1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include <linux/error-injection.h>
11 #include "ctree.h"
12 #include "disk-io.h"
13 #include "transaction.h"
14 #include "print-tree.h"
15 #include "locking.h"
16 #include "volumes.h"
17 #include "qgroup.h"
18 #include "tree-mod-log.h"
19
20 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
21 *root, struct btrfs_path *path, int level);
22 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
23 const struct btrfs_key *ins_key, struct btrfs_path *path,
24 int data_size, int extend);
25 static int push_node_left(struct btrfs_trans_handle *trans,
26 struct extent_buffer *dst,
27 struct extent_buffer *src, int empty);
28 static int balance_node_right(struct btrfs_trans_handle *trans,
29 struct extent_buffer *dst_buf,
30 struct extent_buffer *src_buf);
31 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
32 int level, int slot);
33
34 static const struct btrfs_csums {
35 u16 size;
36 const char name[10];
37 const char driver[12];
38 } btrfs_csums[] = {
39 [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
40 [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
41 [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
42 [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
43 .driver = "blake2b-256" },
44 };
45
btrfs_super_csum_size(const struct btrfs_super_block * s)46 int btrfs_super_csum_size(const struct btrfs_super_block *s)
47 {
48 u16 t = btrfs_super_csum_type(s);
49 /*
50 * csum type is validated at mount time
51 */
52 return btrfs_csums[t].size;
53 }
54
btrfs_super_csum_name(u16 csum_type)55 const char *btrfs_super_csum_name(u16 csum_type)
56 {
57 /* csum type is validated at mount time */
58 return btrfs_csums[csum_type].name;
59 }
60
61 /*
62 * Return driver name if defined, otherwise the name that's also a valid driver
63 * name
64 */
btrfs_super_csum_driver(u16 csum_type)65 const char *btrfs_super_csum_driver(u16 csum_type)
66 {
67 /* csum type is validated at mount time */
68 return btrfs_csums[csum_type].driver[0] ?
69 btrfs_csums[csum_type].driver :
70 btrfs_csums[csum_type].name;
71 }
72
btrfs_get_num_csums(void)73 size_t __attribute_const__ btrfs_get_num_csums(void)
74 {
75 return ARRAY_SIZE(btrfs_csums);
76 }
77
btrfs_alloc_path(void)78 struct btrfs_path *btrfs_alloc_path(void)
79 {
80 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
81 }
82
83 /* this also releases the path */
btrfs_free_path(struct btrfs_path * p)84 void btrfs_free_path(struct btrfs_path *p)
85 {
86 if (!p)
87 return;
88 btrfs_release_path(p);
89 kmem_cache_free(btrfs_path_cachep, p);
90 }
91
92 /*
93 * path release drops references on the extent buffers in the path
94 * and it drops any locks held by this path
95 *
96 * It is safe to call this on paths that no locks or extent buffers held.
97 */
btrfs_release_path(struct btrfs_path * p)98 noinline void btrfs_release_path(struct btrfs_path *p)
99 {
100 int i;
101
102 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
103 p->slots[i] = 0;
104 if (!p->nodes[i])
105 continue;
106 if (p->locks[i]) {
107 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
108 p->locks[i] = 0;
109 }
110 free_extent_buffer(p->nodes[i]);
111 p->nodes[i] = NULL;
112 }
113 }
114
115 /*
116 * safely gets a reference on the root node of a tree. A lock
117 * is not taken, so a concurrent writer may put a different node
118 * at the root of the tree. See btrfs_lock_root_node for the
119 * looping required.
120 *
121 * The extent buffer returned by this has a reference taken, so
122 * it won't disappear. It may stop being the root of the tree
123 * at any time because there are no locks held.
124 */
btrfs_root_node(struct btrfs_root * root)125 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
126 {
127 struct extent_buffer *eb;
128
129 while (1) {
130 rcu_read_lock();
131 eb = rcu_dereference(root->node);
132
133 /*
134 * RCU really hurts here, we could free up the root node because
135 * it was COWed but we may not get the new root node yet so do
136 * the inc_not_zero dance and if it doesn't work then
137 * synchronize_rcu and try again.
138 */
139 if (atomic_inc_not_zero(&eb->refs)) {
140 rcu_read_unlock();
141 break;
142 }
143 rcu_read_unlock();
144 synchronize_rcu();
145 }
146 return eb;
147 }
148
149 /*
150 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
151 * just get put onto a simple dirty list. Transaction walks this list to make
152 * sure they get properly updated on disk.
153 */
add_root_to_dirty_list(struct btrfs_root * root)154 static void add_root_to_dirty_list(struct btrfs_root *root)
155 {
156 struct btrfs_fs_info *fs_info = root->fs_info;
157
158 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
159 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
160 return;
161
162 spin_lock(&fs_info->trans_lock);
163 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
164 /* Want the extent tree to be the last on the list */
165 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
166 list_move_tail(&root->dirty_list,
167 &fs_info->dirty_cowonly_roots);
168 else
169 list_move(&root->dirty_list,
170 &fs_info->dirty_cowonly_roots);
171 }
172 spin_unlock(&fs_info->trans_lock);
173 }
174
175 /*
176 * used by snapshot creation to make a copy of a root for a tree with
177 * a given objectid. The buffer with the new root node is returned in
178 * cow_ret, and this func returns zero on success or a negative error code.
179 */
btrfs_copy_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer ** cow_ret,u64 new_root_objectid)180 int btrfs_copy_root(struct btrfs_trans_handle *trans,
181 struct btrfs_root *root,
182 struct extent_buffer *buf,
183 struct extent_buffer **cow_ret, u64 new_root_objectid)
184 {
185 struct btrfs_fs_info *fs_info = root->fs_info;
186 struct extent_buffer *cow;
187 int ret = 0;
188 int level;
189 struct btrfs_disk_key disk_key;
190
191 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
192 trans->transid != fs_info->running_transaction->transid);
193 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
194 trans->transid != root->last_trans);
195
196 level = btrfs_header_level(buf);
197 if (level == 0)
198 btrfs_item_key(buf, &disk_key, 0);
199 else
200 btrfs_node_key(buf, &disk_key, 0);
201
202 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
203 &disk_key, level, buf->start, 0,
204 BTRFS_NESTING_NEW_ROOT);
205 if (IS_ERR(cow))
206 return PTR_ERR(cow);
207
208 copy_extent_buffer_full(cow, buf);
209 btrfs_set_header_bytenr(cow, cow->start);
210 btrfs_set_header_generation(cow, trans->transid);
211 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
212 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
213 BTRFS_HEADER_FLAG_RELOC);
214 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
215 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
216 else
217 btrfs_set_header_owner(cow, new_root_objectid);
218
219 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
220
221 WARN_ON(btrfs_header_generation(buf) > trans->transid);
222 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
223 ret = btrfs_inc_ref(trans, root, cow, 1);
224 else
225 ret = btrfs_inc_ref(trans, root, cow, 0);
226 if (ret) {
227 btrfs_tree_unlock(cow);
228 free_extent_buffer(cow);
229 btrfs_abort_transaction(trans, ret);
230 return ret;
231 }
232
233 btrfs_mark_buffer_dirty(cow);
234 *cow_ret = cow;
235 return 0;
236 }
237
238 /*
239 * check if the tree block can be shared by multiple trees
240 */
btrfs_block_can_be_shared(struct btrfs_root * root,struct extent_buffer * buf)241 int btrfs_block_can_be_shared(struct btrfs_root *root,
242 struct extent_buffer *buf)
243 {
244 /*
245 * Tree blocks not in shareable trees and tree roots are never shared.
246 * If a block was allocated after the last snapshot and the block was
247 * not allocated by tree relocation, we know the block is not shared.
248 */
249 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
250 buf != root->node && buf != root->commit_root &&
251 (btrfs_header_generation(buf) <=
252 btrfs_root_last_snapshot(&root->root_item) ||
253 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
254 return 1;
255
256 return 0;
257 }
258
update_ref_for_cow(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * cow,int * last_ref)259 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
260 struct btrfs_root *root,
261 struct extent_buffer *buf,
262 struct extent_buffer *cow,
263 int *last_ref)
264 {
265 struct btrfs_fs_info *fs_info = root->fs_info;
266 u64 refs;
267 u64 owner;
268 u64 flags;
269 u64 new_flags = 0;
270 int ret;
271
272 /*
273 * Backrefs update rules:
274 *
275 * Always use full backrefs for extent pointers in tree block
276 * allocated by tree relocation.
277 *
278 * If a shared tree block is no longer referenced by its owner
279 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
280 * use full backrefs for extent pointers in tree block.
281 *
282 * If a tree block is been relocating
283 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
284 * use full backrefs for extent pointers in tree block.
285 * The reason for this is some operations (such as drop tree)
286 * are only allowed for blocks use full backrefs.
287 */
288
289 if (btrfs_block_can_be_shared(root, buf)) {
290 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
291 btrfs_header_level(buf), 1,
292 &refs, &flags);
293 if (ret)
294 return ret;
295 if (refs == 0) {
296 ret = -EROFS;
297 btrfs_handle_fs_error(fs_info, ret, NULL);
298 return ret;
299 }
300 } else {
301 refs = 1;
302 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
303 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
304 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
305 else
306 flags = 0;
307 }
308
309 owner = btrfs_header_owner(buf);
310 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
311 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
312
313 if (refs > 1) {
314 if ((owner == root->root_key.objectid ||
315 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
316 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
317 ret = btrfs_inc_ref(trans, root, buf, 1);
318 if (ret)
319 return ret;
320
321 if (root->root_key.objectid ==
322 BTRFS_TREE_RELOC_OBJECTID) {
323 ret = btrfs_dec_ref(trans, root, buf, 0);
324 if (ret)
325 return ret;
326 ret = btrfs_inc_ref(trans, root, cow, 1);
327 if (ret)
328 return ret;
329 }
330 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
331 } else {
332
333 if (root->root_key.objectid ==
334 BTRFS_TREE_RELOC_OBJECTID)
335 ret = btrfs_inc_ref(trans, root, cow, 1);
336 else
337 ret = btrfs_inc_ref(trans, root, cow, 0);
338 if (ret)
339 return ret;
340 }
341 if (new_flags != 0) {
342 int level = btrfs_header_level(buf);
343
344 ret = btrfs_set_disk_extent_flags(trans, buf,
345 new_flags, level, 0);
346 if (ret)
347 return ret;
348 }
349 } else {
350 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
351 if (root->root_key.objectid ==
352 BTRFS_TREE_RELOC_OBJECTID)
353 ret = btrfs_inc_ref(trans, root, cow, 1);
354 else
355 ret = btrfs_inc_ref(trans, root, cow, 0);
356 if (ret)
357 return ret;
358 ret = btrfs_dec_ref(trans, root, buf, 1);
359 if (ret)
360 return ret;
361 }
362 btrfs_clean_tree_block(buf);
363 *last_ref = 1;
364 }
365 return 0;
366 }
367
368 /*
369 * does the dirty work in cow of a single block. The parent block (if
370 * supplied) is updated to point to the new cow copy. The new buffer is marked
371 * dirty and returned locked. If you modify the block it needs to be marked
372 * dirty again.
373 *
374 * search_start -- an allocation hint for the new block
375 *
376 * empty_size -- a hint that you plan on doing more cow. This is the size in
377 * bytes the allocator should try to find free next to the block it returns.
378 * This is just a hint and may be ignored by the allocator.
379 */
__btrfs_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret,u64 search_start,u64 empty_size,enum btrfs_lock_nesting nest)380 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
381 struct btrfs_root *root,
382 struct extent_buffer *buf,
383 struct extent_buffer *parent, int parent_slot,
384 struct extent_buffer **cow_ret,
385 u64 search_start, u64 empty_size,
386 enum btrfs_lock_nesting nest)
387 {
388 struct btrfs_fs_info *fs_info = root->fs_info;
389 struct btrfs_disk_key disk_key;
390 struct extent_buffer *cow;
391 int level, ret;
392 int last_ref = 0;
393 int unlock_orig = 0;
394 u64 parent_start = 0;
395
396 if (*cow_ret == buf)
397 unlock_orig = 1;
398
399 btrfs_assert_tree_write_locked(buf);
400
401 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
402 trans->transid != fs_info->running_transaction->transid);
403 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
404 trans->transid != root->last_trans);
405
406 level = btrfs_header_level(buf);
407
408 if (level == 0)
409 btrfs_item_key(buf, &disk_key, 0);
410 else
411 btrfs_node_key(buf, &disk_key, 0);
412
413 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
414 parent_start = parent->start;
415
416 cow = btrfs_alloc_tree_block(trans, root, parent_start,
417 root->root_key.objectid, &disk_key, level,
418 search_start, empty_size, nest);
419 if (IS_ERR(cow))
420 return PTR_ERR(cow);
421
422 /* cow is set to blocking by btrfs_init_new_buffer */
423
424 copy_extent_buffer_full(cow, buf);
425 btrfs_set_header_bytenr(cow, cow->start);
426 btrfs_set_header_generation(cow, trans->transid);
427 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
428 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
429 BTRFS_HEADER_FLAG_RELOC);
430 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
431 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
432 else
433 btrfs_set_header_owner(cow, root->root_key.objectid);
434
435 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
436
437 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
438 if (ret) {
439 btrfs_tree_unlock(cow);
440 free_extent_buffer(cow);
441 btrfs_abort_transaction(trans, ret);
442 return ret;
443 }
444
445 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
446 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
447 if (ret) {
448 btrfs_tree_unlock(cow);
449 free_extent_buffer(cow);
450 btrfs_abort_transaction(trans, ret);
451 return ret;
452 }
453 }
454
455 if (buf == root->node) {
456 WARN_ON(parent && parent != buf);
457 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
458 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
459 parent_start = buf->start;
460
461 atomic_inc(&cow->refs);
462 ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
463 BUG_ON(ret < 0);
464 rcu_assign_pointer(root->node, cow);
465
466 btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
467 parent_start, last_ref);
468 free_extent_buffer(buf);
469 add_root_to_dirty_list(root);
470 } else {
471 WARN_ON(trans->transid != btrfs_header_generation(parent));
472 btrfs_tree_mod_log_insert_key(parent, parent_slot,
473 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
474 btrfs_set_node_blockptr(parent, parent_slot,
475 cow->start);
476 btrfs_set_node_ptr_generation(parent, parent_slot,
477 trans->transid);
478 btrfs_mark_buffer_dirty(parent);
479 if (last_ref) {
480 ret = btrfs_tree_mod_log_free_eb(buf);
481 if (ret) {
482 btrfs_tree_unlock(cow);
483 free_extent_buffer(cow);
484 btrfs_abort_transaction(trans, ret);
485 return ret;
486 }
487 }
488 btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
489 parent_start, last_ref);
490 }
491 if (unlock_orig)
492 btrfs_tree_unlock(buf);
493 free_extent_buffer_stale(buf);
494 btrfs_mark_buffer_dirty(cow);
495 *cow_ret = cow;
496 return 0;
497 }
498
should_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf)499 static inline int should_cow_block(struct btrfs_trans_handle *trans,
500 struct btrfs_root *root,
501 struct extent_buffer *buf)
502 {
503 if (btrfs_is_testing(root->fs_info))
504 return 0;
505
506 /* Ensure we can see the FORCE_COW bit */
507 smp_mb__before_atomic();
508
509 /*
510 * We do not need to cow a block if
511 * 1) this block is not created or changed in this transaction;
512 * 2) this block does not belong to TREE_RELOC tree;
513 * 3) the root is not forced COW.
514 *
515 * What is forced COW:
516 * when we create snapshot during committing the transaction,
517 * after we've finished copying src root, we must COW the shared
518 * block to ensure the metadata consistency.
519 */
520 if (btrfs_header_generation(buf) == trans->transid &&
521 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
522 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
523 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
524 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
525 return 0;
526 return 1;
527 }
528
529 /*
530 * cows a single block, see __btrfs_cow_block for the real work.
531 * This version of it has extra checks so that a block isn't COWed more than
532 * once per transaction, as long as it hasn't been written yet
533 */
btrfs_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret,enum btrfs_lock_nesting nest)534 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
535 struct btrfs_root *root, struct extent_buffer *buf,
536 struct extent_buffer *parent, int parent_slot,
537 struct extent_buffer **cow_ret,
538 enum btrfs_lock_nesting nest)
539 {
540 struct btrfs_fs_info *fs_info = root->fs_info;
541 u64 search_start;
542 int ret;
543
544 if (test_bit(BTRFS_ROOT_DELETING, &root->state))
545 btrfs_err(fs_info,
546 "COW'ing blocks on a fs root that's being dropped");
547
548 if (trans->transaction != fs_info->running_transaction)
549 WARN(1, KERN_CRIT "trans %llu running %llu\n",
550 trans->transid,
551 fs_info->running_transaction->transid);
552
553 if (trans->transid != fs_info->generation)
554 WARN(1, KERN_CRIT "trans %llu running %llu\n",
555 trans->transid, fs_info->generation);
556
557 if (!should_cow_block(trans, root, buf)) {
558 *cow_ret = buf;
559 return 0;
560 }
561
562 search_start = buf->start & ~((u64)SZ_1G - 1);
563
564 /*
565 * Before CoWing this block for later modification, check if it's
566 * the subtree root and do the delayed subtree trace if needed.
567 *
568 * Also We don't care about the error, as it's handled internally.
569 */
570 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
571 ret = __btrfs_cow_block(trans, root, buf, parent,
572 parent_slot, cow_ret, search_start, 0, nest);
573
574 trace_btrfs_cow_block(root, buf, *cow_ret);
575
576 return ret;
577 }
578 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
579
580 /*
581 * helper function for defrag to decide if two blocks pointed to by a
582 * node are actually close by
583 */
close_blocks(u64 blocknr,u64 other,u32 blocksize)584 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
585 {
586 if (blocknr < other && other - (blocknr + blocksize) < 32768)
587 return 1;
588 if (blocknr > other && blocknr - (other + blocksize) < 32768)
589 return 1;
590 return 0;
591 }
592
593 #ifdef __LITTLE_ENDIAN
594
595 /*
596 * Compare two keys, on little-endian the disk order is same as CPU order and
597 * we can avoid the conversion.
