1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Wireless utility functions
4 *
5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018-2020 Intel Corporation
9 */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25
26
27 const struct ieee80211_rate *
ieee80211_get_response_rate(struct ieee80211_supported_band * sband,u32 basic_rates,int bitrate)28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29 u32 basic_rates, int bitrate)
30 {
31 struct ieee80211_rate *result = &sband->bitrates[0];
32 int i;
33
34 for (i = 0; i < sband->n_bitrates; i++) {
35 if (!(basic_rates & BIT(i)))
36 continue;
37 if (sband->bitrates[i].bitrate > bitrate)
38 continue;
39 result = &sband->bitrates[i];
40 }
41
42 return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45
ieee80211_mandatory_rates(struct ieee80211_supported_band * sband,enum nl80211_bss_scan_width scan_width)46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47 enum nl80211_bss_scan_width scan_width)
48 {
49 struct ieee80211_rate *bitrates;
50 u32 mandatory_rates = 0;
51 enum ieee80211_rate_flags mandatory_flag;
52 int i;
53
54 if (WARN_ON(!sband))
55 return 1;
56
57 if (sband->band == NL80211_BAND_2GHZ) {
58 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59 scan_width == NL80211_BSS_CHAN_WIDTH_10)
60 mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61 else
62 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63 } else {
64 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65 }
66
67 bitrates = sband->bitrates;
68 for (i = 0; i < sband->n_bitrates; i++)
69 if (bitrates[i].flags & mandatory_flag)
70 mandatory_rates |= BIT(i);
71 return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74
ieee80211_channel_to_freq_khz(int chan,enum nl80211_band band)75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
76 {
77 /* see 802.11 17.3.8.3.2 and Annex J
78 * there are overlapping channel numbers in 5GHz and 2GHz bands */
79 if (chan <= 0)
80 return 0; /* not supported */
81 switch (band) {
82 case NL80211_BAND_2GHZ:
83 case NL80211_BAND_LC:
84 if (chan == 14)
85 return MHZ_TO_KHZ(2484);
86 else if (chan < 14)
87 return MHZ_TO_KHZ(2407 + chan * 5);
88 break;
89 case NL80211_BAND_5GHZ:
90 if (chan >= 182 && chan <= 196)
91 return MHZ_TO_KHZ(4000 + chan * 5);
92 else
93 return MHZ_TO_KHZ(5000 + chan * 5);
94 break;
95 case NL80211_BAND_6GHZ:
96 /* see 802.11ax D6.1 27.3.23.2 */
97 if (chan == 2)
98 return MHZ_TO_KHZ(5935);
99 if (chan <= 233)
100 return MHZ_TO_KHZ(5950 + chan * 5);
101 break;
102 case NL80211_BAND_60GHZ:
103 if (chan < 7)
104 return MHZ_TO_KHZ(56160 + chan * 2160);
105 break;
106 case NL80211_BAND_S1GHZ:
107 return 902000 + chan * 500;
108 default:
109 ;
110 }
111 return 0; /* not supported */
112 }
113 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
114
115 enum nl80211_chan_width
ieee80211_s1g_channel_width(const struct ieee80211_channel * chan)116 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
117 {
118 if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
119 return NL80211_CHAN_WIDTH_20_NOHT;
120
121 /*S1G defines a single allowed channel width per channel.
122 * Extract that width here.
