1 /*
2  * arch/xtensa/kernel/time.c
3  *
4  * Timer and clock support.
5  *
6  * This file is subject to the terms and conditions of the GNU General Public
7  * License.  See the file "COPYING" in the main directory of this archive
8  * for more details.
9  *
10  * Copyright (C) 2005 Tensilica Inc.
11  *
12  * Chris Zankel <chris@zankel.net>
13  */
14 
15 #include <linux/clk.h>
16 #include <linux/of_clk.h>
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/time.h>
20 #include <linux/clocksource.h>
21 #include <linux/clockchips.h>
22 #include <linux/interrupt.h>
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/irq.h>
26 #include <linux/profile.h>
27 #include <linux/delay.h>
28 #include <linux/irqdomain.h>
29 #include <linux/sched_clock.h>
30 
31 #include <asm/timex.h>
32 #include <asm/platform.h>
33 
34 unsigned long ccount_freq;		/* ccount Hz */
35 EXPORT_SYMBOL(ccount_freq);
36 
ccount_read(struct clocksource * cs)37 static u64 ccount_read(struct clocksource *cs)
38 {
39 	return (u64)get_ccount();
40 }
41 
ccount_sched_clock_read(void)42 static u64 notrace ccount_sched_clock_read(void)
43 {
44 	return get_ccount();
45 }
46 
47 static struct clocksource ccount_clocksource = {
48 	.name = "ccount",
49 	.rating = 200,
50 	.read = ccount_read,
51 	.mask = CLOCKSOURCE_MASK(32),
52 	.flags = CLOCK_SOURCE_IS_CONTINUOUS,
53 };
54 
55 struct ccount_timer {
56 	struct clock_event_device evt;
57 	int irq_enabled;
58 	char name[24];
59 };
60 
ccount_timer_set_next_event(unsigned long delta,struct clock_event_device * dev)61 static int ccount_timer_set_next_event(unsigned long delta,
62 		struct clock_event_device *dev)
63 {
64 	unsigned long flags, next;
65 	int ret = 0;
66 
67 	local_irq_save(flags);
68 	next = get_ccount() + delta;
69 	set_linux_timer(next);
70 	if (next - get_ccount() > delta)
71 		ret = -ETIME;
72 	local_irq_restore(flags);
73 
74 	return ret;
75 }
76 
77 /*
78  * There is no way to disable the timer interrupt at the device level,
79  * only at the intenable register itself. Since enable_irq/disable_irq
80  * calls are nested, we need to make sure that these calls are
81  * balanced.
82  */
ccount_timer_shutdown(struct clock_event_device * evt)83 static int ccount_timer_shutdown(struct clock_event_device *evt)
84 {
85 	struct ccount_timer *timer =
86 		container_of(evt, struct ccount_timer, evt);
87 
88 	if (timer->irq_enabled) {
89 		disable_irq_nosync(evt->irq);
90 		timer->irq_enabled = 0;
91 	}
92 	return 0;
93 }
94 
ccount_timer_set_oneshot(struct clock_event_device * evt)95 static int ccount_timer_set_oneshot(struct clock_event_device *evt)
96 {
97 	struct ccount_timer *timer =
98 		container_of(evt, struct ccount_timer, evt);
99 
100 	if (!timer->irq_enabled) {
101 		enable_irq(evt->irq);
102 		timer->irq_enabled = 1;
103 	}
104 	return 0;
105 }
106 
107 static DEFINE_PER_CPU(struct ccount_timer, ccount_timer) = {
108 	.evt = {
109 		.features = CLOCK_EVT_FEAT_ONESHOT,
110 		.rating = 300,
111 		.set_next_event = ccount_timer_set_next_event,
112 		.set_state_shutdown = ccount_timer_shutdown,