598 */
comp_keys(const struct btrfs_disk_key * disk_key,const struct btrfs_key * k2)599 static int comp_keys(const struct btrfs_disk_key *disk_key,
600 const struct btrfs_key *k2)
601 {
602 const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
603
604 return btrfs_comp_cpu_keys(k1, k2);
605 }
606
607 #else
608
609 /*
610 * compare two keys in a memcmp fashion
611 */
comp_keys(const struct btrfs_disk_key * disk,const struct btrfs_key * k2)612 static int comp_keys(const struct btrfs_disk_key *disk,
613 const struct btrfs_key *k2)
614 {
615 struct btrfs_key k1;
616
617 btrfs_disk_key_to_cpu(&k1, disk);
618
619 return btrfs_comp_cpu_keys(&k1, k2);
620 }
621 #endif
622
623 /*
624 * same as comp_keys only with two btrfs_key's
625 */
btrfs_comp_cpu_keys(const struct btrfs_key * k1,const struct btrfs_key * k2)626 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
627 {
628 if (k1->objectid > k2->objectid)
629 return 1;
630 if (k1->objectid < k2->objectid)
631 return -1;
632 if (k1->type > k2->type)
633 return 1;
634 if (k1->type < k2->type)
635 return -1;
636 if (k1->offset > k2->offset)
637 return 1;
638 if (k1->offset < k2->offset)
639 return -1;
640 return 0;
641 }
642
643 /*
644 * this is used by the defrag code to go through all the
645 * leaves pointed to by a node and reallocate them so that
646 * disk order is close to key order
647 */
btrfs_realloc_node(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * parent,int start_slot,u64 * last_ret,struct btrfs_key * progress)648 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
649 struct btrfs_root *root, struct extent_buffer *parent,
650 int start_slot, u64 *last_ret,
651 struct btrfs_key *progress)
652 {
653 struct btrfs_fs_info *fs_info = root->fs_info;
654 struct extent_buffer *cur;
655 u64 blocknr;
656 u64 search_start = *last_ret;
657 u64 last_block = 0;
658 u64 other;
659 u32 parent_nritems;
660 int end_slot;
661 int i;
662 int err = 0;
663 u32 blocksize;
664 int progress_passed = 0;
665 struct btrfs_disk_key disk_key;
666
667 WARN_ON(trans->transaction != fs_info->running_transaction);
668 WARN_ON(trans->transid != fs_info->generation);
669
670 parent_nritems = btrfs_header_nritems(parent);
671 blocksize = fs_info->nodesize;
672 end_slot = parent_nritems - 1;
673
674 if (parent_nritems <= 1)
675 return 0;
676
677 for (i = start_slot; i <= end_slot; i++) {
678 int close = 1;
679
680 btrfs_node_key(parent, &disk_key, i);
681 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
682 continue;
683
684 progress_passed = 1;
685 blocknr = btrfs_node_blockptr(parent, i);
686 if (last_block == 0)
687 last_block = blocknr;
688
689 if (i > 0) {
690 other = btrfs_node_blockptr(parent, i - 1);
691 close = close_blocks(blocknr, other, blocksize);
692 }
693 if (!close && i < end_slot) {
694 other = btrfs_node_blockptr(parent, i + 1);
695 close = close_blocks(blocknr, other, blocksize);
696 }
697 if (close) {
698 last_block = blocknr;
699 continue;
700 }
701
702 cur = btrfs_read_node_slot(parent, i);
703 if (IS_ERR(cur))
704 return PTR_ERR(cur);
705 if (search_start == 0)
706 search_start = last_block;
707
708 btrfs_tree_lock(cur);
709 err = __btrfs_cow_block(trans, root, cur, parent, i,
710 &cur, search_start,
711 min(16 * blocksize,
712 (end_slot - i) * blocksize),
713 BTRFS_NESTING_COW);
714 if (err) {
715 btrfs_tree_unlock(cur);
716 free_extent_buffer(cur);
717 break;
718 }
719 search_start = cur->start;
720 last_block = cur->start;
721 *last_ret = search_start;
722 btrfs_tree_unlock(cur);
723 free_extent_buffer(cur);
724 }
725 return err;
726 }
727
728 /*
729 * search for key in the extent_buffer. The items start at offset p,
730 * and they are item_size apart.
731 *
732 * the slot in the array is returned via slot, and it points to
733 * the place where you would insert key if it is not found in
734 * the array.
735 *
736 * Slot may point to total number of items if the key is bigger than
737 * all of the keys
738 */
generic_bin_search(struct extent_buffer * eb,unsigned long p,int item_size,const struct btrfs_key * key,int * slot)739 static noinline int generic_bin_search(struct extent_buffer *eb,
740 unsigned long p, int item_size,
741 const struct btrfs_key *key, int *slot)
742 {
743 int low = 0;
744 int high = btrfs_header_nritems(eb);
745 int ret;
746 const int key_size = sizeof(struct btrfs_disk_key);
747
748 if (low > high) {
749 btrfs_err(eb->fs_info,
750 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
751 __func__, low, high, eb->start,
752 btrfs_header_owner(eb), btrfs_header_level(eb));
753 return -EINVAL;
754 }
755
756 while (low < high) {
757 unsigned long oip;
758 unsigned long offset;
759 struct btrfs_disk_key *tmp;
760 struct btrfs_disk_key unaligned;
761 int mid;
762
763 mid = (low + high) / 2;
764 offset = p + mid * item_size;
765 oip = offset_in_page(offset);
766
767 if (oip + key_size <= PAGE_SIZE) {
768 const unsigned long idx = get_eb_page_index(offset);
769 char *kaddr = page_address(eb->pages[idx]);
770
771 oip = get_eb_offset_in_page(eb, offset);
772 tmp = (struct btrfs_disk_key *)(kaddr + oip);
773 } else {
774 read_extent_buffer(eb, &unaligned, offset, key_size);
775 tmp = &unaligned;
776 }
777
778 ret = comp_keys(tmp, key);
779
780 if (ret < 0)
781 low = mid + 1;
782 else if (ret > 0)
783 high = mid;
784 else {
785 *slot = mid;
786 return 0;
787 }
788 }
789 *slot = low;
790 return 1;
791 }
792
793 /*
794 * simple bin_search frontend that does the right thing for
795 * leaves vs nodes
796 */
btrfs_bin_search(struct extent_buffer * eb,const struct btrfs_key * key,int * slot)797 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
798 int *slot)
799 {
800 if (btrfs_header_level(eb) == 0)
801 return generic_bin_search(eb,
802 offsetof(struct btrfs_leaf, items),
803 sizeof(struct btrfs_item), key, slot);
804 else
805 return generic_bin_search(eb,
806 offsetof(struct btrfs_node, ptrs),
807 sizeof(struct btrfs_key_ptr), key, slot);
808 }
809
root_add_used(struct btrfs_root * root,u32 size)810 static void root_add_used(struct btrfs_root *root, u32 size)
811 {
812 spin_lock(&root->accounting_lock);
813 btrfs_set_root_used(&root->root_item,
814 btrfs_root_used(&root->root_item) + size);
815 spin_unlock(&root->accounting_lock);
816 }
817
root_sub_used(struct btrfs_root * root,u32 size)818 static void root_sub_used(struct btrfs_root *root, u32 size)
819 {
820 spin_lock(&root->accounting_lock);
821 btrfs_set_root_used(&root->root_item,
822 btrfs_root_used(&root->root_item) - size);
823 spin_unlock(&root->accounting_lock);
824 }
825
826 /* given a node and slot number, this reads the blocks it points to. The
827 * extent buffer is returned with a reference taken (but unlocked).
828 */
btrfs_read_node_slot(struct extent_buffer * parent,int slot)829 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
830 int slot)
831 {
832 int level = btrfs_header_level(parent);
833 struct extent_buffer *eb;
834 struct btrfs_key first_key;
835
836 if (slot < 0 || slot >= btrfs_header_nritems(parent))
837 return ERR_PTR(-ENOENT);
838
839 BUG_ON(level == 0);
840
841 btrfs_node_key_to_cpu(parent, &first_key, slot);
842 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
843 btrfs_header_owner(parent),
844 btrfs_node_ptr_generation(parent, slot),
845 level - 1, &first_key);
846 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
847 free_extent_buffer(eb);
848 eb = ERR_PTR(-EIO);
849 }
850
851 return eb;
852 }
853
854 /*
855 * node level balancing, used to make sure nodes are in proper order for
856 * item deletion. We balance from the top down, so we have to make sure
857 * that a deletion won't leave an node completely empty later on.
858 */
balance_level(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)859 static noinline int balance_level(struct btrfs_trans_handle *trans,
860 struct btrfs_root *root,
861 struct btrfs_path *path, int level)
862 {
863 struct btrfs_fs_info *fs_info = root->fs_info;
864 struct extent_buffer *right = NULL;
865 struct extent_buffer *mid;
866 struct extent_buffer *left = NULL;
867 struct extent_buffer *parent = NULL;
868 int ret = 0;
869 int wret;
870 int pslot;
871 int orig_slot = path->slots[level];
872 u64 orig_ptr;
873
874 ASSERT(level > 0);
875
876 mid = path->nodes[level];
877
878 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
879 WARN_ON(btrfs_header_generation(mid) != trans->transid);
880
881 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
882
883 if (level < BTRFS_MAX_LEVEL - 1) {
884 parent = path->nodes[level + 1];
885 pslot = path->slots[level + 1];
886 }
887
888 /*
889 * deal with the case where there is only one pointer in the root
890 * by promoting the node below to a root
891 */
892 if (!parent) {
893 struct extent_buffer *child;
894
895 if (btrfs_header_nritems(mid) != 1)
896 return 0;
897
898 /* promote the child to a root */
899 child = btrfs_read_node_slot(mid, 0);
900 if (IS_ERR(child)) {
901 ret = PTR_ERR(child);
902 btrfs_handle_fs_error(fs_info, ret, NULL);
903 goto enospc;
904 }
905
906 btrfs_tree_lock(child);
907 ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
908 BTRFS_NESTING_COW);
909 if (ret) {
910 btrfs_tree_unlock(child);
911 free_extent_buffer(child);
912 goto enospc;
913 }
914
915 ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
916 BUG_ON(ret < 0);
917 rcu_assign_pointer(root->node, child);
918
919 add_root_to_dirty_list(root);
920 btrfs_tree_unlock(child);
921
922 path->locks[level] = 0;
923 path->nodes[level] = NULL;
924 btrfs_clean_tree_block(mid);
925 btrfs_tree_unlock(mid);
926 /* once for the path */
927 free_extent_buffer(mid);
928
929 root_sub_used(root, mid->len);
930 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
931 /* once for the root ptr */
932 free_extent_buffer_stale(mid);
933 return 0;
934 }
935 if (btrfs_header_nritems(mid) >
936 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
937 return 0;
938
939 left = btrfs_read_node_slot(parent, pslot - 1);
940 if (IS_ERR(left))
941 left = NULL;
942
943 if (left) {
944 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
945 wret = btrfs_cow_block(trans, root, left,
946 parent, pslot - 1, &left,
947 BTRFS_NESTING_LEFT_COW);
948 if (wret) {
949 ret = wret;
950 goto enospc;
951 }
952 }
953
954 right = btrfs_read_node_slot(parent, pslot + 1);
955 if (IS_ERR(right))
956 right = NULL;
957
958 if (right) {
959 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
960 wret = btrfs_cow_block(trans, root, right,
961 parent, pslot + 1, &right,
962 BTRFS_NESTING_RIGHT_COW);
963 if (wret) {
964 ret = wret;
965 goto enospc;
966 }
967 }
968
969 /* first, try to make some room in the middle buffer */
970 if (left) {
971 orig_slot += btrfs_header_nritems(left);
972 wret = push_node_left(trans, left, mid, 1);
973 if (wret < 0)
974 ret = wret;
975 }
976
977 /*
978 * then try to empty the right most buffer into the middle
979 */
980 if (right) {
981 wret = push_node_left(trans, mid, right, 1);
982 if (wret < 0 && wret != -ENOSPC)
983 ret = wret;
984 if (btrfs_header_nritems(right) == 0) {
985 btrfs_clean_tree_block(right);
986 btrfs_tree_unlock(right);
987 del_ptr(root, path, level + 1, pslot + 1);
988 root_sub_used(root, right->len);
989 btrfs_free_tree_block(trans, btrfs_root_id(root), right,
990 0, 1);
991 free_extent_buffer_stale(right);
992 right = NULL;
993 } else {
994 struct btrfs_disk_key right_key;
995 btrfs_node_key(right, &right_key, 0);
996 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
997 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
998 BUG_ON(ret < 0);
999 btrfs_set_node_key(parent, &right_key, pslot + 1);
1000 btrfs_mark_buffer_dirty(parent);
1001 }
1002 }
1003 if (btrfs_header_nritems(mid) == 1) {
1004 /*
1005 * we're not allowed to leave a node with one item in the
1006 * tree during a delete. A deletion from lower in the tree
1007 * could try to delete the only pointer in this node.
1008 * So, pull some keys from the left.
1009 * There has to be a left pointer at this point because
1010 * otherwise we would have pulled some pointers from the
1011 * right
1012 */
1013 if (!left) {
1014 ret = -EROFS;
1015 btrfs_handle_fs_error(fs_info, ret, NULL);
1016 goto enospc;
1017 }
1018 wret = balance_node_right(trans, mid, left);
1019 if (wret < 0) {
1020 ret = wret;
1021 goto enospc;
1022 }
1023 if (wret == 1) {
1024 wret = push_node_left(trans, left, mid, 1);
1025 if (wret < 0)
1026 ret = wret;
1027 }
1028 BUG_ON(wret == 1);
1029 }
1030 if (btrfs_header_nritems(mid) == 0) {
1031 btrfs_clean_tree_block(mid);
1032 btrfs_tree_unlock(mid);
1033 del_ptr(root, path, level + 1, pslot);
1034 root_sub_used(root, mid->len);
1035 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1036 free_extent_buffer_stale(mid);
1037 mid = NULL;
1038 } else {
1039 /* update the parent key to reflect our changes */
1040 struct btrfs_disk_key mid_key;
1041 btrfs_node_key(mid, &mid_key, 0);
1042 ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1043 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1044 BUG_ON(ret < 0);
1045 btrfs_set_node_key(parent, &mid_key, pslot);
1046 btrfs_mark_buffer_dirty(parent);
1047 }
1048
1049 /* update the path */
1050 if (left) {
1051 if (btrfs_header_nritems(left) > orig_slot) {
1052 atomic_inc(&left->refs);
1053 /* left was locked after cow */
1054 path->nodes[level] = left;
1055 path->slots[level + 1] -= 1;
1056 path->slots[level] = orig_slot;
1057 if (mid) {
1058 btrfs_tree_unlock(mid);
1059 free_extent_buffer(mid);
1060 }
1061 } else {
1062 orig_slot -= btrfs_header_nritems(left);
1063 path->slots[level] = orig_slot;
1064 }
1065 }
1066 /* double check we haven't messed things up */
1067 if (orig_ptr !=
1068 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1069 BUG();
1070 enospc:
1071 if (right) {
1072 btrfs_tree_unlock(right);
1073 free_extent_buffer(right);
1074 }
1075 if (left) {
1076 if (path->nodes[level] != left)
1077 btrfs_tree_unlock(left);
1078 free_extent_buffer(left);
1079 }
1080 return ret;
1081 }
1082
1083 /* Node balancing for insertion. Here we only split or push nodes around
1084 * when they are completely full. This is also done top down, so we
1085 * have to be pessimistic.
1086 */
push_nodes_for_insert(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)1087 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1088 struct btrfs_root *root,
1089 struct btrfs_path *path, int level)
1090 {
1091 struct btrfs_fs_info *fs_info = root->fs_info;
1092 struct extent_buffer *right = NULL;
1093 struct extent_buffer *mid;
1094 struct extent_buffer *left = NULL;
1095 struct extent_buffer *parent = NULL;
1096 int ret = 0;
1097 int wret;
1098 int pslot;
1099 int orig_slot = path->slots[level];
1100
1101 if (level == 0)
1102 return 1;
1103
1104 mid = path->nodes[level];
1105 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1106
1107 if (level < BTRFS_MAX_LEVEL - 1) {
1108 parent = path->nodes[level + 1];
1109 pslot = path->slots[level + 1];
1110 }
1111
1112 if (!parent)
1113 return 1;
1114
1115 left = btrfs_read_node_slot(parent, pslot - 1);
1116 if (IS_ERR(left))
1117 left = NULL;
1118
1119 /* first, try to make some room in the middle buffer */
1120 if (left) {
1121 u32 left_nr;
1122
1123 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1124
1125 left_nr = btrfs_header_nritems(left);
1126 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1127 wret = 1;
1128 } else {
1129 ret = btrfs_cow_block(trans, root, left, parent,
1130 pslot - 1, &left,
1131 BTRFS_NESTING_LEFT_COW);
1132 if (ret)
1133 wret = 1;
1134 else {
1135 wret = push_node_left(trans, left, mid, 0);
1136 }
1137 }
1138 if (wret < 0)
1139 ret = wret;
1140 if (wret == 0) {
1141 struct btrfs_disk_key disk_key;
1142 orig_slot += left_nr;
1143 btrfs_node_key(mid, &disk_key, 0);
1144 ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1145 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1146 BUG_ON(ret < 0);
1147 btrfs_set_node_key(parent, &disk_key, pslot);
1148 btrfs_mark_buffer_dirty(parent);
1149 if (btrfs_header_nritems(left) > orig_slot) {
1150 path->nodes[level] = left;
1151 path->slots[level + 1] -= 1;
1152 path->slots[level] = orig_slot;
1153 btrfs_tree_unlock(mid);
1154 free_extent_buffer(mid);
1155 } else {
1156 orig_slot -=
1157 btrfs_header_nritems(left);
1158 path->slots[level] = orig_slot;
1159 btrfs_tree_unlock(left);
1160 free_extent_buffer(left);
1161 }
1162 return 0;
1163 }
1164 btrfs_tree_unlock(left);
1165 free_extent_buffer(left);
1166 }
1167 right = btrfs_read_node_slot(parent, pslot + 1);
1168 if (IS_ERR(right))
1169 right = NULL;
1170
1171 /*
1172 * then try to empty the right most buffer into the middle
1173 */
1174 if (right) {
1175 u32 right_nr;
1176
1177 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1178
1179 right_nr = btrfs_header_nritems(right);
1180 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1181 wret = 1;
1182 } else {
1183 ret = btrfs_cow_block(trans, root, right,
1184 parent, pslot + 1,
1185 &right, BTRFS_NESTING_RIGHT_COW);
1186 if (ret)
1187 wret = 1;
1188 else {
1189 wret = balance_node_right(trans, right, mid);
1190 }
1191 }
1192 if (wret < 0)
1193 ret = wret;
1194 if (wret == 0) {
1195 struct btrfs_disk_key disk_key;
1196
1197 btrfs_node_key(right, &disk_key, 0);
1198 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1199 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1200 BUG_ON(ret < 0);
1201 btrfs_set_node_key(parent, &disk_key, pslot + 1);
1202 btrfs_mark_buffer_dirty(parent);
1203
1204 if (btrfs_header_nritems(mid) <= orig_slot) {
1205 path->nodes[level] = right;
1206 path->slots[level + 1] += 1;
1207 path->slots[level] = orig_slot -
1208 btrfs_header_nritems(mid);
1209 btrfs_tree_unlock(mid);
1210 free_extent_buffer(mid);
1211 } else {
1212 btrfs_tree_unlock(right);
1213 free_extent_buffer(right);
1214 }
1215 return 0;
1216 }
1217 btrfs_tree_unlock(right);
1218 free_extent_buffer(right);
1219 }
1220 return 1;
1221 }
1222
1223 /*
1224 * readahead one full node of leaves, finding things that are close
1225 * to the block in 'slot', and triggering ra on them.