123 */
124 if (chan->flags & IEEE80211_CHAN_1MHZ)
125 return NL80211_CHAN_WIDTH_1;
126 else if (chan->flags & IEEE80211_CHAN_2MHZ)
127 return NL80211_CHAN_WIDTH_2;
128 else if (chan->flags & IEEE80211_CHAN_4MHZ)
129 return NL80211_CHAN_WIDTH_4;
130 else if (chan->flags & IEEE80211_CHAN_8MHZ)
131 return NL80211_CHAN_WIDTH_8;
132 else if (chan->flags & IEEE80211_CHAN_16MHZ)
133 return NL80211_CHAN_WIDTH_16;
134
135 pr_err("unknown channel width for channel at %dKHz?\n",
136 ieee80211_channel_to_khz(chan));
137
138 return NL80211_CHAN_WIDTH_1;
139 }
140 EXPORT_SYMBOL(ieee80211_s1g_channel_width);
141
ieee80211_freq_khz_to_channel(u32 freq)142 int ieee80211_freq_khz_to_channel(u32 freq)
143 {
144 /* TODO: just handle MHz for now */
145 freq = KHZ_TO_MHZ(freq);
146
147 /* see 802.11 17.3.8.3.2 and Annex J */
148 if (freq == 2484)
149 return 14;
150 else if (freq < 2484)
151 return (freq - 2407) / 5;
152 else if (freq >= 4910 && freq <= 4980)
153 return (freq - 4000) / 5;
154 else if (freq < 5925)
155 return (freq - 5000) / 5;
156 else if (freq == 5935)
157 return 2;
158 else if (freq <= 45000) /* DMG band lower limit */
159 /* see 802.11ax D6.1 27.3.22.2 */
160 return (freq - 5950) / 5;
161 else if (freq >= 58320 && freq <= 70200)
162 return (freq - 56160) / 2160;
163 else
164 return 0;
165 }
166 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
167
ieee80211_get_channel_khz(struct wiphy * wiphy,u32 freq)168 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
169 u32 freq)
170 {
171 enum nl80211_band band;
172 struct ieee80211_supported_band *sband;
173 int i;
174
175 for (band = 0; band < NUM_NL80211_BANDS; band++) {
176 sband = wiphy->bands[band];
177
178 if (!sband)
179 continue;
180
181 for (i = 0; i < sband->n_channels; i++) {
182 struct ieee80211_channel *chan = &sband->channels[i];
183
184 if (ieee80211_channel_to_khz(chan) == freq)
185 return chan;
186 }
187 }
188
189 return NULL;
190 }
191 EXPORT_SYMBOL(ieee80211_get_channel_khz);
192
set_mandatory_flags_band(struct ieee80211_supported_band * sband)193 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
194 {
195 int i, want;
196
197 switch (sband->band) {
198 case NL80211_BAND_5GHZ:
199 case NL80211_BAND_6GHZ:
200 want = 3;
201 for (i = 0; i < sband->n_bitrates; i++) {
202 if (sband->bitrates[i].bitrate == 60 ||
203 sband->bitrates[i].bitrate == 120 ||
204 sband->bitrates[i].bitrate == 240) {
205 sband->bitrates[i].flags |=
206 IEEE80211_RATE_MANDATORY_A;
207 want--;
208 }
209 }
210 WARN_ON(want);
211 break;
212 case NL80211_BAND_2GHZ:
213 case NL80211_BAND_LC:
214 want = 7;
215 for (i = 0; i < sband->n_bitrates; i++) {
216 switch (sband->bitrates[i].bitrate) {
217 case 10:
218 case 20:
219 case 55:
220 case 110:
221 sband->bitrates[i].flags |=
222 IEEE80211_RATE_MANDATORY_B |
223 IEEE80211_RATE_MANDATORY_G;
224 want--;
225 break;
226 case 60:
227 case 120:
228 case 240:
229 sband->bitrates[i].flags |=
230 IEEE80211_RATE_MANDATORY_G;
231 want--;
232 fallthrough;
233 default:
234 sband->bitrates[i].flags |=
235 IEEE80211_RATE_ERP_G;
236 break;
237 }
238 }
239 WARN_ON(want != 0 && want != 3);
240 break;
241 case NL80211_BAND_60GHZ:
242 /* check for mandatory HT MCS 1..4 */
243 WARN_ON(!sband->ht_cap.ht_supported);
244 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
245 break;
246 case NL80211_BAND_S1GHZ:
247 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least
248 * mandatory is ok.