113 		.set_state_oneshot = ccount_timer_set_oneshot,
114 		.tick_resume = ccount_timer_set_oneshot,
115 	},
116 };
117 
timer_interrupt(int irq,void * dev_id)118 static irqreturn_t timer_interrupt(int irq, void *dev_id)
119 {
120 	struct clock_event_device *evt = &this_cpu_ptr(&ccount_timer)->evt;
121 
122 	set_linux_timer(get_linux_timer());
123 	evt->event_handler(evt);
124 
125 	/* Allow platform to do something useful (Wdog). */
126 	platform_heartbeat();
127 
128 	return IRQ_HANDLED;
129 }
130 
local_timer_setup(unsigned cpu)131 void local_timer_setup(unsigned cpu)
132 {
133 	struct ccount_timer *timer = &per_cpu(ccount_timer, cpu);
134 	struct clock_event_device *clockevent = &timer->evt;
135 
136 	timer->irq_enabled = 1;
137 	snprintf(timer->name, sizeof(timer->name), "ccount_clockevent_%u", cpu);
138 	clockevent->name = timer->name;
139 	clockevent->cpumask = cpumask_of(cpu);
140 	clockevent->irq = irq_create_mapping(NULL, LINUX_TIMER_INT);
141 	if (WARN(!clockevent->irq, "error: can't map timer irq"))
142 		return;
143 	clockevents_config_and_register(clockevent, ccount_freq,
144 					0xf, 0xffffffff);
145 }
146 
147 #ifdef CONFIG_XTENSA_CALIBRATE_CCOUNT
148 #ifdef CONFIG_OF
calibrate_ccount(void)149 static void __init calibrate_ccount(void)
150 {
151 	struct device_node *cpu;
152 	struct clk *clk;
153 
154 	cpu = of_find_compatible_node(NULL, NULL, "cdns,xtensa-cpu");
155 	if (cpu) {
156 		clk = of_clk_get(cpu, 0);
157 		if (!IS_ERR(clk)) {
158 			ccount_freq = clk_get_rate(clk);
159 			return;
160 		} else {
161 			pr_warn("%s: CPU input clock not found\n",
162 				__func__);
163 		}
164 	} else {
165 		pr_warn("%s: CPU node not found in the device tree\n",
166 			__func__);
167 	}
168 
169 	platform_calibrate_ccount();
170 }
171 #else
calibrate_ccount(void)172 static inline void calibrate_ccount(void)
173 {
174 	platform_calibrate_ccount();
175 }
176 #endif
177 #endif
178 
time_init(void)179 void __init time_init(void)
180 {
181 	int irq;
182 
183 	of_clk_init(NULL);
184 #ifdef CONFIG_XTENSA_CALIBRATE_CCOUNT
185 	pr_info("Calibrating CPU frequency ");
186 	calibrate_ccount();
187 	pr_cont("%d.%02d MHz\n",
188 		(int)ccount_freq / 1000000,
189 		(int)(ccount_freq / 10000) % 100);
190 #else
191 	ccount_freq = CONFIG_XTENSA_CPU_CLOCK*1000000UL;
192 #endif
193 	WARN(!ccount_freq,
194 	     "%s: CPU clock frequency is not set up correctly\n",
195 	     __func__);
196 	clocksource_register_hz(&ccount_clocksource, ccount_freq);
197 	local_timer_setup(0);
198 	irq = this_cpu_ptr(&ccount_timer)->evt.irq;
199 	if (request_irq(irq, timer_interrupt, IRQF_TIMER, "timer", NULL))
200 		pr_err("Failed to request irq %d (timer)\n", irq);
201 	sched_clock_register(ccount_sched_clock_read, 32, ccount_freq);
202 	timer_probe();
203 }
204 
205 #ifndef CONFIG_GENERIC_CALIBRATE_DELAY
calibrate_delay(void)206 void calibrate_delay(void)
207 {
208 	loops_per_jiffy = ccount_freq / HZ;
209 	pr_info("Calibrating delay loop (skipped)... %lu.%02lu BogoMIPS preset\n",
210 		loops_per_jiffy / (1000000 / HZ),
211 		(loops_per_jiffy / (10000 / HZ)) % 100);
212 }
213 #endif
214