1226 */
reada_for_search(struct btrfs_fs_info * fs_info,struct btrfs_path * path,int level,int slot,u64 objectid)1227 static void reada_for_search(struct btrfs_fs_info *fs_info,
1228 struct btrfs_path *path,
1229 int level, int slot, u64 objectid)
1230 {
1231 struct extent_buffer *node;
1232 struct btrfs_disk_key disk_key;
1233 u32 nritems;
1234 u64 search;
1235 u64 target;
1236 u64 nread = 0;
1237 u64 nread_max;
1238 u32 nr;
1239 u32 blocksize;
1240 u32 nscan = 0;
1241
1242 if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1243 return;
1244
1245 if (!path->nodes[level])
1246 return;
1247
1248 node = path->nodes[level];
1249
1250 /*
1251 * Since the time between visiting leaves is much shorter than the time
1252 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1253 * much IO at once (possibly random).
1254 */
1255 if (path->reada == READA_FORWARD_ALWAYS) {
1256 if (level > 1)
1257 nread_max = node->fs_info->nodesize;
1258 else
1259 nread_max = SZ_128K;
1260 } else {
1261 nread_max = SZ_64K;
1262 }
1263
1264 search = btrfs_node_blockptr(node, slot);
1265 blocksize = fs_info->nodesize;
1266 if (path->reada != READA_FORWARD_ALWAYS) {
1267 struct extent_buffer *eb;
1268
1269 eb = find_extent_buffer(fs_info, search);
1270 if (eb) {
1271 free_extent_buffer(eb);
1272 return;
1273 }
1274 }
1275
1276 target = search;
1277
1278 nritems = btrfs_header_nritems(node);
1279 nr = slot;
1280
1281 while (1) {
1282 if (path->reada == READA_BACK) {
1283 if (nr == 0)
1284 break;
1285 nr--;
1286 } else if (path->reada == READA_FORWARD ||
1287 path->reada == READA_FORWARD_ALWAYS) {
1288 nr++;
1289 if (nr >= nritems)
1290 break;
1291 }
1292 if (path->reada == READA_BACK && objectid) {
1293 btrfs_node_key(node, &disk_key, nr);
1294 if (btrfs_disk_key_objectid(&disk_key) != objectid)
1295 break;
1296 }
1297 search = btrfs_node_blockptr(node, nr);
1298 if (path->reada == READA_FORWARD_ALWAYS ||
1299 (search <= target && target - search <= 65536) ||
1300 (search > target && search - target <= 65536)) {
1301 btrfs_readahead_node_child(node, nr);
1302 nread += blocksize;
1303 }
1304 nscan++;
1305 if (nread > nread_max || nscan > 32)
1306 break;
1307 }
1308 }
1309
reada_for_balance(struct btrfs_path * path,int level)1310 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1311 {
1312 struct extent_buffer *parent;
1313 int slot;
1314 int nritems;
1315
1316 parent = path->nodes[level + 1];
1317 if (!parent)
1318 return;
1319
1320 nritems = btrfs_header_nritems(parent);
1321 slot = path->slots[level + 1];
1322
1323 if (slot > 0)
1324 btrfs_readahead_node_child(parent, slot - 1);
1325 if (slot + 1 < nritems)
1326 btrfs_readahead_node_child(parent, slot + 1);
1327 }
1328
1329
1330 /*
1331 * when we walk down the tree, it is usually safe to unlock the higher layers
1332 * in the tree. The exceptions are when our path goes through slot 0, because
1333 * operations on the tree might require changing key pointers higher up in the
1334 * tree.
1335 *
1336 * callers might also have set path->keep_locks, which tells this code to keep
1337 * the lock if the path points to the last slot in the block. This is part of
1338 * walking through the tree, and selecting the next slot in the higher block.
1339 *
1340 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
1341 * if lowest_unlock is 1, level 0 won't be unlocked
1342 */
unlock_up(struct btrfs_path * path,int level,int lowest_unlock,int min_write_lock_level,int * write_lock_level)1343 static noinline void unlock_up(struct btrfs_path *path, int level,
1344 int lowest_unlock, int min_write_lock_level,
1345 int *write_lock_level)
1346 {
1347 int i;
1348 int skip_level = level;
1349 int no_skips = 0;
1350 struct extent_buffer *t;
1351
1352 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1353 if (!path->nodes[i])
1354 break;
1355 if (!path->locks[i])
1356 break;
1357 if (!no_skips && path->slots[i] == 0) {
1358 skip_level = i + 1;
1359 continue;
1360 }
1361 if (!no_skips && path->keep_locks) {
1362 u32 nritems;
1363 t = path->nodes[i];
1364 nritems = btrfs_header_nritems(t);
1365 if (nritems < 1 || path->slots[i] >= nritems - 1) {
1366 skip_level = i + 1;
1367 continue;
1368 }
1369 }
1370 if (skip_level < i && i >= lowest_unlock)
1371 no_skips = 1;
1372
1373 t = path->nodes[i];
1374 if (i >= lowest_unlock && i > skip_level) {
1375 btrfs_tree_unlock_rw(t, path->locks[i]);
1376 path->locks[i] = 0;
1377 if (write_lock_level &&
1378 i > min_write_lock_level &&
1379 i <= *write_lock_level) {
1380 *write_lock_level = i - 1;
1381 }
1382 }
1383 }
1384 }
1385
1386 /*
1387 * helper function for btrfs_search_slot. The goal is to find a block
1388 * in cache without setting the path to blocking. If we find the block
1389 * we return zero and the path is unchanged.
1390 *
1391 * If we can't find the block, we set the path blocking and do some
1392 * reada. -EAGAIN is returned and the search must be repeated.
1393 */
1394 static int
read_block_for_search(struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer ** eb_ret,int level,int slot,const struct btrfs_key * key)1395 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1396 struct extent_buffer **eb_ret, int level, int slot,
1397 const struct btrfs_key *key)
1398 {
1399 struct btrfs_fs_info *fs_info = root->fs_info;
1400 u64 blocknr;
1401 u64 gen;
1402 struct extent_buffer *tmp;
1403 struct btrfs_key first_key;
1404 int ret;
1405 int parent_level;
1406
1407 blocknr = btrfs_node_blockptr(*eb_ret, slot);
1408 gen = btrfs_node_ptr_generation(*eb_ret, slot);
1409 parent_level = btrfs_header_level(*eb_ret);
1410 btrfs_node_key_to_cpu(*eb_ret, &first_key, slot);
1411
1412 tmp = find_extent_buffer(fs_info, blocknr);
1413 if (tmp) {
1414 if (p->reada == READA_FORWARD_ALWAYS)
1415 reada_for_search(fs_info, p, level, slot, key->objectid);
1416
1417 /* first we do an atomic uptodate check */
1418 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1419 /*
1420 * Do extra check for first_key, eb can be stale due to
1421 * being cached, read from scrub, or have multiple
1422 * parents (shared tree blocks).
1423 */
1424 if (btrfs_verify_level_key(tmp,
1425 parent_level - 1, &first_key, gen)) {
1426 free_extent_buffer(tmp);
1427 return -EUCLEAN;
1428 }
1429 *eb_ret = tmp;
1430 return 0;
1431 }
1432
1433 /* now we're allowed to do a blocking uptodate check */
1434 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
1435 if (!ret) {
1436 *eb_ret = tmp;
1437 return 0;
1438 }
1439 free_extent_buffer(tmp);
1440 btrfs_release_path(p);
1441 return -EIO;
1442 }
1443
1444 /*
1445 * reduce lock contention at high levels
1446 * of the btree by dropping locks before
1447 * we read. Don't release the lock on the current
1448 * level because we need to walk this node to figure
1449 * out which blocks to read.
1450 */
1451 btrfs_unlock_up_safe(p, level + 1);
1452
1453 if (p->reada != READA_NONE)
1454 reada_for_search(fs_info, p, level, slot, key->objectid);
1455
1456 ret = -EAGAIN;
1457 tmp = read_tree_block(fs_info, blocknr, root->root_key.objectid,
1458 gen, parent_level - 1, &first_key);
1459 if (!IS_ERR(tmp)) {
1460 /*
1461 * If the read above didn't mark this buffer up to date,
1462 * it will never end up being up to date. Set ret to EIO now
1463 * and give up so that our caller doesn't loop forever
1464 * on our EAGAINs.
1465 */
1466 if (!extent_buffer_uptodate(tmp))
1467 ret = -EIO;
1468 free_extent_buffer(tmp);
1469 } else {
1470 ret = PTR_ERR(tmp);
1471 }
1472
1473 btrfs_release_path(p);
1474 return ret;
1475 }
1476
1477 /*
1478 * helper function for btrfs_search_slot. This does all of the checks
1479 * for node-level blocks and does any balancing required based on
1480 * the ins_len.
1481 *
1482 * If no extra work was required, zero is returned. If we had to
1483 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1484 * start over
1485 */
1486 static int
setup_nodes_for_search(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer * b,int level,int ins_len,int * write_lock_level)1487 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1488 struct btrfs_root *root, struct btrfs_path *p,
1489 struct extent_buffer *b, int level, int ins_len,
1490 int *write_lock_level)
1491 {
1492 struct btrfs_fs_info *fs_info = root->fs_info;
1493 int ret = 0;
1494
1495 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1496 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1497
1498 if (*write_lock_level < level + 1) {
1499 *write_lock_level = level + 1;
1500 btrfs_release_path(p);
1501 return -EAGAIN;
1502 }
1503
1504 reada_for_balance(p, level);
1505 ret = split_node(trans, root, p, level);
1506
1507 b = p->nodes[level];
1508 } else if (ins_len < 0 && btrfs_header_nritems(b) <
1509 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1510
1511 if (*write_lock_level < level + 1) {
1512 *write_lock_level = level + 1;
1513 btrfs_release_path(p);
1514 return -EAGAIN;
1515 }
1516
1517 reada_for_balance(p, level);
1518 ret = balance_level(trans, root, p, level);
1519 if (ret)
1520 return ret;
1521
1522 b = p->nodes[level];
1523 if (!b) {
1524 btrfs_release_path(p);
1525 return -EAGAIN;
1526 }
1527 BUG_ON(btrfs_header_nritems(b) == 1);
1528 }
1529 return ret;
1530 }
1531
btrfs_find_item(struct btrfs_root * fs_root,struct btrfs_path * path,u64 iobjectid,u64 ioff,u8 key_type,struct btrfs_key * found_key)1532 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1533 u64 iobjectid, u64 ioff, u8 key_type,
1534 struct btrfs_key *found_key)
1535 {
1536 int ret;
1537 struct btrfs_key key;
1538 struct extent_buffer *eb;
1539
1540 ASSERT(path);
1541 ASSERT(found_key);
1542
1543 key.type = key_type;
1544 key.objectid = iobjectid;
1545 key.offset = ioff;
1546
1547 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1548 if (ret < 0)
1549 return ret;
1550
1551 eb = path->nodes[0];
1552 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1553 ret = btrfs_next_leaf(fs_root, path);
1554 if (ret)
1555 return ret;
1556 eb = path->nodes[0];
1557 }
1558
1559 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1560 if (found_key->type != key.type ||
1561 found_key->objectid != key.objectid)
1562 return 1;
1563
1564 return 0;
1565 }
1566
btrfs_search_slot_get_root(struct btrfs_root * root,struct btrfs_path * p,int write_lock_level)1567 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1568 struct btrfs_path *p,
1569 int write_lock_level)
1570 {
1571 struct btrfs_fs_info *fs_info = root->fs_info;
1572 struct extent_buffer *b;
1573 int root_lock;
1574 int level = 0;
1575
1576 /* We try very hard to do read locks on the root */
1577 root_lock = BTRFS_READ_LOCK;
1578
1579 if (p->search_commit_root) {
1580 /*
1581 * The commit roots are read only so we always do read locks,
1582 * and we always must hold the commit_root_sem when doing
1583 * searches on them, the only exception is send where we don't
1584 * want to block transaction commits for a long time, so
1585 * we need to clone the commit root in order to avoid races
1586 * with transaction commits that create a snapshot of one of
1587 * the roots used by a send operation.
1588 */
1589 if (p->need_commit_sem) {
1590 down_read(&fs_info->commit_root_sem);
1591 b = btrfs_clone_extent_buffer(root->commit_root);
1592 up_read(&fs_info->commit_root_sem);
1593 if (!b)
1594 return ERR_PTR(-ENOMEM);
1595
1596 } else {
1597 b = root->commit_root;
1598 atomic_inc(&b->refs);
1599 }
1600 level = btrfs_header_level(b);
1601 /*
1602 * Ensure that all callers have set skip_locking when
1603 * p->search_commit_root = 1.
1604 */
1605 ASSERT(p->skip_locking == 1);
1606
1607 goto out;
1608 }
1609
1610 if (p->skip_locking) {
1611 b = btrfs_root_node(root);
1612 level = btrfs_header_level(b);
1613 goto out;
1614 }
1615
1616 /*
1617 * If the level is set to maximum, we can skip trying to get the read
1618 * lock.
1619 */
1620 if (write_lock_level < BTRFS_MAX_LEVEL) {
1621 /*
1622 * We don't know the level of the root node until we actually
1623 * have it read locked
1624 */
1625 b = btrfs_read_lock_root_node(root);
1626 level = btrfs_header_level(b);
1627 if (level > write_lock_level)
1628 goto out;
1629
1630 /* Whoops, must trade for write lock */
1631 btrfs_tree_read_unlock(b);
1632 free_extent_buffer(b);
1633 }
1634
1635 b = btrfs_lock_root_node(root);
1636 root_lock = BTRFS_WRITE_LOCK;
1637
1638 /* The level might have changed, check again */
1639 level = btrfs_header_level(b);
1640
1641 out:
1642 p->nodes[level] = b;
1643 if (!p->skip_locking)
1644 p->locks[level] = root_lock;
1645 /*
1646 * Callers are responsible for dropping b's references.
1647 */
1648 return b;
1649 }
1650
1651
1652 /*
1653 * btrfs_search_slot - look for a key in a tree and perform necessary
1654 * modifications to preserve tree invariants.
1655 *
1656 * @trans: Handle of transaction, used when modifying the tree
1657 * @p: Holds all btree nodes along the search path
1658 * @root: The root node of the tree
1659 * @key: The key we are looking for
1660 * @ins_len: Indicates purpose of search:
1661 * >0 for inserts it's size of item inserted (*)
1662 * <0 for deletions
1663 * 0 for plain searches, not modifying the tree
1664 *
1665 * (*) If size of item inserted doesn't include
1666 * sizeof(struct btrfs_item), then p->search_for_extension must
1667 * be set.
1668 * @cow: boolean should CoW operations be performed. Must always be 1
1669 * when modifying the tree.
1670 *
1671 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
1672 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
1673 *
1674 * If @key is found, 0 is returned and you can find the item in the leaf level
1675 * of the path (level 0)
1676 *
1677 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
1678 * points to the slot where it should be inserted
1679 *
1680 * If an error is encountered while searching the tree a negative error number
1681 * is returned
1682 */
btrfs_search_slot(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,int ins_len,int cow)1683 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1684 const struct btrfs_key *key, struct btrfs_path *p,
1685 int ins_len, int cow)
1686 {
1687 struct extent_buffer *b;
1688 int slot;
1689 int ret;
1690 int err;
1691 int level;
1692 int lowest_unlock = 1;
1693 /* everything at write_lock_level or lower must be write locked */
1694 int write_lock_level = 0;
1695 u8 lowest_level = 0;
1696 int min_write_lock_level;
1697 int prev_cmp;
1698
1699 lowest_level = p->lowest_level;
1700 WARN_ON(lowest_level && ins_len > 0);
1701 WARN_ON(p->nodes[0] != NULL);
1702 BUG_ON(!cow && ins_len);
1703
1704 if (ins_len < 0) {
1705 lowest_unlock = 2;
1706
1707 /* when we are removing items, we might have to go up to level
1708 * two as we update tree pointers Make sure we keep write
1709 * for those levels as well
1710 */
1711 write_lock_level = 2;
1712 } else if (ins_len > 0) {
1713 /*
1714 * for inserting items, make sure we have a write lock on
1715 * level 1 so we can update keys
1716 */
1717 write_lock_level = 1;
1718 }
1719
1720 if (!cow)
1721 write_lock_level = -1;
1722
1723 if (cow && (p->keep_locks || p->lowest_level))
1724 write_lock_level = BTRFS_MAX_LEVEL;
1725
1726 min_write_lock_level = write_lock_level;
1727
1728 again:
1729 prev_cmp = -1;
1730 b = btrfs_search_slot_get_root(root, p, write_lock_level);
1731 if (IS_ERR(b)) {
1732 ret = PTR_ERR(b);
1733 goto done;
1734 }
1735
1736 while (b) {
1737 int dec = 0;
1738
1739 level = btrfs_header_level(b);
1740
1741 if (cow) {
1742 bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
1743
1744 /*
1745 * if we don't really need to cow this block
1746 * then we don't want to set the path blocking,
1747 * so we test it here
1748 */
1749 if (!should_cow_block(trans, root, b))
1750 goto cow_done;
1751
1752 /*
1753 * must have write locks on this node and the
1754 * parent
1755 */
1756 if (level > write_lock_level ||
1757 (level + 1 > write_lock_level &&
1758 level + 1 < BTRFS_MAX_LEVEL &&
1759 p->nodes[level + 1])) {
1760 write_lock_level = level + 1;
1761 btrfs_release_path(p);
1762 goto again;
1763 }
1764
1765 if (last_level)
1766 err = btrfs_cow_block(trans, root, b, NULL, 0,
1767 &b,
1768 BTRFS_NESTING_COW);
1769 else
1770 err = btrfs_cow_block(trans, root, b,
1771 p->nodes[level + 1],
1772 p->slots[level + 1], &b,
1773 BTRFS_NESTING_COW);
1774 if (err) {
1775 ret = err;
1776 goto done;
1777 }
1778 }
1779 cow_done:
1780 p->nodes[level] = b;
1781 /*
1782 * Leave path with blocking locks to avoid massive
1783 * lock context switch, this is made on purpose.