249 */
250 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
251 break;
252 case NUM_NL80211_BANDS:
253 default:
254 WARN_ON(1);
255 break;
256 }
257 }
258
ieee80211_set_bitrate_flags(struct wiphy * wiphy)259 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
260 {
261 enum nl80211_band band;
262
263 for (band = 0; band < NUM_NL80211_BANDS; band++)
264 if (wiphy->bands[band])
265 set_mandatory_flags_band(wiphy->bands[band]);
266 }
267
cfg80211_supported_cipher_suite(struct wiphy * wiphy,u32 cipher)268 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
269 {
270 int i;
271 for (i = 0; i < wiphy->n_cipher_suites; i++)
272 if (cipher == wiphy->cipher_suites[i])
273 return true;
274 return false;
275 }
276
277 static bool
cfg80211_igtk_cipher_supported(struct cfg80211_registered_device * rdev)278 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
279 {
280 struct wiphy *wiphy = &rdev->wiphy;
281 int i;
282
283 for (i = 0; i < wiphy->n_cipher_suites; i++) {
284 switch (wiphy->cipher_suites[i]) {
285 case WLAN_CIPHER_SUITE_AES_CMAC:
286 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
287 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
288 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
289 return true;
290 }
291 }
292
293 return false;
294 }
295
cfg80211_valid_key_idx(struct cfg80211_registered_device * rdev,int key_idx,bool pairwise)296 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
297 int key_idx, bool pairwise)
298 {
299 int max_key_idx;
300
301 if (pairwise)
302 max_key_idx = 3;
303 else if (wiphy_ext_feature_isset(&rdev->wiphy,
304 NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
305 wiphy_ext_feature_isset(&rdev->wiphy,
306 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
307 max_key_idx = 7;
308 else if (cfg80211_igtk_cipher_supported(rdev))
309 max_key_idx = 5;
310 else
311 max_key_idx = 3;
312
313 if (key_idx < 0 || key_idx > max_key_idx)
314 return false;
315
316 return true;
317 }
318
cfg80211_validate_key_settings(struct cfg80211_registered_device * rdev,struct key_params * params,int key_idx,bool pairwise,const u8 * mac_addr)319 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
320 struct key_params *params, int key_idx,
321 bool pairwise, const u8 *mac_addr)
322 {
323 if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
324 return -EINVAL;
325
326 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
327 return -EINVAL;
328
329 if (pairwise && !mac_addr)
330 return -EINVAL;
331
332 switch (params->cipher) {
333 case WLAN_CIPHER_SUITE_TKIP:
334 /* Extended Key ID can only be used with CCMP/GCMP ciphers */
335 if ((pairwise && key_idx) ||
336 params->mode != NL80211_KEY_RX_TX)
337 return -EINVAL;
338 break;
339 case WLAN_CIPHER_SUITE_CCMP:
340 case WLAN_CIPHER_SUITE_CCMP_256:
341 case WLAN_CIPHER_SUITE_GCMP:
342 case WLAN_CIPHER_SUITE_GCMP_256:
343 /* IEEE802.11-2016 allows only 0 and - when supporting
344 * Extended Key ID - 1 as index for pairwise keys.
345 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
346 * the driver supports Extended Key ID.
347 * @NL80211_KEY_SET_TX can't be set when installing and
348 * validating a key.
349 */
350 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
351 params->mode == NL80211_KEY_SET_TX)
352 return -EINVAL;
353 if (wiphy_ext_feature_isset(&rdev->wiphy,
354 NL80211_EXT_FEATURE_EXT_KEY_ID)) {
355 if (pairwise && (key_idx < 0 || key_idx > 1))
356 return -EINVAL;
357 } else if (pairwise && key_idx) {
358 return -EINVAL;
359 }
360 break;
361 case WLAN_CIPHER_SUITE_AES_CMAC:
362 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
363 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
364 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
365 /* Disallow BIP (group-only) cipher as pairwise cipher */
366 if (pairwise)
367 return -EINVAL;
368 if (key_idx < 4)
369 return -EINVAL;
370 break;
371 case WLAN_CIPHER_SUITE_WEP40:
372 case WLAN_CIPHER_SUITE_WEP104:
373 if (key_idx > 3)
374 return -EINVAL;
375 break;
376 default:
377 break;
378 }
379
380 switch (params->cipher) {
381 case WLAN_CIPHER_SUITE_WEP40:
382 if (params->key_len != WLAN_KEY_LEN_WEP40)
383 return -EINVAL;
384 break;
385 case WLAN_CIPHER_SUITE_TKIP:
386 if (params->key_len != WLAN_KEY_LEN_TKIP)
387 return -EINVAL;
388 break;
389 case WLAN_CIPHER_SUITE_CCMP:
390 if (params->key_len != WLAN_KEY_LEN_CCMP)
391 return -EINVAL;
392 break;
393 case WLAN_CIPHER_SUITE_CCMP_256:
394 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
395 return -EINVAL;
396 break;
397 case WLAN_CIPHER_SUITE_GCMP:
398 if (params->key_len != WLAN_KEY_LEN_GCMP)
399 return -EINVAL;
400 break;
401 case WLAN_CIPHER_SUITE_GCMP_256:
402 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
403 return -EINVAL;
404 break;
405 case WLAN_CIPHER_SUITE_WEP104:
406 if (params->key_len != WLAN_KEY_LEN_WEP104)
407 return -EINVAL;
408 break;
409 case WLAN_CIPHER_SUITE_AES_CMAC:
410 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
411 return -EINVAL;
412 break;
413 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
414 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
415 return -EINVAL;
416 break;
417 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
418 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
419 return -EINVAL;
420 break;
421 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
422 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
423 return -EINVAL;
424 break;
425 default:
426 /*
427 * We don't know anything about this algorithm,
428 * allow using it -- but the driver must check
429 * all parameters! We still check below whether
430 * or not the driver supports this algorithm,
431 * of course.
