 em->map_lookup->num_stripes);
8120 ret = -EUCLEAN;
8121 goto out;
8122 }
8123 }
8124 out:
8125 read_unlock(&em_tree->lock);
8126 return ret;
8127 }
8128
8129 /*
8130 * Ensure that all dev extents are mapped to correct chunk, otherwise
8131 * later chunk allocation/free would cause unexpected behavior.
8132 *
8133 * NOTE: This will iterate through the whole device tree, which should be of
8134 * the same size level as the chunk tree. This slightly increases mount time.
8135 */
btrfs_verify_dev_extents(struct btrfs_fs_info * fs_info)8136 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8137 {
8138 struct btrfs_path *path;
8139 struct btrfs_root *root = fs_info->dev_root;
8140 struct btrfs_key key;
8141 u64 prev_devid = 0;
8142 u64 prev_dev_ext_end = 0;
8143 int ret = 0;
8144
8145 /*
8146 * We don't have a dev_root because we mounted with ignorebadroots and
8147 * failed to load the root, so we want to skip the verification in this
8148 * case for sure.
8149 *
8150 * However if the dev root is fine, but the tree itself is corrupted
8151 * we'd still fail to mount. This verification is only to make sure
8152 * writes can happen safely, so instead just bypass this check
8153 * completely in the case of IGNOREBADROOTS.
8154 */
8155 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8156 return 0;
8157
8158 key.objectid = 1;
8159 key.type = BTRFS_DEV_EXTENT_KEY;
8160 key.offset = 0;
8161
8162 path = btrfs_alloc_path();
8163 if (!path)
8164 return -ENOMEM;
8165
8166 path->reada = READA_FORWARD;
8167 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8168 if (ret < 0)
8169 goto out;
8170
8171 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8172 ret = btrfs_next_leaf(root, path);
8173 if (ret < 0)
8174 goto out;
8175 /* No dev extents at all? Not good */
8176 if (ret > 0) {
8177 ret = -EUCLEAN;
8178 goto out;
8179 }
8180 }
8181 while (1) {
8182 struct extent_buffer *leaf = path->nodes[0];
8183 struct btrfs_dev_extent *dext;
8184 int slot = path->slots[0];
8185 u64 chunk_offset;
8186 u64 physical_offset;
8187 u64 physical_len;
8188 u64 devid;
8189
8190 btrfs_item_key_to_cpu(leaf, &key, slot);
8191 if (key.type != BTRFS_DEV_EXTENT_KEY)
8192 break;
8193 devid = key.objectid;
8194 physical_offset = key.offset;
8195
8196 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8197 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8198 physical_len = btrfs_dev_extent_length(leaf, dext);
8199
8200 /* Check if this dev extent overlaps with the previous one */
8201 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8202 btrfs_err(fs_info,
8203 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8204 devid, physical_offset, prev_dev_ext_end);
8205 ret = -EUCLEAN;
8206 goto out;
8207 }
8208
8209 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8210 physical_offset, physical_len);
8211 if (ret < 0)
8212 goto out;
8213 prev_devid = devid;
8214 prev_dev_ext_end = physical_offset + physical_len;
8215
8216 ret = btrfs_next_item(root, path);
8217 if (ret < 0)
8218 goto out;
8219 if (ret > 0) {
8220 ret = 0;
8221 break;
8222 }
8223 }
8224
8225 /* Ensure all chunks have corresponding dev extents */
8226 ret = verify_chunk_dev_extent_mapping(fs_info);
8227 out:
8228 btrfs_free_path(path);
8229 return ret;
8230 }
8231
8232 /*
8233 * Check whether the given block group or device is pinned by any inode being
8234 * used as a swapfile.
8235 */
btrfs_pinned_by_swapfile(struct btrfs_fs_info * fs_info,void * ptr)8236 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8237 {
8238 struct btrfs_swapfile_pin *sp;
8239 struct rb_node *node;
8240
8241 spin_lock(&fs_info->swapfile_pins_lock);
8242 node = fs_info->swapfile_pins.rb_node;
8243 while (node) {
8244 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8245 if (ptr < sp->ptr)
8246 node = node->rb_left;
8247 else if (ptr > sp->ptr)
8248 node = node->rb_right;
8249 else
8250 break;
8251 }
8252 spin_unlock(&fs_info->swapfile_pins_lock);
8253 return node != NULL;
8254 }
8255
relocating_repair_kthread(void * data)8256 static int relocating_repair_kthread(void *data)
8257 {
8258 struct btrfs_block_group *cache = (struct btrfs_block_group *)data;
8259 struct btrfs_fs_info *fs_info = cache->fs_info;
8260 u64 target;
8261 int ret = 0;
8262
8263 target = cache->start;
8264 btrfs_put_block_group(cache);
8265
8266 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8267 btrfs_info(fs_info,
8268 "zoned: skip relocating block group %llu to repair: EBUSY",
8269 target);
8270 return -EBUSY;
8271 }
8272
8273 mutex_lock(&fs_info->reclaim_bgs_lock);
8274
8275 /* Ensure block group still exists */
8276 cache = btrfs_lookup_block_group(fs_info, target);
8277 if (!cache)
8278 goto out;
8279
8280 if (!cache->relocating_repair)
8281 goto out;
8282
8283 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8284 if (ret < 0)
8285 goto out;
8286
8287 btrfs_info(fs_info,
8288 "zoned: relocating block group %llu to repair IO failure",
8289 target);
8290 ret = btrfs_relocate_chunk(fs_info, target);
8291
8292 out:
8293 if (cache)
8294 btrfs_put_block_group(cache);
8295 mutex_unlock(&fs_info->reclaim_bgs_lock);
8296 btrfs_exclop_finish(fs_info);
8297
8298 return ret;
8299 }
8300
btrfs_repair_one_zone(struct btrfs_fs_info * fs_info,u64 logical)8301 int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8302 {
8303 struct btrfs_block_group *cache;
8304
8305 /* Do not attempt to repair in degraded state */
8306 if (btrfs_test_opt(fs_info, DEGRADED))
8307 return 0;
8308
8309 cache = btrfs_lookup_block_group(fs_info, logical);
8310 if (!cache)
8311 return 0;
8312
8313 spin_lock(&cache->lock);
8314 if (cache->relocating_repair) {
8315 spin_unlock(&cache->lock);
8316 btrfs_put_block_group(cache);
8317 return 0;
8318 }
8319 cache->relocating_repair = 1;
8320 spin_unlock(&cache->lock);
8321
8322 kthread_run(relocating_repair_kthread, cache,
8323 "btrfs-relocating-repair");
8324
8325 return 0;
8326 }
8327