1784 */
1785
1786 /*
1787 * we have a lock on b and as long as we aren't changing
1788 * the tree, there is no way to for the items in b to change.
1789 * It is safe to drop the lock on our parent before we
1790 * go through the expensive btree search on b.
1791 *
1792 * If we're inserting or deleting (ins_len != 0), then we might
1793 * be changing slot zero, which may require changing the parent.
1794 * So, we can't drop the lock until after we know which slot
1795 * we're operating on.
1796 */
1797 if (!ins_len && !p->keep_locks) {
1798 int u = level + 1;
1799
1800 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
1801 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
1802 p->locks[u] = 0;
1803 }
1804 }
1805
1806 /*
1807 * If btrfs_bin_search returns an exact match (prev_cmp == 0)
1808 * we can safely assume the target key will always be in slot 0
1809 * on lower levels due to the invariants BTRFS' btree provides,
1810 * namely that a btrfs_key_ptr entry always points to the
1811 * lowest key in the child node, thus we can skip searching
1812 * lower levels
1813 */
1814 if (prev_cmp == 0) {
1815 slot = 0;
1816 ret = 0;
1817 } else {
1818 ret = btrfs_bin_search(b, key, &slot);
1819 prev_cmp = ret;
1820 if (ret < 0)
1821 goto done;
1822 }
1823
1824 if (level == 0) {
1825 p->slots[level] = slot;
1826 /*
1827 * Item key already exists. In this case, if we are
1828 * allowed to insert the item (for example, in dir_item
1829 * case, item key collision is allowed), it will be
1830 * merged with the original item. Only the item size
1831 * grows, no new btrfs item will be added. If
1832 * search_for_extension is not set, ins_len already
1833 * accounts the size btrfs_item, deduct it here so leaf
1834 * space check will be correct.
1835 */
1836 if (ret == 0 && ins_len > 0 && !p->search_for_extension) {
1837 ASSERT(ins_len >= sizeof(struct btrfs_item));
1838 ins_len -= sizeof(struct btrfs_item);
1839 }
1840 if (ins_len > 0 &&
1841 btrfs_leaf_free_space(b) < ins_len) {
1842 if (write_lock_level < 1) {
1843 write_lock_level = 1;
1844 btrfs_release_path(p);
1845 goto again;
1846 }
1847
1848 err = split_leaf(trans, root, key,
1849 p, ins_len, ret == 0);
1850
1851 BUG_ON(err > 0);
1852 if (err) {
1853 ret = err;
1854 goto done;
1855 }
1856 }
1857 if (!p->search_for_split)
1858 unlock_up(p, level, lowest_unlock,
1859 min_write_lock_level, NULL);
1860 goto done;
1861 }
1862 if (ret && slot > 0) {
1863 dec = 1;
1864 slot--;
1865 }
1866 p->slots[level] = slot;
1867 err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
1868 &write_lock_level);
1869 if (err == -EAGAIN)
1870 goto again;
1871 if (err) {
1872 ret = err;
1873 goto done;
1874 }
1875 b = p->nodes[level];
1876 slot = p->slots[level];
1877
1878 /*
1879 * Slot 0 is special, if we change the key we have to update
1880 * the parent pointer which means we must have a write lock on
1881 * the parent
1882 */
1883 if (slot == 0 && ins_len && write_lock_level < level + 1) {
1884 write_lock_level = level + 1;
1885 btrfs_release_path(p);
1886 goto again;
1887 }
1888
1889 unlock_up(p, level, lowest_unlock, min_write_lock_level,
1890 &write_lock_level);
1891
1892 if (level == lowest_level) {
1893 if (dec)
1894 p->slots[level]++;
1895 goto done;
1896 }
1897
1898 err = read_block_for_search(root, p, &b, level, slot, key);
1899 if (err == -EAGAIN)
1900 goto again;
1901 if (err) {
1902 ret = err;
1903 goto done;
1904 }
1905
1906 if (!p->skip_locking) {
1907 level = btrfs_header_level(b);
1908 if (level <= write_lock_level) {
1909 btrfs_tree_lock(b);
1910 p->locks[level] = BTRFS_WRITE_LOCK;
1911 } else {
1912 btrfs_tree_read_lock(b);
1913 p->locks[level] = BTRFS_READ_LOCK;
1914 }
1915 p->nodes[level] = b;
1916 }
1917 }
1918 ret = 1;
1919 done:
1920 if (ret < 0 && !p->skip_release_on_error)
1921 btrfs_release_path(p);
1922 return ret;
1923 }
1924 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
1925
1926 /*
1927 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
1928 * current state of the tree together with the operations recorded in the tree
1929 * modification log to search for the key in a previous version of this tree, as
1930 * denoted by the time_seq parameter.
1931 *
1932 * Naturally, there is no support for insert, delete or cow operations.
1933 *
1934 * The resulting path and return value will be set up as if we called
1935 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
1936 */
btrfs_search_old_slot(struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,u64 time_seq)1937 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
1938 struct btrfs_path *p, u64 time_seq)
1939 {
1940 struct btrfs_fs_info *fs_info = root->fs_info;
1941 struct extent_buffer *b;
1942 int slot;
1943 int ret;
1944 int err;
1945 int level;
1946 int lowest_unlock = 1;
1947 u8 lowest_level = 0;
1948
1949 lowest_level = p->lowest_level;
1950 WARN_ON(p->nodes[0] != NULL);
1951
1952 if (p->search_commit_root) {
1953 BUG_ON(time_seq);
1954 return btrfs_search_slot(NULL, root, key, p, 0, 0);
1955 }
1956
1957 again:
1958 b = btrfs_get_old_root(root, time_seq);
1959 if (!b) {
1960 ret = -EIO;
1961 goto done;
1962 }
1963 level = btrfs_header_level(b);
1964 p->locks[level] = BTRFS_READ_LOCK;
1965
1966 while (b) {
1967 int dec = 0;
1968
1969 level = btrfs_header_level(b);
1970 p->nodes[level] = b;
1971
1972 /*
1973 * we have a lock on b and as long as we aren't changing
1974 * the tree, there is no way to for the items in b to change.
1975 * It is safe to drop the lock on our parent before we
1976 * go through the expensive btree search on b.
1977 */
1978 btrfs_unlock_up_safe(p, level + 1);
1979
1980 ret = btrfs_bin_search(b, key, &slot);
1981 if (ret < 0)
1982 goto done;
1983
1984 if (level == 0) {
1985 p->slots[level] = slot;
1986 unlock_up(p, level, lowest_unlock, 0, NULL);
1987 goto done;
1988 }
1989
1990 if (ret && slot > 0) {
1991 dec = 1;
1992 slot--;
1993 }
1994 p->slots[level] = slot;
1995 unlock_up(p, level, lowest_unlock, 0, NULL);
1996
1997 if (level == lowest_level) {
1998 if (dec)
1999 p->slots[level]++;
2000 goto done;
2001 }
2002
2003 err = read_block_for_search(root, p, &b, level, slot, key);
2004 if (err == -EAGAIN)
2005 goto again;
2006 if (err) {
2007 ret = err;
2008 goto done;
2009 }
2010
2011 level = btrfs_header_level(b);
2012 btrfs_tree_read_lock(b);
2013 b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2014 if (!b) {
2015 ret = -ENOMEM;
2016 goto done;
2017 }
2018 p->locks[level] = BTRFS_READ_LOCK;
2019 p->nodes[level] = b;
2020 }
2021 ret = 1;
2022 done:
2023 if (ret < 0)
2024 btrfs_release_path(p);
2025
2026 return ret;
2027 }
2028
2029 /*
2030 * helper to use instead of search slot if no exact match is needed but
2031 * instead the next or previous item should be returned.
2032 * When find_higher is true, the next higher item is returned, the next lower
2033 * otherwise.
2034 * When return_any and find_higher are both true, and no higher item is found,
2035 * return the next lower instead.
2036 * When return_any is true and find_higher is false, and no lower item is found,
2037 * return the next higher instead.
2038 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2039 * < 0 on error
2040 */
btrfs_search_slot_for_read(struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,int find_higher,int return_any)2041 int btrfs_search_slot_for_read(struct btrfs_root *root,
2042 const struct btrfs_key *key,
2043 struct btrfs_path *p, int find_higher,
2044 int return_any)
2045 {
2046 int ret;
2047 struct extent_buffer *leaf;
2048
2049 again:
2050 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2051 if (ret <= 0)
2052 return ret;
2053 /*
2054 * a return value of 1 means the path is at the position where the
2055 * item should be inserted. Normally this is the next bigger item,
2056 * but in case the previous item is the last in a leaf, path points
2057 * to the first free slot in the previous leaf, i.e. at an invalid
2058 * item.
2059 */
2060 leaf = p->nodes[0];
2061
2062 if (find_higher) {
2063 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2064 ret = btrfs_next_leaf(root, p);
2065 if (ret <= 0)
2066 return ret;
2067 if (!return_any)
2068 return 1;
2069 /*
2070 * no higher item found, return the next
2071 * lower instead
2072 */
2073 return_any = 0;
2074 find_higher = 0;
2075 btrfs_release_path(p);
2076 goto again;
2077 }
2078 } else {
2079 if (p->slots[0] == 0) {
2080 ret = btrfs_prev_leaf(root, p);
2081 if (ret < 0)
2082 return ret;
2083 if (!ret) {
2084 leaf = p->nodes[0];
2085 if (p->slots[0] == btrfs_header_nritems(leaf))
2086 p->slots[0]--;
2087 return 0;
2088 }
2089 if (!return_any)
2090 return 1;
2091 /*
2092 * no lower item found, return the next
2093 * higher instead
2094 */
2095 return_any = 0;
2096 find_higher = 1;
2097 btrfs_release_path(p);
2098 goto again;
2099 } else {
2100 --p->slots[0];
2101 }
2102 }
2103 return 0;
2104 }
2105
2106 /*
2107 * Execute search and call btrfs_previous_item to traverse backwards if the item
2108 * was not found.
2109 *
2110 * Return 0 if found, 1 if not found and < 0 if error.
2111 */
btrfs_search_backwards(struct btrfs_root * root,struct btrfs_key * key,struct btrfs_path * path)2112 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2113 struct btrfs_path *path)
2114 {
2115 int ret;
2116
2117 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2118 if (ret > 0)
2119 ret = btrfs_previous_item(root, path, key->objectid, key->type);
2120
2121 if (ret == 0)
2122 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2123
2124 return ret;
2125 }
2126
2127 /*
2128 * adjust the pointers going up the tree, starting at level
2129 * making sure the right key of each node is points to 'key'.
2130 * This is used after shifting pointers to the left, so it stops
2131 * fixing up pointers when a given leaf/node is not in slot 0 of the
2132 * higher levels
2133 *
2134 */
fixup_low_keys(struct btrfs_path * path,struct btrfs_disk_key * key,int level)2135 static void fixup_low_keys(struct btrfs_path *path,
2136 struct btrfs_disk_key *key, int level)
2137 {
2138 int i;
2139 struct extent_buffer *t;
2140 int ret;
2141
2142 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2143 int tslot = path->slots[i];
2144
2145 if (!path->nodes[i])
2146 break;
2147 t = path->nodes[i];
2148 ret = btrfs_tree_mod_log_insert_key(t, tslot,
2149 BTRFS_MOD_LOG_KEY_REPLACE, GFP_ATOMIC);
2150 BUG_ON(ret < 0);
2151 btrfs_set_node_key(t, key, tslot);
2152 btrfs_mark_buffer_dirty(path->nodes[i]);
2153 if (tslot != 0)
2154 break;
2155 }
2156 }
2157
2158 /*
2159 * update item key.
2160 *
2161 * This function isn't completely safe. It's the caller's responsibility
2162 * that the new key won't break the order
2163 */
btrfs_set_item_key_safe(struct btrfs_fs_info * fs_info,struct btrfs_path * path,const struct btrfs_key * new_key)2164 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2165 struct btrfs_path *path,
2166 const struct btrfs_key *new_key)
2167 {
2168 struct btrfs_disk_key disk_key;
2169 struct extent_buffer *eb;
2170 int slot;
2171
2172 eb = path->nodes[0];
2173 slot = path->slots[0];
2174 if (slot > 0) {
2175 btrfs_item_key(eb, &disk_key, slot - 1);
2176 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2177 btrfs_crit(fs_info,
2178 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2179 slot, btrfs_disk_key_objectid(&disk_key),
2180 btrfs_disk_key_type(&disk_key),
2181 btrfs_disk_key_offset(&disk_key),
2182 new_key->objectid, new_key->type,
2183 new_key->offset);
2184 btrfs_print_leaf(eb);
2185 BUG();
2186 }
2187 }
2188 if (slot < btrfs_header_nritems(eb) - 1) {
2189 btrfs_item_key(eb, &disk_key, slot + 1);
2190 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2191 btrfs_crit(fs_info,
2192 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2193 slot, btrfs_disk_key_objectid(&disk_key),
2194 btrfs_disk_key_type(&disk_key),
2195 btrfs_disk_key_offset(&disk_key),
2196 new_key->objectid, new_key->type,
2197 new_key->offset);
2198 btrfs_print_leaf(eb);
2199 BUG();
2200 }
2201 }
2202
2203 btrfs_cpu_key_to_disk(&disk_key, new_key);
2204 btrfs_set_item_key(eb, &disk_key, slot);
2205 btrfs_mark_buffer_dirty(eb);
2206 if (slot == 0)
2207 fixup_low_keys(path, &disk_key, 1);
2208 }
2209
2210 /*
2211 * Check key order of two sibling extent buffers.
2212 *
2213 * Return true if something is wrong.
2214 * Return false if everything is fine.
2215 *
2216 * Tree-checker only works inside one tree block, thus the following
2217 * corruption can not be detected by tree-checker:
2218 *
2219 * Leaf @left | Leaf @right
2220 * --------------------------------------------------------------
2221 * | 1 | 2 | 3 | 4 | 5 | f6 | | 7 | 8 |
2222 *
2223 * Key f6 in leaf @left itself is valid, but not valid when the next
2224 * key in leaf @right is 7.
2225 * This can only be checked at tree block merge time.
2226 * And since tree checker has ensured all key order in each tree block
2227 * is correct, we only need to bother the last key of @left and the first
2228 * key of @right.
2229 */
check_sibling_keys(struct extent_buffer * left,struct extent_buffer * right)2230 static bool check_sibling_keys(struct extent_buffer *left,
2231 struct extent_buffer *right)
2232 {
2233 struct btrfs_key left_last;
2234 struct btrfs_key right_first;
2235 int level = btrfs_header_level(left);
2236 int nr_left = btrfs_header_nritems(left);
2237 int nr_right = btrfs_header_nritems(right);
2238
2239 /* No key to check in one of the tree blocks */
2240 if (!nr_left || !nr_right)
2241 return false;
2242
2243 if (level) {
2244 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2245 btrfs_node_key_to_cpu(right, &right_first, 0);
2246 } else {
2247 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2248 btrfs_item_key_to_cpu(right, &right_first, 0);
2249 }
2250
2251 if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
2252 btrfs_crit(left->fs_info,
2253 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2254 left_last.objectid, left_last.type,
2255 left_last.offset, right_first.objectid,
2256 right_first.type, right_first.offset);
2257 return true;
2258 }
2259 return false;
2260 }
2261
2262 /*
2263 * try to push data from one node into the next node left in the
2264 * tree.
2265 *
2266 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2267 * error, and > 0 if there was no room in the left hand block.
2268 */
push_node_left(struct btrfs_trans_handle * trans,struct extent_buffer * dst,struct extent_buffer * src,int empty)2269 static int push_node_left(struct btrfs_trans_handle *trans,
2270 struct extent_buffer *dst,
2271 struct extent_buffer *src, int empty)
2272 {
2273 struct btrfs_fs_info *fs_info = trans->fs_info;
2274 int push_items = 0;
2275 int src_nritems;
2276 int dst_nritems;
2277 int ret = 0;
2278
2279 src_nritems = btrfs_header_nritems(src);
2280 dst_nritems = btrfs_header_nritems(dst);
2281 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2282 WARN_ON(btrfs_header_generation(src) != trans->transid);
2283 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2284
2285 if (!empty && src_nritems <= 8)
2286 return 1;
2287
2288 if (push_items <= 0)
2289 return 1;
2290
2291 if (empty) {
2292 push_items = min(src_nritems, push_items);
2293 if (push_items < src_nritems) {
2294 /* leave at least 8 pointers in the node if
2295 * we aren't going to empty it
2296 */
2297 if (src_nritems - push_items < 8) {
2298 if (push_items <= 8)
2299 return 1;
2300 push_items -= 8;
2301 }
2302 }
2303 } else
2304 push_items = min(src_nritems - 8, push_items);
2305
2306 /* dst is the left eb, src is the middle eb */
2307 if (check_sibling_keys(dst, src)) {
2308 ret = -EUCLEAN;
2309 btrfs_abort_transaction(trans, ret);
2310 return ret;
2311 }
2312 ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2313 if (ret) {
2314 btrfs_abort_transaction(trans, ret);
2315 return ret;
2316 }
2317 copy_extent_buffer(dst, src,
2318 btrfs_node_key_ptr_offset(dst_nritems),
2319 btrfs_node_key_ptr_offset(0),
2320 push_items * sizeof(struct btrfs_key_ptr));
2321
2322 if (push_items < src_nritems) {
2323 /*
2324 * Don't call btrfs_tree_mod_log_insert_move() here, key removal
2325 * was already fully logged by btrfs_tree_mod_log_eb_copy() above.
2326 */
2327 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2328 btrfs_node_key_ptr_offset(push_items),
2329 (src_nritems - push_items) *
2330 sizeof(struct btrfs_key_ptr));
2331 }
2332 btrfs_set_header_nritems(src, src_nritems - push_items);
2333 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2334 btrfs_mark_buffer_dirty(src);
2335 btrfs_mark_buffer_dirty(dst);
2336
2337 return ret;
2338 }
2339
2340 /*
2341 * try to push data from one node into the next node right in the
2342 * tree.
2343 *
2344 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2345 * error, and > 0 if there was no room in the right hand block.