432 */
433 break;
434 }
435
436 if (params->seq) {
437 switch (params->cipher) {
438 case WLAN_CIPHER_SUITE_WEP40:
439 case WLAN_CIPHER_SUITE_WEP104:
440 /* These ciphers do not use key sequence */
441 return -EINVAL;
442 case WLAN_CIPHER_SUITE_TKIP:
443 case WLAN_CIPHER_SUITE_CCMP:
444 case WLAN_CIPHER_SUITE_CCMP_256:
445 case WLAN_CIPHER_SUITE_GCMP:
446 case WLAN_CIPHER_SUITE_GCMP_256:
447 case WLAN_CIPHER_SUITE_AES_CMAC:
448 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
449 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
450 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
451 if (params->seq_len != 6)
452 return -EINVAL;
453 break;
454 }
455 }
456
457 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
458 return -EINVAL;
459
460 return 0;
461 }
462
ieee80211_hdrlen(__le16 fc)463 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
464 {
465 unsigned int hdrlen = 24;
466
467 if (ieee80211_is_ext(fc)) {
468 hdrlen = 4;
469 goto out;
470 }
471
472 if (ieee80211_is_data(fc)) {
473 if (ieee80211_has_a4(fc))
474 hdrlen = 30;
475 if (ieee80211_is_data_qos(fc)) {
476 hdrlen += IEEE80211_QOS_CTL_LEN;
477 if (ieee80211_has_order(fc))
478 hdrlen += IEEE80211_HT_CTL_LEN;
479 }
480 goto out;
481 }
482
483 if (ieee80211_is_mgmt(fc)) {
484 if (ieee80211_has_order(fc))
485 hdrlen += IEEE80211_HT_CTL_LEN;
486 goto out;
487 }
488
489 if (ieee80211_is_ctl(fc)) {
490 /*
491 * ACK and CTS are 10 bytes, all others 16. To see how
492 * to get this condition consider
493 * subtype mask: 0b0000000011110000 (0x00F0)
494 * ACK subtype: 0b0000000011010000 (0x00D0)
495 * CTS subtype: 0b0000000011000000 (0x00C0)
496 * bits that matter: ^^^ (0x00E0)
497 * value of those: 0b0000000011000000 (0x00C0)
498 */
499 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
500 hdrlen = 10;
501 else
502 hdrlen = 16;
503 }
504 out:
505 return hdrlen;
506 }
507 EXPORT_SYMBOL(ieee80211_hdrlen);
508
ieee80211_get_hdrlen_from_skb(const struct sk_buff * skb)509 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
510 {
511 const struct ieee80211_hdr *hdr =
512 (const struct ieee80211_hdr *)skb->data;
513 unsigned int hdrlen;
514
515 if (unlikely(skb->len < 10))
516 return 0;
517 hdrlen = ieee80211_hdrlen(hdr->frame_control);
518 if (unlikely(hdrlen > skb->len))
519 return 0;
520 return hdrlen;
521 }
522 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
523
__ieee80211_get_mesh_hdrlen(u8 flags)524 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
525 {
526 int ae = flags & MESH_FLAGS_AE;
527 /* 802.11-2012, 8.2.4.7.3 */
528 switch (ae) {
529 default:
530 case 0:
531 return 6;
532 case MESH_FLAGS_AE_A4:
533 return 12;
534 case MESH_FLAGS_AE_A5_A6:
535 return 18;
536 }
537 }
538
ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr * meshhdr)539 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
540 {
541 return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
542 }
543 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
544
ieee80211_data_to_8023_exthdr(struct sk_buff * skb,struct ethhdr * ehdr,const u8 * addr,enum nl80211_iftype iftype,u8 data_offset,bool is_amsdu)545 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
546 const u8 *addr, enum nl80211_iftype iftype,
547 u8 data_offset, bool is_amsdu)
548 {
549 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
550 struct {
551 u8 hdr[ETH_ALEN] __aligned(2);
552 __be16 proto;
553 } payload;
554 struct ethhdr tmp;
555 u16 hdrlen;
556 u8 mesh_flags = 0;
557
558 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