2346 *
2347 * this will only push up to 1/2 the contents of the left node over
2348 */
balance_node_right(struct btrfs_trans_handle * trans,struct extent_buffer * dst,struct extent_buffer * src)2349 static int balance_node_right(struct btrfs_trans_handle *trans,
2350 struct extent_buffer *dst,
2351 struct extent_buffer *src)
2352 {
2353 struct btrfs_fs_info *fs_info = trans->fs_info;
2354 int push_items = 0;
2355 int max_push;
2356 int src_nritems;
2357 int dst_nritems;
2358 int ret = 0;
2359
2360 WARN_ON(btrfs_header_generation(src) != trans->transid);
2361 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2362
2363 src_nritems = btrfs_header_nritems(src);
2364 dst_nritems = btrfs_header_nritems(dst);
2365 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2366 if (push_items <= 0)
2367 return 1;
2368
2369 if (src_nritems < 4)
2370 return 1;
2371
2372 max_push = src_nritems / 2 + 1;
2373 /* don't try to empty the node */
2374 if (max_push >= src_nritems)
2375 return 1;
2376
2377 if (max_push < push_items)
2378 push_items = max_push;
2379
2380 /* dst is the right eb, src is the middle eb */
2381 if (check_sibling_keys(src, dst)) {
2382 ret = -EUCLEAN;
2383 btrfs_abort_transaction(trans, ret);
2384 return ret;
2385 }
2386 ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
2387 BUG_ON(ret < 0);
2388 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2389 btrfs_node_key_ptr_offset(0),
2390 (dst_nritems) *
2391 sizeof(struct btrfs_key_ptr));
2392
2393 ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2394 push_items);
2395 if (ret) {
2396 btrfs_abort_transaction(trans, ret);
2397 return ret;
2398 }
2399 copy_extent_buffer(dst, src,
2400 btrfs_node_key_ptr_offset(0),
2401 btrfs_node_key_ptr_offset(src_nritems - push_items),
2402 push_items * sizeof(struct btrfs_key_ptr));
2403
2404 btrfs_set_header_nritems(src, src_nritems - push_items);
2405 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2406
2407 btrfs_mark_buffer_dirty(src);
2408 btrfs_mark_buffer_dirty(dst);
2409
2410 return ret;
2411 }
2412
2413 /*
2414 * helper function to insert a new root level in the tree.
2415 * A new node is allocated, and a single item is inserted to
2416 * point to the existing root
2417 *
2418 * returns zero on success or < 0 on failure.
2419 */
insert_new_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)2420 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2421 struct btrfs_root *root,
2422 struct btrfs_path *path, int level)
2423 {
2424 struct btrfs_fs_info *fs_info = root->fs_info;
2425 u64 lower_gen;
2426 struct extent_buffer *lower;
2427 struct extent_buffer *c;
2428 struct extent_buffer *old;
2429 struct btrfs_disk_key lower_key;
2430 int ret;
2431
2432 BUG_ON(path->nodes[level]);
2433 BUG_ON(path->nodes[level-1] != root->node);
2434
2435 lower = path->nodes[level-1];
2436 if (level == 1)
2437 btrfs_item_key(lower, &lower_key, 0);
2438 else
2439 btrfs_node_key(lower, &lower_key, 0);
2440
2441 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2442 &lower_key, level, root->node->start, 0,
2443 BTRFS_NESTING_NEW_ROOT);
2444 if (IS_ERR(c))
2445 return PTR_ERR(c);
2446
2447 root_add_used(root, fs_info->nodesize);
2448
2449 btrfs_set_header_nritems(c, 1);
2450 btrfs_set_node_key(c, &lower_key, 0);
2451 btrfs_set_node_blockptr(c, 0, lower->start);
2452 lower_gen = btrfs_header_generation(lower);
2453 WARN_ON(lower_gen != trans->transid);
2454
2455 btrfs_set_node_ptr_generation(c, 0, lower_gen);
2456
2457 btrfs_mark_buffer_dirty(c);
2458
2459 old = root->node;
2460 ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2461 BUG_ON(ret < 0);
2462 rcu_assign_pointer(root->node, c);
2463
2464 /* the super has an extra ref to root->node */
2465 free_extent_buffer(old);
2466
2467 add_root_to_dirty_list(root);
2468 atomic_inc(&c->refs);
2469 path->nodes[level] = c;
2470 path->locks[level] = BTRFS_WRITE_LOCK;
2471 path->slots[level] = 0;
2472 return 0;
2473 }
2474
2475 /*
2476 * worker function to insert a single pointer in a node.
2477 * the node should have enough room for the pointer already
2478 *
2479 * slot and level indicate where you want the key to go, and
2480 * blocknr is the block the key points to.
2481 */
insert_ptr(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_disk_key * key,u64 bytenr,int slot,int level)2482 static void insert_ptr(struct btrfs_trans_handle *trans,
2483 struct btrfs_path *path,
2484 struct btrfs_disk_key *key, u64 bytenr,
2485 int slot, int level)
2486 {
2487 struct extent_buffer *lower;
2488 int nritems;
2489 int ret;
2490
2491 BUG_ON(!path->nodes[level]);
2492 btrfs_assert_tree_write_locked(path->nodes[level]);
2493 lower = path->nodes[level];
2494 nritems = btrfs_header_nritems(lower);
2495 BUG_ON(slot > nritems);
2496 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2497 if (slot != nritems) {
2498 if (level) {
2499 ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2500 slot, nritems - slot);
2501 BUG_ON(ret < 0);
2502 }
2503 memmove_extent_buffer(lower,
2504 btrfs_node_key_ptr_offset(slot + 1),
2505 btrfs_node_key_ptr_offset(slot),
2506 (nritems - slot) * sizeof(struct btrfs_key_ptr));
2507 }
2508 if (level) {
2509 ret = btrfs_tree_mod_log_insert_key(lower, slot,
2510 BTRFS_MOD_LOG_KEY_ADD, GFP_NOFS);
2511 BUG_ON(ret < 0);
2512 }
2513 btrfs_set_node_key(lower, key, slot);
2514 btrfs_set_node_blockptr(lower, slot, bytenr);
2515 WARN_ON(trans->transid == 0);
2516 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2517 btrfs_set_header_nritems(lower, nritems + 1);
2518 btrfs_mark_buffer_dirty(lower);
2519 }
2520
2521 /*
2522 * split the node at the specified level in path in two.
2523 * The path is corrected to point to the appropriate node after the split
2524 *
2525 * Before splitting this tries to make some room in the node by pushing
2526 * left and right, if either one works, it returns right away.
2527 *
2528 * returns 0 on success and < 0 on failure
2529 */
split_node(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)2530 static noinline int split_node(struct btrfs_trans_handle *trans,
2531 struct btrfs_root *root,
2532 struct btrfs_path *path, int level)
2533 {
2534 struct btrfs_fs_info *fs_info = root->fs_info;
2535 struct extent_buffer *c;
2536 struct extent_buffer *split;
2537 struct btrfs_disk_key disk_key;
2538 int mid;
2539 int ret;
2540 u32 c_nritems;
2541
2542 c = path->nodes[level];
2543 WARN_ON(btrfs_header_generation(c) != trans->transid);
2544 if (c == root->node) {
2545 /*
2546 * trying to split the root, lets make a new one
2547 *
2548 * tree mod log: We don't log_removal old root in
2549 * insert_new_root, because that root buffer will be kept as a
2550 * normal node. We are going to log removal of half of the
2551 * elements below with btrfs_tree_mod_log_eb_copy(). We're
2552 * holding a tree lock on the buffer, which is why we cannot
2553 * race with other tree_mod_log users.
2554 */
2555 ret = insert_new_root(trans, root, path, level + 1);
2556 if (ret)
2557 return ret;
2558 } else {
2559 ret = push_nodes_for_insert(trans, root, path, level);
2560 c = path->nodes[level];
2561 if (!ret && btrfs_header_nritems(c) <
2562 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
2563 return 0;
2564 if (ret < 0)
2565 return ret;
2566 }
2567
2568 c_nritems = btrfs_header_nritems(c);
2569 mid = (c_nritems + 1) / 2;
2570 btrfs_node_key(c, &disk_key, mid);
2571
2572 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2573 &disk_key, level, c->start, 0,
2574 BTRFS_NESTING_SPLIT);
2575 if (IS_ERR(split))
2576 return PTR_ERR(split);
2577
2578 root_add_used(root, fs_info->nodesize);
2579 ASSERT(btrfs_header_level(c) == level);
2580
2581 ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
2582 if (ret) {
2583 btrfs_abort_transaction(trans, ret);
2584 return ret;
2585 }
2586 copy_extent_buffer(split, c,
2587 btrfs_node_key_ptr_offset(0),
2588 btrfs_node_key_ptr_offset(mid),
2589 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2590 btrfs_set_header_nritems(split, c_nritems - mid);
2591 btrfs_set_header_nritems(c, mid);
2592
2593 btrfs_mark_buffer_dirty(c);
2594 btrfs_mark_buffer_dirty(split);
2595
2596 insert_ptr(trans, path, &disk_key, split->start,
2597 path->slots[level + 1] + 1, level + 1);
2598
2599 if (path->slots[level] >= mid) {
2600 path->slots[level] -= mid;
2601 btrfs_tree_unlock(c);
2602 free_extent_buffer(c);
2603 path->nodes[level] = split;
2604 path->slots[level + 1] += 1;
2605 } else {
2606 btrfs_tree_unlock(split);
2607 free_extent_buffer(split);
2608 }
2609 return 0;
2610 }
2611
2612 /*
2613 * how many bytes are required to store the items in a leaf. start
2614 * and nr indicate which items in the leaf to check. This totals up the
2615 * space used both by the item structs and the item data
2616 */
leaf_space_used(struct extent_buffer * l,int start,int nr)2617 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2618 {
2619 struct btrfs_item *start_item;
2620 struct btrfs_item *end_item;
2621 int data_len;
2622 int nritems = btrfs_header_nritems(l);
2623 int end = min(nritems, start + nr) - 1;
2624
2625 if (!nr)
2626 return 0;
2627 start_item = btrfs_item_nr(start);
2628 end_item = btrfs_item_nr(end);
2629 data_len = btrfs_item_offset(l, start_item) +
2630 btrfs_item_size(l, start_item);
2631 data_len = data_len - btrfs_item_offset(l, end_item);
2632 data_len += sizeof(struct btrfs_item) * nr;
2633 WARN_ON(data_len < 0);
2634 return data_len;
2635 }
2636
2637 /*
2638 * The space between the end of the leaf items and
2639 * the start of the leaf data. IOW, how much room
2640 * the leaf has left for both items and data
2641 */
btrfs_leaf_free_space(struct extent_buffer * leaf)2642 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
2643 {
2644 struct btrfs_fs_info *fs_info = leaf->fs_info;
2645 int nritems = btrfs_header_nritems(leaf);
2646 int ret;
2647
2648 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
2649 if (ret < 0) {
2650 btrfs_crit(fs_info,
2651 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
2652 ret,
2653 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
2654 leaf_space_used(leaf, 0, nritems), nritems);
2655 }
2656 return ret;
2657 }
2658
2659 /*
2660 * min slot controls the lowest index we're willing to push to the
2661 * right. We'll push up to and including min_slot, but no lower
2662 */
__push_leaf_right(struct btrfs_path * path,int data_size,int empty,struct extent_buffer * right,int free_space,u32 left_nritems,u32 min_slot)2663 static noinline int __push_leaf_right(struct btrfs_path *path,
2664 int data_size, int empty,
2665 struct extent_buffer *right,
2666 int free_space, u32 left_nritems,
2667 u32 min_slot)
2668 {
2669 struct btrfs_fs_info *fs_info = right->fs_info;
2670 struct extent_buffer *left = path->nodes[0];
2671 struct extent_buffer *upper = path->nodes[1];
2672 struct btrfs_map_token token;
2673 struct btrfs_disk_key disk_key;
2674 int slot;
2675 u32 i;
2676 int push_space = 0;
2677 int push_items = 0;
2678 struct btrfs_item *item;
2679 u32 nr;
2680 u32 right_nritems;
2681 u32 data_end;
2682 u32 this_item_size;
2683
2684 if (empty)
2685 nr = 0;
2686 else
2687 nr = max_t(u32, 1, min_slot);
2688
2689 if (path->slots[0] >= left_nritems)
2690 push_space += data_size;
2691
2692 slot = path->slots[1];
2693 i = left_nritems - 1;
2694 while (i >= nr) {
2695 item = btrfs_item_nr(i);
2696
2697 if (!empty && push_items > 0) {
2698 if (path->slots[0] > i)
2699 break;
2700 if (path->slots[0] == i) {
2701 int space = btrfs_leaf_free_space(left);
2702
2703 if (space + push_space * 2 > free_space)
2704 break;
2705 }
2706 }
2707
2708 if (path->slots[0] == i)
2709 push_space += data_size;
2710
2711 this_item_size = btrfs_item_size(left, item);
2712 if (this_item_size + sizeof(*item) + push_space > free_space)
2713 break;
2714
2715 push_items++;
2716 push_space += this_item_size + sizeof(*item);
2717 if (i == 0)
2718 break;
2719 i--;
2720 }
2721
2722 if (push_items == 0)
2723 goto out_unlock;
2724
2725 WARN_ON(!empty && push_items == left_nritems);
2726
2727 /* push left to right */
2728 right_nritems = btrfs_header_nritems(right);
2729
2730 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2731 push_space -= leaf_data_end(left);
2732
2733 /* make room in the right data area */
2734 data_end = leaf_data_end(right);
2735 memmove_extent_buffer(right,
2736 BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
2737 BTRFS_LEAF_DATA_OFFSET + data_end,
2738 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
2739
2740 /* copy from the left data area */
2741 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
2742 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
2743 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
2744 push_space);
2745
2746 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2747 btrfs_item_nr_offset(0),
2748 right_nritems * sizeof(struct btrfs_item));
2749
2750 /* copy the items from left to right */
2751 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2752 btrfs_item_nr_offset(left_nritems - push_items),
2753 push_items * sizeof(struct btrfs_item));
2754
2755 /* update the item pointers */
2756 btrfs_init_map_token(&token, right);
2757 right_nritems += push_items;
2758 btrfs_set_header_nritems(right, right_nritems);
2759 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
2760 for (i = 0; i < right_nritems; i++) {
2761 item = btrfs_item_nr(i);
2762 push_space -= btrfs_token_item_size(&token, item);
2763 btrfs_set_token_item_offset(&token, item, push_space);
2764 }
2765
2766 left_nritems -= push_items;
2767 btrfs_set_header_nritems(left, left_nritems);
2768
2769 if (left_nritems)
2770 btrfs_mark_buffer_dirty(left);
2771 else
2772 btrfs_clean_tree_block(left);
2773
2774 btrfs_mark_buffer_dirty(right);
2775
2776 btrfs_item_key(right, &disk_key, 0);
2777 btrfs_set_node_key(upper, &disk_key, slot + 1);
2778 btrfs_mark_buffer_dirty(upper);
2779
2780 /* then fixup the leaf pointer in the path */
2781 if (path->slots[0] >= left_nritems) {
2782 path->slots[0] -= left_nritems;
2783 if (btrfs_header_nritems(path->nodes[0]) == 0)
2784 btrfs_clean_tree_block(path->nodes[0]);
2785 btrfs_tree_unlock(path->nodes[0]);
2786 free_extent_buffer(path->nodes[0]);
2787 path->nodes[0] = right;
2788 path->slots[1] += 1;
2789 } else {
2790 btrfs_tree_unlock(right);
2791 free_extent_buffer(right);
2792 }
2793 return 0;
2794
2795 out_unlock:
2796 btrfs_tree_unlock(right);
2797 free_extent_buffer(right);
2798 return 1;
2799 }
2800
2801 /*
2802 * push some data in the path leaf to the right, trying to free up at
2803 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2804 *
2805 * returns 1 if the push failed because the other node didn't have enough
2806 * room, 0 if everything worked out and < 0 if there were major errors.
2807 *
2808 * this will push starting from min_slot to the end of the leaf. It won't
2809 * push any slot lower than min_slot
2810 */
push_leaf_right(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,int empty,u32 min_slot)2811 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2812 *root, struct btrfs_path *path,
2813 int min_data_size, int data_size,
2814 int empty, u32 min_slot)
2815 {
2816 struct extent_buffer *left = path->nodes[0];
2817 struct extent_buffer *right;
2818 struct extent_buffer *upper;
2819 int slot;
2820 int free_space;
2821 u32 left_nritems;
2822 int ret;
2823
2824 if (!path->nodes[1])
2825 return 1;
2826
2827 slot = path->slots[1];
2828 upper = path->nodes[1];
2829 if (slot >= btrfs_header_nritems(upper) - 1)
2830 return 1;
2831
2832 btrfs_assert_tree_write_locked(path->nodes[1]);
2833
2834 right = btrfs_read_node_slot(upper, slot + 1);
2835 /*
2836 * slot + 1 is not valid or we fail to read the right node,
2837 * no big deal, just return.
2838 */
2839 if (IS_ERR(right))
2840 return 1;
2841
2842 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
2843
2844 free_space = btrfs_leaf_free_space(right);
2845 if (free_space < data_size)
2846 goto out_unlock;
2847
2848 /* cow and double check */
2849 ret = btrfs_cow_block(trans, root, right, upper,
2850 slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
2851 if (ret)
2852 goto out_unlock;
2853
2854 free_space = btrfs_leaf_free_space(right);
2855 if (free_space < data_size)
2856 goto out_unlock;
2857
2858 left_nritems = btrfs_header_nritems(left);
2859 if (left_nritems == 0)
2860 goto out_unlock;
2861
2862 if (check_sibling_keys(left, right)) {
2863 ret = -EUCLEAN;
2864 btrfs_tree_unlock(right);
2865 free_extent_buffer(right);
2866 return ret;
2867 }
2868 if (path->slots[0] == left_nritems && !empty) {
2869 /* Key greater than all keys in the leaf, right neighbor has
2870 * enough room for it and we're not emptying our leaf to delete
2871 * it, therefore use right neighbor to insert the new item and
2872 * no need to touch/dirty our left leaf. */
2873 btrfs_tree_unlock(left);
2874 free_extent_buffer(left);
2875 path->nodes[0] = right;
2876 path->slots[0] = 0;
2877 path->slots[1]++;
2878 return 0;
2879 }
2880
2881 return __push_leaf_right(path, min_data_size, empty,
2882 right, free_space, left_nritems, min_slot);
2883 out_unlock:
2884 btrfs_tree_unlock(right);
2885 free_extent_buffer(right);
2886 return 1;
2887 }
2888
2889 /*
2890 * push some data in the path leaf to the left, trying to free up at
2891 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2892 *
2893 * max_slot can put a limit on how far into the leaf we'll push items. The
2894 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
2895 * items
2896 */
__push_leaf_left(struct btrfs_path * path,int data_size,int empty,struct extent_buffer * left,int free_space,u32 right_nritems,u32 max_slot)2897 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
2898 int empty, struct extent_buffer *left,
2899 int free_space, u32 right_nritems,
2900 u32 max_slot)
2901 {
2902 struct btrfs_fs_info *fs_info = left->fs_info;
2903 struct btrfs_disk_key disk_key;
2904 struct extent_buffer *right = path->nodes[0];
2905 int i;
2906 int push_space = 0;
2907 int push_items = 0;
2908 struct btrfs_item *item;
2909 u32 old_left_nritems;
2910 u32 nr;
2911 int ret = 0;
2912 u32 this_item_size;
2913 u32 old_left_item_size;
2914 struct btrfs_map_token token;
2915
2916 if (empty)
2917 nr = min(right_nritems, max_slot);
2918 else
2919 nr = min(right_nritems - 1, max_slot);
2920
2921 for (i = 0; i < nr; i++) {
2922 item = btrfs_item_nr(i);
2923
2924 if (!empty && push_items > 0) {
2925 if (path->slots[0] < i)
2926 break;
2927 if (path->slots[0] == i) {
2928 int space = btrfs_leaf_free_space(right);
2929
2930 if (space + push_space * 2 > free_space)
2931 break;
2932 }
2933 }
2934
2935 if (path->slots[0] == i)
2936 push_space += data_size;
2937
2938 this_item_size = btrfs_item_size(right, item);
2939 if (this_item_size + sizeof(*item) + push_space > free_space)
2940 break;
2941
2942 push_items++;
2943 push_space += this_item_size + sizeof(*item);
2944 }
2945
2946 if (push_items == 0) {
2947 ret = 1;
2948 goto out;
2949 }
2950 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
2951
2952 /* push data from right to left */
2953 copy_extent_buffer(left, right,
2954 btrfs_item_nr_offset(btrfs_header_nritems(left)),
2955 btrfs_item_nr_offset(0),
2956 push_items * sizeof(struct btrfs_item));
2957
2958 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
2959 btrfs_item_offset_nr(right, push_items - 1);
2960
2961 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
2962 leaf_data_end(left) - push_space,
2963 BTRFS_LEAF_DATA_OFFSET +
2964 btrfs_item_offset_nr(right, push_items - 1),
2965 push_space);
2966 old_left_nritems = btrfs_header_nritems(left);
2967 BUG_ON(old_left_nritems <= 0);
2968
2969 btrfs_init_map_token(&token, left);
2970 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2971 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2972 u32 ioff;
2973
2974 item = btrfs_item_nr(i);
2975
2976 ioff = btrfs_token_item_offset(&token, item);
2977 btrfs_set_token_item_offset(&token, item,
2978 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
2979 }
2980 btrfs_set_header_nritems(left, old_left_nritems + push_items);
2981
2982 /* fixup right node */
2983 if (push_items > right_nritems)
2984 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
2985 right_nritems);
2986
2987 if (push_items < right_nritems) {
2988 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2989 leaf_data_end(right);
2990 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
2991 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
2992 BTRFS_LEAF_DATA_OFFSET +
2993 leaf_data_end(right), push_space);
2994
2995 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2996 btrfs_item_nr_offset(push_items),
2997 (btrfs_header_nritems(right) - push_items) *
2998 sizeof(struct btrfs_item));
2999 }
3000
3001 btrfs_init_map_token(&token, right);
3002 right_nritems -= push_items;
3003 btrfs_set_header_nritems(right, right_nritems);
3004 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3005 for (i = 0; i < right_nritems; i++) {
3006 item = btrfs_item_nr(i);
3007
3008 push_space = push_space - btrfs_token_item_size(&token, item);
3009 btrfs_set_token_item_offset(&token, item, push_space);
3010 }
3011
3012 btrfs_mark_buffer_dirty(left);
3013 if (right_nritems)
3014 btrfs_mark_buffer_dirty(right);
3015 else
3016 btrfs_clean_tree_block(right);
3017
3018 btrfs_item_key(right, &disk_key, 0);
3019 fixup_low_keys(path, &disk_key, 1);
3020
3021 /* then fixup the leaf pointer in the path */
3022 if (path->slots[0] < push_items) {
3023 path->slots[0] += old_left_nritems;
3024 btrfs_tree_unlock(path->nodes[0]);
3025 free_extent_buffer(path->nodes[0]);
3026 path->nodes[0] = left;
3027 path->slots[1] -= 1;
3028 } else {
3029 btrfs_tree_unlock(left);
3030 free_extent_buffer(left);
3031 path->slots[0] -= push_items;
3032 }
3033 BUG_ON(path->slots[0] < 0);
3034 return ret;
3035 out:
3036 btrfs_tree_unlock(left);
3037 free_extent_buffer(left);
3038 return ret;
3039 }
3040
3041 /*
3042 * push some data in the path leaf to the left, trying to free up at
3043 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3044 *
3045 * max_slot can put a limit on how far into the leaf we'll push items. The
3046 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3047 * items
3048 */
push_leaf_left(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,int empty,u32 max_slot)3049 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3050 *root, struct btrfs_path *path, int min_data_size,
3051 int data_size, int empty, u32 max_slot)
3052 {
3053 struct extent_buffer *right = path->nodes[0];
3054 struct extent_buffer *left;
3055 int slot;
3056 int free_space;
3057 u32 right_nritems;
3058 int ret = 0;
3059
3060 slot = path->slots[1];
3061 if (slot == 0)
3062 return 1;
3063 if (!path->nodes[1])
3064 return 1;
3065
3066 right_nritems = btrfs_header_nritems(right);
3067 if (right_nritems == 0)
3068 return 1;
3069
3070 btrfs_assert_tree_write_locked(path->nodes[1]);
3071
3072 left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3073 /*
3074 * slot - 1 is not valid or we fail to read the left node,
3075 * no big deal, just return.
3076 */
3077 if (IS_ERR(left))
3078 return 1;
3079
3080 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3081
3082 free_space = btrfs_leaf_free_space(left);
3083 if (free_space < data_size) {
3084 ret = 1;
3085 goto out;
3086 }
3087
3088 /* cow and double check */
3089 ret = btrfs_cow_block(trans, root, left,
3090 path->nodes[1], slot - 1, &left,
3091 BTRFS_NESTING_LEFT_COW);
3092 if (ret) {
3093 /* we hit -ENOSPC, but it isn't fatal here */
3094 if (ret == -ENOSPC)
3095 ret = 1;
3096 goto out;
3097 }
3098
3099 free_space = btrfs_leaf_free_space(left);
3100 if (free_space < data_size) {
3101 ret = 1;
3102 goto out;
3103 }
3104
3105 if (check_sibling_keys(left, right)) {
3106 ret = -EUCLEAN;
3107 goto out;
3108 }
3109 return __push_leaf_left(path, min_data_size,
3110 empty, left, free_space, right_nritems,
3111 max_slot);
3112 out:
3113 btrfs_tree_unlock(left);
3114 free_extent_buffer(left);
3115 return ret;
3116 }
3117
3118 /*
3119 * split the path's leaf in two, making sure there is at least data_size
3120 * available for the resulting leaf level of the path.
3121 */
copy_for_split(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct extent_buffer * l,struct extent_buffer * right,int slot,int mid,int nritems)3122 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3123 struct btrfs_path *path,
3124 struct extent_buffer *l,
3125 struct extent_buffer *right,
3126 int slot, int mid, int nritems)
3127 {
3128 struct btrfs_fs_info *fs_info = trans->fs_info;
3129 int data_copy_size;
3130 int rt_data_off;
3131 int i;
3132 struct btrfs_disk_key disk_key;
3133 struct btrfs_map_token token;
3134
3135 nritems = nritems - mid;
3136 btrfs_set_header_nritems(right, nritems);
3137 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
3138
3139 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3140 btrfs_item_nr_offset(mid),
3141 nritems * sizeof(struct btrfs_item));
3142
3143 copy_extent_buffer(right, l,
3144 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
3145 data_copy_size, BTRFS_LEAF_DATA_OFFSET +
3146 leaf_data_end(l), data_copy_size);
3147
3148 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
3149
3150 btrfs_init_map_token(&token, right);
3151 for (i = 0; i < nritems; i++) {
3152 struct btrfs_item *item = btrfs_item_nr(i);
3153 u32 ioff;
3154
3155 ioff = btrfs_token_item_offset(&token, item);
3156 btrfs_set_token_item_offset(&token, item, ioff + rt_data_off);
3157 }
3158
3159 btrfs_set_header_nritems(l, mid);
3160 btrfs_item_key(right, &disk_key, 0);
3161 insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3162
3163 btrfs_mark_buffer_dirty(right);
3164 btrfs_mark_buffer_dirty(l);
3165 BUG_ON(path->slots[0] != slot);
3166
3167 if (mid <= slot) {
3168 btrfs_tree_unlock(path->nodes[0]);
3169 free_extent_buffer(path->nodes[0]);
3170 path->nodes[0] = right;
3171 path->slots[0] -= mid;
3172 path->slots[1] += 1;
3173 } else {
3174 btrfs_tree_unlock(right);
3175 free_extent_buffer(right);
3176 }
3177
3178 BUG_ON(path->slots[0] < 0);
3179 }
3180
3181 /*
3182 * double splits happen when we need to insert a big item in the middle
3183 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3184 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3185 * A B C
3186 *
3187 * We avoid this by trying to push the items on either side of our target
3188 * into the adjacent leaves. If all goes well we can avoid the double split
3189 * completely.
3190 */
push_for_double_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int data_size)3191 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3192 struct btrfs_root *root,
3193 struct btrfs_path *path,
3194 int data_size)
3195 {
3196 int ret;
3197 int progress = 0;
3198 int slot;
3199 u32 nritems;
3200 int space_needed = data_size;
3201
3202 slot = path->slots[0];
3203 if (slot < btrfs_header_nritems(path->nodes[0]))
3204 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3205
3206 /*
3207 * try to push all the items after our slot into the
3208 * right leaf
3209 */
3210 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3211 if (ret < 0)
3212 return ret;
3213
3214 if (ret == 0)
3215 progress++;
3216
3217 nritems = btrfs_header_nritems(path->nodes[0]);
3218 /*
3219 * our goal is to get our slot at the start or end of a leaf. If
3220 * we've done so we're done
3221 */
3222 if (path->slots[0] == 0 || path->slots[0] == nritems)
3223 return 0;
3224
3225 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3226 return 0;
3227
3228 /* try to push all the items before our slot into the next leaf */
3229 slot = path->slots[0];
3230 space_needed = data_size;
3231 if (slot > 0)
3232 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3233 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3234 if (ret < 0)
3235 return ret;
3236
3237 if (ret == 0)
3238 progress++;
3239
3240 if (progress)
3241 return 0;
3242 return 1;
3243 }
3244
3245 /*
3246 * split the path's leaf in two, making sure there is at least data_size
3247 * available for the resulting leaf level of the path.
3248 *
3249 * returns 0 if all went well and < 0 on failure.
3250 */
split_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * ins_key,struct btrfs_path * path,int data_size,int extend)3251 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3252 struct btrfs_root *root,
3253 const struct btrfs_key *ins_key,
3254 struct btrfs_path *path, int data_size,
3255 int extend)
3256 {
3257 struct btrfs_disk_key disk_key;
3258 struct extent_buffer *l;
3259 u32 nritems;
3260 int mid;
3261 int slot;
3262 struct extent_buffer *right;
3263 struct btrfs_fs_info *fs_info = root->fs_info;
3264 int ret = 0;
3265 int wret;
3266 int split;
3267 int num_doubles = 0;
3268 int tried_avoid_double = 0;
3269
3270 l = path->nodes[0];
3271 slot = path->slots[0];
3272 if (extend && data_size + btrfs_item_size_nr(l, slot) +
3273 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3274 return -EOVERFLOW;
3275
3276 /* first try to make some room by pushing left and right */
3277 if (data_size && path->nodes[1]) {
3278 int space_needed = data_size;
3279
3280 if (slot < btrfs_header_nritems(l))
3281 space_needed -= btrfs_leaf_free_space(l);
3282
3283 wret = push_leaf_right(trans, root, path, space_needed,
3284 space_needed, 0, 0);
3285 if (wret < 0)
3286 return wret;
3287 if (wret) {
3288 space_needed = data_size;
3289 if (slot > 0)
3290 space_needed -= btrfs_leaf_free_space(l);
3291 wret = push_leaf_left(trans, root, path, space_needed,
3292 space_needed, 0, (u32)-1);
3293 if (wret < 0)
3294 return wret;
3295 }
3296 l = path->nodes[0];
3297
3298 /* did the pushes work? */
3299 if (btrfs_leaf_free_space(l) >= data_size)
3300 return 0;
3301 }
3302
3303 if (!path->nodes[1]) {
3304 ret = insert_new_root(trans, root, path, 1);
3305 if (ret)
3306 return ret;
3307 }
3308 again:
3309 split = 1;
3310 l = path->nodes[0];
3311 slot = path->slots[0];
3312 nritems = btrfs_header_nritems(l);
3313 mid = (nritems + 1) / 2;
3314
3315 if (mid <= slot) {
3316 if (nritems == 1 ||
3317 leaf_space_used(l, mid, nritems - mid) + data_size >
3318 BTRFS_LEAF_DATA_SIZE(fs_info)) {
3319 if (slot >= nritems) {
3320 split = 0;
3321 } else {
3322 mid = slot;
3323 if (mid != nritems &&
3324 leaf_space_used(l, mid, nritems - mid) +
3325 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3326 if (data_size && !tried_avoid_double)
3327 goto push_for_double;
3328 split = 2;
3329 }
3330 }
3331 }
3332 } else {
3333 if (leaf_space_used(l, 0, mid) + data_size >
3334 BTRFS_LEAF_DATA_SIZE(fs_info)) {
3335 if (!extend && data_size && slot == 0) {
3336 split = 0;
3337 } else if ((extend || !data_size) && slot == 0) {
3338 mid = 1;
3339 } else {
3340 mid = slot;
3341 if (mid != nritems &&
3342 leaf_space_used(l, mid, nritems - mid) +
3343 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3344 if (data_size && !tried_avoid_double)
3345 goto push_for_double;
3346 split = 2;
3347 }
3348 }
3349 }
3350 }
3351
3352 if (split == 0)
3353 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3354 else
3355 btrfs_item_key(l, &disk_key, mid);
3356
3357 /*
3358 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3359 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3360 * subclasses, which is 8 at the time of this patch, and we've maxed it
3361 * out. In the future we could add a
3362 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3363 * use BTRFS_NESTING_NEW_ROOT.
3364 */
3365 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3366 &disk_key, 0, l->start, 0,
3367 num_doubles ? BTRFS_NESTING_NEW_ROOT :
3368 BTRFS_NESTING_SPLIT);
3369 if (IS_ERR(right))
3370 return PTR_ERR(right);
3371
3372 root_add_used(root, fs_info->nodesize);
3373
3374 if (split == 0) {
3375 if (mid <= slot) {
3376 btrfs_set_header_nritems(right, 0);
3377 insert_ptr(trans, path, &disk_key,
3378 right->start, path->slots[1] + 1, 1);
3379 btrfs_tree_unlock(path->nodes[0]);
3380 free_extent_buffer(path->nodes[0]);
3381 path->nodes[0] = right;
3382 path->slots[0] = 0;
3383 path->slots[1] += 1;
3384 } else {
3385 btrfs_set_header_nritems(right, 0);
3386 insert_ptr(trans, path, &disk_key,
3387 right->start, path->slots[1], 1);
3388 btrfs_tree_unlock(path->nodes[0]);
3389 free_extent_buffer(path->nodes[0]);
3390 path->nodes[0] = right;
3391 path->slots[0] = 0;
3392 if (path->slots[1] == 0)
3393 fixup_low_keys(path, &disk_key, 1);
3394 }
3395 /*
3396 * We create a new leaf 'right' for the required ins_len and
3397 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3398 * the content of ins_len to 'right'.
3399 */
3400 return ret;
3401 }
3402
3403 copy_for_split(trans, path, l, right, slot, mid, nritems);
3404
3405 if (split == 2) {
3406 BUG_ON(num_doubles != 0);
3407 num_doubles++;
3408 goto again;
3409 }
3410
3411 return 0;
3412
3413 push_for_double:
3414 push_for_double_split(trans, root, path, data_size);
3415 tried_avoid_double = 1;
3416 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3417 return 0;
3418 goto again;
3419 }
3420
setup_leaf_for_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int ins_len)3421 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3422 struct btrfs_root *root,
3423 struct btrfs_path *path, int ins_len)
3424 {
3425 struct btrfs_key key;
3426 struct extent_buffer *leaf;
3427 struct btrfs_file_extent_item *fi;
3428 u64 extent_len = 0;
3429 u32 item_size;
3430 int ret;
3431
3432 leaf = path->nodes[0];
3433 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3434
3435 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3436 key.type != BTRFS_EXTENT_CSUM_KEY);
3437
3438 if (btrfs_leaf_free_space(leaf) >= ins_len)
3439 return 0;
3440
3441 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3442 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3443 fi = btrfs_item_ptr(leaf, path->slots[0],
3444 struct btrfs_file_extent_item);
3445 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3446 }
3447 btrfs_release_path(path);
3448
3449 path->keep_locks = 1;
3450 path->search_for_split = 1;
3451 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3452 path->search_for_split = 0;
3453 if (ret > 0)
3454 ret = -EAGAIN;
3455 if (ret < 0)
3456 goto err;
3457
3458 ret = -EAGAIN;
3459 leaf = path->nodes[0];
3460 /* if our item isn't there, return now */
3461 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3462 goto err;
3463
3464 /* the leaf has changed, it now has room. return now */
3465 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3466 goto err;
3467
3468 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3469 fi = btrfs_item_ptr(leaf, path->slots[0],
3470 struct btrfs_file_extent_item);
3471 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3472 goto err;
3473 }
3474
3475 ret = split_leaf(trans, root, &key, path, ins_len, 1);
3476 if (ret)
3477 goto err;
3478
3479 path->keep_locks = 0;
3480 btrfs_unlock_up_safe(path, 1);
3481 return 0;
3482 err:
3483 path->keep_locks = 0;
3484 return ret;
3485 }
3486
split_item(struct btrfs_path * path,const struct btrfs_key * new_key,unsigned long split_offset)3487 static noinline int split_item(struct btrfs_path *path,
3488 const struct btrfs_key *new_key,
3489 unsigned long split_offset)
3490 {
3491 struct extent_buffer *leaf;
3492 struct btrfs_item *item;
3493 struct btrfs_item *new_item;
3494 int slot;
3495 char *buf;
3496 u32 nritems;
3497 u32 item_size;
3498 u32 orig_offset;
3499 struct btrfs_disk_key disk_key;
3500
3501 leaf = path->nodes[0];
3502 BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
3503
3504 item = btrfs_item_nr(path->slots[0]);
3505 orig_offset = btrfs_item_offset(leaf, item);
3506 item_size = btrfs_item_size(leaf, item);
3507
3508 buf = kmalloc(item_size, GFP_NOFS);
3509 if (!buf)
3510 return -ENOMEM;
3511
3512 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3513 path->slots[0]), item_size);
3514
3515 slot = path->slots[0] + 1;
3516 nritems = btrfs_header_nritems(leaf);
3517 if (slot != nritems) {
3518 /* shift the items */
3519 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3520 btrfs_item_nr_offset(slot),
3521 (nritems - slot) * sizeof(struct btrfs_item));
3522 }
3523
3524 btrfs_cpu_key_to_disk(&disk_key, new_key);
3525 btrfs_set_item_key(leaf, &disk_key, slot);
3526
3527 new_item = btrfs_item_nr(slot);
3528
3529 btrfs_set_item_offset(leaf, new_item, orig_offset);
3530 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3531
3532 btrfs_set_item_offset(leaf, item,
3533 orig_offset + item_size - split_offset);
3534 btrfs_set_item_size(leaf, item, split_offset);
3535
3536 btrfs_set_header_nritems(leaf, nritems + 1);
3537
3538 /* write the data for the start of the original item */
3539 write_extent_buffer(leaf, buf,
3540 btrfs_item_ptr_offset(leaf, path->slots[0]),
3541 split_offset);
3542
3543 /* write the data for the new item */
3544 write_extent_buffer(leaf, buf + split_offset,
3545 btrfs_item_ptr_offset(leaf, slot),
3546 item_size - split_offset);
3547 btrfs_mark_buffer_dirty(leaf);
3548
3549 BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3550 kfree(buf);
3551 return 0;
3552 }
3553
3554 /*
3555 * This function splits a single item into two items,
3556 * giving 'new_key' to the new item and splitting the
3557 * old one at split_offset (from the start of the item).
3558 *
3559 * The path may be released by this operation. After
3560 * the split, the path is pointing to the old item. The
3561 * new item is going to be in the same node as the old one.
3562 *
3563 * Note, the item being split must be smaller enough to live alone on
3564 * a tree block with room for one extra struct btrfs_item
3565 *
3566 * This allows us to split the item in place, keeping a lock on the
3567 * leaf the entire time.
3568 */
btrfs_split_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * new_key,unsigned long split_offset)3569 int btrfs_split_item(struct btrfs_trans_handle *trans,
3570 struct btrfs_root *root,
3571 struct btrfs_path *path,
3572 const struct btrfs_key *new_key,
3573 unsigned long split_offset)
3574 {
3575 int ret;
3576 ret = setup_leaf_for_split(trans, root, path,
3577 sizeof(struct btrfs_item));
3578 if (ret)
3579 return ret;
3580
3581 ret = split_item(path, new_key, split_offset);
3582 return ret;
3583 }
3584
3585 /*
3586 * make the item pointed to by the path smaller. new_size indicates
3587 * how small to make it, and from_end tells us if we just chop bytes
3588 * off the end of the item or if we shift the item to chop bytes off
3589 * the front.
3590 */
btrfs_truncate_item(struct btrfs_path * path,u32 new_size,int from_end)3591 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
3592 {
3593 int slot;
3594 struct extent_buffer *leaf;
3595 struct btrfs_item *item;
3596 u32 nritems;
3597 unsigned int data_end;
3598 unsigned int old_data_start;
3599 unsigned int old_size;
3600 unsigned int size_diff;
3601 int i;
3602 struct btrfs_map_token token;
3603
3604 leaf = path->nodes[0];
3605 slot = path->slots[0];
3606
3607 old_size = btrfs_item_size_nr(leaf, slot);
3608 if (old_size == new_size)
3609 return;
3610
3611 nritems = btrfs_header_nritems(leaf);
3612 data_end = leaf_data_end(leaf);
3613
3614 old_data_start = btrfs_item_offset_nr(leaf, slot);
3615
3616 size_diff = old_size - new_size;
3617
3618 BUG_ON(slot < 0);
3619 BUG_ON(slot >= nritems);
3620
3621 /*
3622 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3623 */
3624 /* first correct the data pointers */
3625 btrfs_init_map_token(&token, leaf);
3626 for (i = slot; i < nritems; i++) {
3627 u32 ioff;
3628 item = btrfs_item_nr(i);
3629
3630 ioff = btrfs_token_item_offset(&token, item);
3631 btrfs_set_token_item_offset(&token, item, ioff + size_diff);
3632 }
3633
3634 /* shift the data */
3635 if (from_end) {
3636 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3637 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3638 data_end, old_data_start + new_size - data_end);
3639 } else {
3640 struct btrfs_disk_key disk_key;
3641 u64 offset;
3642
3643 btrfs_item_key(leaf, &disk_key, slot);
3644
3645 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3646 unsigned long ptr;
3647 struct btrfs_file_extent_item *fi;
3648
3649 fi = btrfs_item_ptr(leaf, slot,
3650 struct btrfs_file_extent_item);
3651 fi = (struct btrfs_file_extent_item *)(
3652 (unsigned long)fi - size_diff);
3653
3654 if (btrfs_file_extent_type(leaf, fi) ==
3655 BTRFS_FILE_EXTENT_INLINE) {
3656 ptr = btrfs_item_ptr_offset(leaf, slot);
3657 memmove_extent_buffer(leaf, ptr,
3658 (unsigned long)fi,
3659 BTRFS_FILE_EXTENT_INLINE_DATA_START);
3660 }
3661 }
3662
3663 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3664 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3665 data_end, old_data_start - data_end);
3666
3667 offset = btrfs_disk_key_offset(&disk_key);
3668 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3669 btrfs_set_item_key(leaf, &disk_key, slot);
3670 if (slot == 0)
3671 fixup_low_keys(path, &disk_key, 1);
3672 }
3673
3674 item = btrfs_item_nr(slot);
3675 btrfs_set_item_size(leaf, item, new_size);
3676 btrfs_mark_buffer_dirty(leaf);
3677
3678 if (btrfs_leaf_free_space(leaf) < 0) {
3679 btrfs_print_leaf(leaf);
3680 BUG();
3681 }
3682 }
3683
3684 /*
3685 * make the item pointed to by the path bigger, data_size is the added size.
3686 */
btrfs_extend_item(struct btrfs_path * path,u32 data_size)3687 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
3688 {
3689 int slot;
3690 struct extent_buffer *leaf;
3691 struct btrfs_item *item;
3692 u32 nritems;
3693 unsigned int data_end;
3694 unsigned int old_data;
3695 unsigned int old_size;
3696 int i;
3697 struct btrfs_map_token token;
3698
3699 leaf = path->nodes[0];
3700
3701 nritems = btrfs_header_nritems(leaf);
3702 data_end = leaf_data_end(leaf);
3703
3704 if (btrfs_leaf_free_space(leaf) < data_size) {
3705 btrfs_print_leaf(leaf);
3706 BUG();
3707 }
3708 slot = path->slots[0];
3709 old_data = btrfs_item_end_nr(leaf, slot);
3710
3711 BUG_ON(slot < 0);
3712 if (slot >= nritems) {
3713 btrfs_print_leaf(leaf);
3714 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
3715 slot, nritems);
3716 BUG();
3717 }
3718
3719 /*
3720 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3721 */
3722 /* first correct the data pointers */
3723 btrfs_init_map_token(&token, leaf);
3724 for (i = slot; i < nritems; i++) {
3725 u32 ioff;
3726 item = btrfs_item_nr(i);
3727
3728 ioff = btrfs_token_item_offset(&token, item);
3729 btrfs_set_token_item_offset(&token, item, ioff - data_size);
3730 }
3731
3732 /* shift the data */
3733 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3734 data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
3735 data_end, old_data - data_end);
3736
3737 data_end = old_data;
3738 old_size = btrfs_item_size_nr(leaf, slot);
3739 item = btrfs_item_nr(slot);
3740 btrfs_set_item_size(leaf, item, old_size + data_size);
3741 btrfs_mark_buffer_dirty(leaf);
3742
3743 if (btrfs_leaf_free_space(leaf) < 0) {
3744 btrfs_print_leaf(leaf);
3745 BUG();
3746 }
3747 }
3748
3749 /**
3750 * setup_items_for_insert - Helper called before inserting one or more items
3751 * to a leaf. Main purpose is to save stack depth by doing the bulk of the work
3752 * in a function that doesn't call btrfs_search_slot
3753 *
3754 * @root: root we are inserting items to
3755 * @path: points to the leaf/slot where we are going to insert new items
3756 * @batch: information about the batch of items to insert
3757 */
setup_items_for_insert(struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_item_batch * batch)3758 static void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
3759 const struct btrfs_item_batch *batch)
3760 {
3761 struct btrfs_fs_info *fs_info = root->fs_info;
3762 struct btrfs_item *item;
3763 int i;
3764 u32 nritems;
3765 unsigned int data_end;
3766 struct btrfs_disk_key disk_key;
3767 struct extent_buffer *leaf;
3768 int slot;
3769 struct btrfs_map_token token;
3770 u32 total_size;
3771
3772 /*
3773 * Before anything else, update keys in the parent and other ancestors
3774 * if needed, then release the write locks on them, so that other tasks
3775 * can use them while we modify the leaf.
3776 */
3777 if (path->slots[0] == 0) {
3778 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
3779 fixup_low_keys(path, &disk_key, 1);
3780 }
3781 btrfs_unlock_up_safe(path, 1);
3782
3783 leaf = path->nodes[0];
3784 slot = path->slots[0];
3785
3786 nritems = btrfs_header_nritems(leaf);
3787 data_end = leaf_data_end(leaf);
3788 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
3789
3790 if (btrfs_leaf_free_space(leaf) < total_size) {
3791 btrfs_print_leaf(leaf);
3792 btrfs_crit(fs_info, "not enough freespace need %u have %d",
3793 total_size, btrfs_leaf_free_space(leaf));
3794 BUG();
3795 }
3796
3797 btrfs_init_map_token(&token, leaf);
3798 if (slot != nritems) {
3799 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3800
3801 if (old_data < data_end) {
3802 btrfs_print_leaf(leaf);
3803 btrfs_crit(fs_info,
3804 "item at slot %d with data offset %u beyond data end of leaf %u",
3805 slot, old_data, data_end);
3806 BUG();
3807 }
3808 /*
3809 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3810 */
3811 /* first correct the data pointers */
3812 for (i = slot; i < nritems; i++) {
3813 u32 ioff;
3814
3815 item = btrfs_item_nr(i);
3816 ioff = btrfs_token_item_offset(&token, item);
3817 btrfs_set_token_item_offset(&token, item,
3818 ioff - batch->total_data_size);
3819 }
3820 /* shift the items */
3821 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + batch->nr),
3822 btrfs_item_nr_offset(slot),
3823 (nritems - slot) * sizeof(struct btrfs_item));
3824
3825 /* shift the data */
3826 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3827 data_end - batch->total_data_size,
3828 BTRFS_LEAF_DATA_OFFSET + data_end,
3829 old_data - data_end);
3830 data_end = old_data;
3831 }
3832
3833 /* setup the item for the new data */
3834 for (i = 0; i < batch->nr; i++) {
3835 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
3836 btrfs_set_item_key(leaf, &disk_key, slot + i);
3837 item = btrfs_item_nr(slot + i);
3838 data_end -= batch->data_sizes[i];
3839 btrfs_set_token_item_offset(&token, item, data_end);
3840 btrfs_set_token_item_size(&token, item, batch->data_sizes[i]);
3841 }
3842
3843 btrfs_set_header_nritems(leaf, nritems + batch->nr);
3844 btrfs_mark_buffer_dirty(leaf);
3845
3846 if (btrfs_leaf_free_space(leaf) < 0) {
3847 btrfs_print_leaf(leaf);
3848 BUG();
3849 }
3850 }
3851
3852 /*
3853 * Insert a new item into a leaf.
3854 *
3855 * @root: The root of the btree.
3856 * @path: A path pointing to the target leaf and slot.
3857 * @key: The key of the new item.
3858 * @data_size: The size of the data associated with the new key.
3859 */
btrfs_setup_item_for_insert(struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * key,u32 data_size)3860 void btrfs_setup_item_for_insert(struct btrfs_root *root,
3861 struct btrfs_path *path,
3862 const struct btrfs_key *key,
3863 u32 data_size)
3864 {
3865 struct btrfs_item_batch batch;
3866
3867 batch.keys = key;
3868 batch.data_sizes = &data_size;
3869 batch.total_data_size = data_size;
3870 batch.nr = 1;
3871
3872 setup_items_for_insert(root, path, &batch);
3873 }
3874
3875 /*
3876 * Given a key and some data, insert items into the tree.
3877 * This does all the path init required, making room in the tree if needed.
3878 */
btrfs_insert_empty_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_item_batch * batch)3879 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3880 struct btrfs_root *root,
3881 struct btrfs_path *path,
3882 const struct btrfs_item_batch *batch)
3883 {
3884 int ret = 0;
3885 int slot;
3886 u32 total_size;
3887
3888 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
3889 ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
3890 if (ret == 0)
3891 return -EEXIST;
3892 if (ret < 0)
3893 return ret;
3894
3895 slot = path->slots[0];
3896 BUG_ON(slot < 0);
3897
3898 setup_items_for_insert(root, path, batch);
3899 return 0;
3900 }
3901
3902 /*
3903 * Given a key and some data, insert an item into the tree.
3904 * This does all the path init required, making room in the tree if needed.
3905 */
btrfs_insert_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * cpu_key,void * data,u32 data_size)3906 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3907 const struct btrfs_key *cpu_key, void *data,
3908 u32 data_size)
3909 {
3910 int ret = 0;
3911 struct btrfs_path *path;
3912 struct extent_buffer *leaf;
3913 unsigned long ptr;
3914
3915 path = btrfs_alloc_path();
3916 if (!path)
3917 return -ENOMEM;
3918 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3919 if (!ret) {
3920 leaf = path->nodes[0];
3921 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3922 write_extent_buffer(leaf, data, ptr, data_size);
3923 btrfs_mark_buffer_dirty(leaf);
3924 }
3925 btrfs_free_path(path);
3926 return ret;
3927 }
3928
3929 /*
3930 * This function duplicates an item, giving 'new_key' to the new item.
3931 * It guarantees both items live in the same tree leaf and the new item is
3932 * contiguous with the original item.
3933 *
3934 * This allows us to split a file extent in place, keeping a lock on the leaf
3935 * the entire time.
3936 */
btrfs_duplicate_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * new_key)3937 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3938 struct btrfs_root *root,
3939 struct btrfs_path *path,
3940 const struct btrfs_key *new_key)
3941 {
3942 struct extent_buffer *leaf;
3943 int ret;
3944 u32 item_size;
3945
3946 leaf = path->nodes[0];
3947 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3948 ret = setup_leaf_for_split(trans, root, path,
3949 item_size + sizeof(struct btrfs_item));
3950 if (ret)
3951 return ret;
3952
3953 path->slots[0]++;
3954 btrfs_setup_item_for_insert(root, path, new_key, item_size);
3955 leaf = path->nodes[0];
3956 memcpy_extent_buffer(leaf,
3957 btrfs_item_ptr_offset(leaf, path->slots[0]),
3958 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
3959 item_size);
3960 return 0;
3961 }
3962
3963 /*
3964 * delete the pointer from a given node.
3965 *
3966 * the tree should have been previously balanced so the deletion does not
3967 * empty a node.
3968 */
del_ptr(struct btrfs_root * root,struct btrfs_path * path,int level,int slot)3969 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
3970 int level, int slot)
3971 {
3972 struct extent_buffer *parent = path->nodes[level];
3973 u32 nritems;
3974 int ret;
3975
3976 nritems = btrfs_header_nritems(parent);
3977 if (slot != nritems - 1) {
3978 if (level) {
3979 ret = btrfs_tree_mod_log_insert_move(parent, slot,
3980 slot + 1, nritems - slot - 1);
3981 BUG_ON(ret < 0);
3982 }
3983 memmove_extent_buffer(parent,
3984 btrfs_node_key_ptr_offset(slot),
3985 btrfs_node_key_ptr_offset(slot + 1),
3986 sizeof(struct btrfs_key_ptr) *
3987 (nritems - slot - 1));
3988 } else if (level) {
3989 ret = btrfs_tree_mod_log_insert_key(parent, slot,
3990 BTRFS_MOD_LOG_KEY_REMOVE, GFP_NOFS);
3991 BUG_ON(ret < 0);
3992 }
3993
3994 nritems--;
3995 btrfs_set_header_nritems(parent, nritems);
3996 if (nritems == 0 && parent == root->node) {
3997 BUG_ON(btrfs_header_level(root->node) != 1);
3998 /* just turn the root into a leaf and break */
3999 btrfs_set_header_level(root->node, 0);
4000 } else if (slot == 0) {
4001 struct btrfs_disk_key disk_key;
4002
4003 btrfs_node_key(parent, &disk_key, 0);
4004 fixup_low_keys(path, &disk_key, level + 1);
4005 }
4006 btrfs_mark_buffer_dirty(parent);
4007 }
4008
4009 /*
4010 * a helper function to delete the leaf pointed to by path->slots[1] and
4011 * path->nodes[1].
4012 *
4013 * This deletes the pointer in path->nodes[1] and frees the leaf
4014 * block extent. zero is returned if it all worked out, < 0 otherwise.
4015 *
4016 * The path must have already been setup for deleting the leaf, including
4017 * all the proper balancing. path->nodes[1] must be locked.
4018 */
btrfs_del_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * leaf)4019 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4020 struct btrfs_root *root,
4021 struct btrfs_path *path,
4022 struct extent_buffer *leaf)
4023 {
4024 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4025 del_ptr(root, path, 1, path->slots[1]);
4026
4027 /*
4028 * btrfs_free_extent is expensive, we want to make sure we
4029 * aren't holding any locks when we call it
4030 */
4031 btrfs_unlock_up_safe(path, 0);
4032
4033 root_sub_used(root, leaf->len);
4034
4035 atomic_inc(&leaf->refs);
4036 btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4037 free_extent_buffer_stale(leaf);
4038 }
4039 /*
4040 * delete the item at the leaf level in path. If that empties
4041 * the leaf, remove it from the tree
4042 */
btrfs_del_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int slot,int nr)4043 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4044 struct btrfs_path *path, int slot, int nr)
4045 {
4046 struct btrfs_fs_info *fs_info = root->fs_info;
4047 struct extent_buffer *leaf;
4048 struct btrfs_item *item;
4049 u32 last_off;
4050 u32 dsize = 0;
4051 int ret = 0;
4052 int wret;
4053 int i;
4054 u32 nritems;
4055
4056 leaf = path->nodes[0];
4057 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4058
4059 for (i = 0; i < nr; i++)
4060 dsize += btrfs_item_size_nr(leaf, slot + i);
4061
4062 nritems = btrfs_header_nritems(leaf);
4063
4064 if (slot + nr != nritems) {
4065 int data_end = leaf_data_end(leaf);
4066 struct btrfs_map_token token;
4067
4068 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4069 data_end + dsize,
4070 BTRFS_LEAF_DATA_OFFSET + data_end,
4071 last_off - data_end);
4072
4073 btrfs_init_map_token(&token, leaf);
4074 for (i = slot + nr; i < nritems; i++) {
4075 u32 ioff;
4076
4077 item = btrfs_item_nr(i);
4078 ioff = btrfs_token_item_offset(&token, item);
4079 btrfs_set_token_item_offset(&token, item, ioff + dsize);
4080 }
4081
4082 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4083 btrfs_item_nr_offset(slot + nr),
4084 sizeof(struct btrfs_item) *
4085 (nritems - slot - nr));
4086 }
4087 btrfs_set_header_nritems(leaf, nritems - nr);
4088 nritems -= nr;
4089
4090 /* delete the leaf if we've emptied it */
4091 if (nritems == 0) {
4092 if (leaf == root->node) {
4093 btrfs_set_header_level(leaf, 0);
4094 } else {
4095 btrfs_clean_tree_block(leaf);
4096 btrfs_del_leaf(trans, root, path, leaf);
4097 }
4098 } else {
4099 int used = leaf_space_used(leaf, 0, nritems);
4100 if (slot == 0) {
4101 struct btrfs_disk_key disk_key;
4102
4103 btrfs_item_key(leaf, &disk_key, 0);
4104 fixup_low_keys(path, &disk_key, 1);
4105 }
4106
4107 /* delete the leaf if it is mostly empty */
4108 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4109 /* push_leaf_left fixes the path.
4110 * make sure the path still points to our leaf
4111 * for possible call to del_ptr below
4112 */
4113 slot = path->slots[1];
4114 atomic_inc(&leaf->refs);
4115
4116 wret = push_leaf_left(trans, root, path, 1, 1,
4117 1, (u32)-1);
4118 if (wret < 0 && wret != -ENOSPC)
4119 ret = wret;
4120
4121 if (path->nodes[0] == leaf &&
4122 btrfs_header_nritems(leaf)) {
4123 wret = push_leaf_right(trans, root, path, 1,
4124 1, 1, 0);
4125 if (wret < 0 && wret != -ENOSPC)
4126 ret = wret;
4127 }
4128
4129 if (btrfs_header_nritems(leaf) == 0) {
4130 path->slots[1] = slot;
4131 btrfs_del_leaf(trans, root, path, leaf);
4132 free_extent_buffer(leaf);
4133 ret = 0;
4134 } else {
4135 /* if we're still in the path, make sure
4136 * we're dirty. Otherwise, one of the
4137 * push_leaf functions must have already
4138 * dirtied this buffer
4139 */
4140 if (path->nodes[0] == leaf)
4141 btrfs_mark_buffer_dirty(leaf);
4142 free_extent_buffer(leaf);
4143 }
4144 } else {
4145 btrfs_mark_buffer_dirty(leaf);
4146 }
4147 }
4148 return ret;
4149 }
4150
4151 /*
4152 * search the tree again to find a leaf with lesser keys
4153 * returns 0 if it found something or 1 if there are no lesser leaves.
4154 * returns < 0 on io errors.
4155 *
4156 * This may release the path, and so you may lose any locks held at the
4157 * time you call it.
4158 */
btrfs_prev_leaf(struct btrfs_root * root,struct btrfs_path * path)4159 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4160 {
4161 struct btrfs_key key;
4162 struct btrfs_disk_key found_key;
4163 int ret;
4164
4165 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4166
4167 if (key.offset > 0) {
4168 key.offset--;
4169 } else if (key.type > 0) {
4170 key.type--;
4171 key.offset = (u64)-1;
4172 } else if (key.objectid > 0) {
4173 key.objectid--;
4174 key.type = (u8)-1;
4175 key.offset = (u64)-1;
4176 } else {
4177 return 1;
4178 }
4179
4180 btrfs_release_path(path);
4181 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4182 if (ret < 0)
4183 return ret;
4184 btrfs_item_key(path->nodes[0], &found_key, 0);
4185 ret = comp_keys(&found_key, &key);
4186 /*
4187 * We might have had an item with the previous key in the tree right
4188 * before we released our path. And after we released our path, that
4189 * item might have been pushed to the first slot (0) of the leaf we
4190 * were holding due to a tree balance. Alternatively, an item with the
4191 * previous key can exist as the only element of a leaf (big fat item).
4192 * Therefore account for these 2 cases, so that our callers (like
4193 * btrfs_previous_item) don't miss an existing item with a key matching
4194 * the previous key we computed above.
4195 */
4196 if (ret <= 0)
4197 return 0;
4198 return 1;
4199 }
4200
4201 /*
4202 * A helper function to walk down the tree starting at min_key, and looking
4203 * for nodes or leaves that are have a minimum transaction id.
4204 * This is used by the btree defrag code, and tree logging
4205 *
4206 * This does not cow, but it does stuff the starting key it finds back
4207 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4208 * key and get a writable path.
4209 *
4210 * This honors path->lowest_level to prevent descent past a given level
4211 * of the tree.
4212 *
4213 * min_trans indicates the oldest transaction that you are interested
4214 * in walking through. Any nodes or leaves older than min_trans are
4215 * skipped over (without reading them).
4216 *
4217 * returns zero if something useful was found, < 0 on error and 1 if there
4218 * was nothing in the tree that matched the search criteria.
4219 */
btrfs_search_forward(struct btrfs_root * root,struct btrfs_key * min_key,struct btrfs_path * path,u64 min_trans)4220 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4221 struct btrfs_path *path,
4222 u64 min_trans)
4223 {
4224 struct extent_buffer *cur;
4225 struct btrfs_key found_key;
4226 int slot;
4227 int sret;
4228 u32 nritems;
4229 int level;
4230 int ret = 1;
4231 int keep_locks = path->keep_locks;
4232
4233 path->keep_locks = 1;
4234 again:
4235 cur = btrfs_read_lock_root_node(root);
4236 level = btrfs_header_level(cur);
4237 WARN_ON(path->nodes[level]);
4238 path->nodes[level] = cur;
4239 path->locks[level] = BTRFS_READ_LOCK;
4240
4241 if (btrfs_header_generation(cur) < min_trans) {
4242 ret = 1;
4243 goto out;
4244 }
4245 while (1) {
4246 nritems = btrfs_header_nritems(cur);
4247 level = btrfs_header_level(cur);
4248 sret = btrfs_bin_search(cur, min_key, &slot);
4249 if (sret < 0) {
4250 ret = sret;
4251 goto out;
4252 }
4253
4254 /* at the lowest level, we're done, setup the path and exit */
4255 if (level == path->lowest_level) {
4256 if (slot >= nritems)
4257 goto find_next_key;
4258 ret = 0;
4259 path->slots[level] = slot;
4260 btrfs_item_key_to_cpu(cur, &found_key, slot);
4261 goto out;
4262 }
4263 if (sret && slot > 0)
4264 slot--;
4265 /*
4266 * check this node pointer against the min_trans parameters.
4267 * If it is too old, skip to the next one.
4268 */
4269 while (slot < nritems) {
4270 u64 gen;
4271
4272 gen = btrfs_node_ptr_generation(cur, slot);
4273 if (gen < min_trans) {
4274 slot++;
4275 continue;
4276 }
4277 break;
4278 }
4279 find_next_key:
4280 /*
4281 * we didn't find a candidate key in this node, walk forward
4282 * and find another one
4283 */
4284 if (slot >= nritems) {
4285 path->slots[level] = slot;
4286 sret = btrfs_find_next_key(root, path, min_key, level,
4287 min_trans);
4288 if (sret == 0) {
4289 btrfs_release_path(path);
4290 goto again;
4291 } else {
4292 goto out;
4293 }
4294 }
4295 /* save our key for returning back */
4296 btrfs_node_key_to_cpu(cur, &found_key, slot);
4297 path->slots[level] = slot;
4298 if (level == path->lowest_level) {
4299 ret = 0;
4300 goto out;
4301 }
4302 cur = btrfs_read_node_slot(cur, slot);
4303 if (IS_ERR(cur)) {
4304 ret = PTR_ERR(cur);
4305 goto out;
4306 }
4307
4308 btrfs_tree_read_lock(cur);
4309
4310 path->locks[level - 1] = BTRFS_READ_LOCK;
4311 path->nodes[level - 1] = cur;
4312 unlock_up(path, level, 1, 0, NULL);
4313 }
4314 out:
4315 path->keep_locks = keep_locks;
4316 if (ret == 0) {
4317 btrfs_unlock_up_safe(path, path->lowest_level + 1);
4318 memcpy(min_key, &found_key, sizeof(found_key));
4319 }
4320 return ret;
4321 }
4322
4323 /*
4324 * this is similar to btrfs_next_leaf, but does not try to preserve
4325 * and fixup the path. It looks for and returns the next key in the
4326 * tree based on the current path and the min_trans parameters.
4327 *
4328 * 0 is returned if another key is found, < 0 if there are any errors
4329 * and 1 is returned if there are no higher keys in the tree
4330 *
4331 * path->keep_locks should be set to 1 on the search made before
4332 * calling this function.
4333 */
btrfs_find_next_key(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,int level,u64 min_trans)4334 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4335 struct btrfs_key *key, int level, u64 min_trans)
4336 {
4337 int slot;
4338 struct extent_buffer *c;
4339
4340 WARN_ON(!path->keep_locks && !path->skip_locking);
4341 while (level < BTRFS_MAX_LEVEL) {
4342 if (!path->nodes[level])
4343 return 1;
4344
4345 slot = path->slots[level] + 1;
4346 c = path->nodes[level];
4347 next:
4348 if (slot >= btrfs_header_nritems(c)) {
4349 int ret;
4350 int orig_lowest;
4351 struct btrfs_key cur_key;
4352 if (level + 1 >= BTRFS_MAX_LEVEL ||
4353 !path->nodes[level + 1])
4354 return 1;
4355
4356 if (path->locks[level + 1] || path->skip_locking) {
4357 level++;
4358 continue;
4359 }
4360
4361 slot = btrfs_header_nritems(c) - 1;
4362 if (level == 0)
4363 btrfs_item_key_to_cpu(c, &cur_key, slot);
4364 else
4365 btrfs_node_key_to_cpu(c, &cur_key, slot);
4366
4367 orig_lowest = path->lowest_level;
4368 btrfs_release_path(path);
4369 path->lowest_level = level;
4370 ret = btrfs_search_slot(NULL, root, &cur_key, path,
4371 0, 0);
4372 path->lowest_level = orig_lowest;
4373 if (ret < 0)
4374 return ret;
4375
4376 c = path->nodes[level];
4377 slot = path->slots[level];
4378 if (ret == 0)
4379 slot++;
4380 goto next;
4381 }
4382
4383 if (level == 0)
4384 btrfs_item_key_to_cpu(c, key, slot);
4385 else {
4386 u64 gen = btrfs_node_ptr_generation(c, slot);
4387
4388 if (gen < min_trans) {
4389 slot++;
4390 goto next;
4391 }
4392 btrfs_node_key_to_cpu(c, key, slot);
4393 }
4394 return 0;
4395 }
4396 return 1;
4397 }
4398
btrfs_next_old_leaf(struct btrfs_root * root,struct btrfs_path * path,u64 time_seq)4399 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4400 u64 time_seq)
4401 {
4402 int slot;
4403 int level;
4404 struct extent_buffer *c;
4405 struct extent_buffer *next;
4406 struct btrfs_key key;
4407 u32 nritems;
4408 int ret;
4409 int i;
4410
4411 nritems = btrfs_header_nritems(path->nodes[0]);
4412 if (nritems == 0)
4413 return 1;
4414
4415 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4416 again:
4417 level = 1;
4418 next = NULL;
4419 btrfs_release_path(path);
4420
4421 path->keep_locks = 1;
4422
4423 if (time_seq)
4424 ret = btrfs_search_old_slot(root, &key, path, time_seq);
4425 else
4426 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4427 path->keep_locks = 0;
4428
4429 if (ret < 0)
4430 return ret;
4431
4432 nritems = btrfs_header_nritems(path->nodes[0]);
4433 /*
4434 * by releasing the path above we dropped all our locks. A balance
4435 * could have added more items next to the key that used to be
4436 * at the very end of the block. So, check again here and
4437 * advance the path if there are now more items available.
4438 */
4439 if (nritems > 0 && path->slots[0] < nritems - 1) {
4440 if (ret == 0)
4441 path->slots[0]++;
4442 ret = 0;
4443 goto done;
4444 }
4445 /*
4446 * So the above check misses one case:
4447 * - after releasing the path above, someone has removed the item that
4448 * used to be at the very end of the block, and balance between leafs
4449 * gets another one with bigger key.offset to replace it.
4450 *
4451 * This one should be returned as well, or we can get leaf corruption
4452 * later(esp. in __btrfs_drop_extents()).
4453 *
4454 * And a bit more explanation about this check,
4455 * with ret > 0, the key isn't found, the path points to the slot
4456 * where it should be inserted, so the path->slots[0] item must be the
4457 * bigger one.
4458 */
4459 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4460 ret = 0;
4461 goto done;
4462 }
4463
4464 while (level < BTRFS_MAX_LEVEL) {
4465 if (!path->nodes[level]) {
4466 ret = 1;
4467 goto done;
4468 }
4469
4470 slot = path->slots[level] + 1;
4471 c = path->nodes[level];
4472 if (slot >= btrfs_header_nritems(c)) {
4473 level++;
4474 if (level == BTRFS_MAX_LEVEL) {
4475 ret = 1;
4476 goto done;
4477 }
4478 continue;
4479 }
4480
4481
4482 /*
4483 * Our current level is where we're going to start from, and to
4484 * make sure lockdep doesn't complain we need to drop our locks
4485 * and nodes from 0 to our current level.
4486 */
4487 for (i = 0; i < level; i++) {
4488 if (path->locks[level]) {
4489 btrfs_tree_read_unlock(path->nodes[i]);
4490 path->locks[i] = 0;
4491 }
4492 free_extent_buffer(path->nodes[i]);
4493 path->nodes[i] = NULL;
4494 }
4495
4496 next = c;
4497 ret = read_block_for_search(root, path, &next, level,
4498 slot, &key);
4499 if (ret == -EAGAIN)
4500 goto again;
4501
4502 if (ret < 0) {
4503 btrfs_release_path(path);
4504 goto done;
4505 }
4506
4507 if (!path->skip_locking) {
4508 ret = btrfs_try_tree_read_lock(next);
4509 if (!ret && time_seq) {
4510 /*
4511 * If we don't get the lock, we may be racing
4512 * with push_leaf_left, holding that lock while
4513 * itself waiting for the leaf we've currently
4514 * locked. To solve this situation, we give up
4515 * on our lock and cycle.
4516 */
4517 free_extent_buffer(next);
4518 btrfs_release_path(path);
4519 cond_resched();
4520 goto again;
4521 }
4522 if (!ret)
4523 btrfs_tree_read_lock(next);
4524 }
4525 break;
4526 }
4527 path->slots[level] = slot;
4528 while (1) {
4529 level--;
4530 path->nodes[level] = next;
4531 path->slots[level] = 0;
4532 if (!path->skip_locking)
4533 path->locks[level] = BTRFS_READ_LOCK;
4534 if (!level)
4535 break;
4536
4537 ret = read_block_for_search(root, path, &next, level,
4538 0, &key);
4539 if (ret == -EAGAIN)
4540 goto again;
4541
4542 if (ret < 0) {
4543 btrfs_release_path(path);
4544 goto done;
4545 }
4546
4547 if (!path->skip_locking)
4548 btrfs_tree_read_lock(next);
4549 }
4550 ret = 0;
4551 done:
4552 unlock_up(path, 0, 1, 0, NULL);
4553
4554 return ret;
4555 }
4556
4557 /*
4558 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4559 * searching until it gets past min_objectid or finds an item of 'type'
4560 *
4561 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4562 */
btrfs_previous_item(struct btrfs_root * root,struct btrfs_path * path,u64 min_objectid,int type)4563 int btrfs_previous_item(struct btrfs_root *root,
4564 struct btrfs_path *path, u64 min_objectid,
4565 int type)
4566 {
4567 struct btrfs_key found_key;
4568 struct extent_buffer *leaf;
4569 u32 nritems;
4570 int ret;
4571
4572 while (1) {
4573 if (path->slots[0] == 0) {
4574 ret = btrfs_prev_leaf(root, path);
4575 if (ret != 0)
4576 return ret;
4577 } else {
4578 path->slots[0]--;
4579 }
4580 leaf = path->nodes[0];
4581 nritems = btrfs_header_nritems(leaf);
4582 if (nritems == 0)
4583 return 1;
4584 if (path->slots[0] == nritems)
4585 path->slots[0]--;
4586
4587 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4588 if (found_key.objectid < min_objectid)
4589 break;
4590 if (found_key.type == type)
4591 return 0;
4592 if (found_key.objectid == min_objectid &&
4593 found_key.type < type)
4594 break;
4595 }
4596 return 1;
4597 }
4598
4599 /*
4600 * search in extent tree to find a previous Metadata/Data extent item with
4601 * min objecitd.
4602 *
4603 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4604 */
btrfs_previous_extent_item(struct btrfs_root * root,struct btrfs_path * path,u64 min_objectid)4605 int btrfs_previous_extent_item(struct btrfs_root *root,
4606 struct btrfs_path *path, u64 min_objectid)
4607 {
4608 struct btrfs_key found_key;
4609 struct extent_buffer *leaf;
4610 u32 nritems;
4611 int ret;
4612
4613 while (1) {
4614 if (path->slots[0] == 0) {
4615 ret = btrfs_prev_leaf(root, path);
4616 if (ret != 0)
4617 return ret;
4618 } else {
4619 path->slots[0]--;
4620 }
4621 leaf = path->nodes[0];
4622 nritems = btrfs_header_nritems(leaf);
4623 if (nritems == 0)
4624 return 1;
4625 if (path->slots[0] == nritems)
4626 path->slots[0]--;
4627
4628 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4629 if (found_key.objectid < min_objectid)
4630 break;
4631 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
4632 found_key.type == BTRFS_METADATA_ITEM_KEY)
4633 return 0;
4634 if (found_key.objectid == min_objectid &&
4635 found_key.type < BTRFS_EXTENT_ITEM_KEY)
4636 break;
4637 }
4638 return 1;
4639 }
4640