559 return -1;
560
561 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
562 if (skb->len < hdrlen + 8)
563 return -1;
564
565 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
566 * header
567 * IEEE 802.11 address fields:
568 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
569 * 0 0 DA SA BSSID n/a
570 * 0 1 DA BSSID SA n/a
571 * 1 0 BSSID SA DA n/a
572 * 1 1 RA TA DA SA
573 */
574 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
575 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
576
577 if (iftype == NL80211_IFTYPE_MESH_POINT)
578 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
579
580 mesh_flags &= MESH_FLAGS_AE;
581
582 switch (hdr->frame_control &
583 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
584 case cpu_to_le16(IEEE80211_FCTL_TODS):
585 if (unlikely(iftype != NL80211_IFTYPE_AP &&
586 iftype != NL80211_IFTYPE_AP_VLAN &&
587 iftype != NL80211_IFTYPE_P2P_GO))
588 return -1;
589 break;
590 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
591 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
592 iftype != NL80211_IFTYPE_AP_VLAN &&
593 iftype != NL80211_IFTYPE_STATION))
594 return -1;
595 if (iftype == NL80211_IFTYPE_MESH_POINT) {
596 if (mesh_flags == MESH_FLAGS_AE_A4)
597 return -1;
598 if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
599 skb_copy_bits(skb, hdrlen +
600 offsetof(struct ieee80211s_hdr, eaddr1),
601 tmp.h_dest, 2 * ETH_ALEN);
602 }
603 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
604 }
605 break;
606 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
607 if ((iftype != NL80211_IFTYPE_STATION &&
608 iftype != NL80211_IFTYPE_P2P_CLIENT &&
609 iftype != NL80211_IFTYPE_MESH_POINT) ||
610 (is_multicast_ether_addr(tmp.h_dest) &&
611 ether_addr_equal(tmp.h_source, addr)))
612 return -1;
613 if (iftype == NL80211_IFTYPE_MESH_POINT) {
614 if (mesh_flags == MESH_FLAGS_AE_A5_A6)
615 return -1;
616 if (mesh_flags == MESH_FLAGS_AE_A4)
617 skb_copy_bits(skb, hdrlen +
618 offsetof(struct ieee80211s_hdr, eaddr1),
619 tmp.h_source, ETH_ALEN);
620 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
621 }
622 break;
623 case cpu_to_le16(0):
624 if (iftype != NL80211_IFTYPE_ADHOC &&
625 iftype != NL80211_IFTYPE_STATION &&
626 iftype != NL80211_IFTYPE_OCB)
627 return -1;
628 break;
629 }
630
631 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
632 tmp.h_proto = payload.proto;
633
634 if (likely((!is_amsdu && ether_addr_equal(payload.hdr, rfc1042_header) &&
635 tmp.h_proto != htons(ETH_P_AARP) &&
636 tmp.h_proto != htons(ETH_P_IPX)) ||
637 ether_addr_equal(payload.hdr, bridge_tunnel_header)))
638 /* remove RFC1042 or Bridge-Tunnel encapsulation and
639 * replace EtherType */
640 hdrlen += ETH_ALEN + 2;
641 else
642 tmp.h_proto = htons(skb->len - hdrlen);
643
644 pskb_pull(skb, hdrlen);
645
646 if (!ehdr)
647 ehdr = skb_push(skb, sizeof(struct ethhdr));
648 memcpy(ehdr, &tmp, sizeof(tmp));
649
650 return 0;
651 }
652 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
653
654 static void
__frame_add_frag(struct sk_buff * skb,struct page * page,void * ptr,int len,int size)655 __frame_add_frag(struct sk_buff *skb, struct page *page,
656 void *ptr, int len, int size)
657 {
658 struct skb_shared_info *sh = skb_shinfo(skb);
659 int page_offset;
660
661 get_page(page);
662 page_offset = ptr - page_address(page);
663 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
664 }
665
666 static void
__ieee80211_amsdu_copy_frag(struct sk_buff * skb,struct sk_buff * frame,int offset,int len)667 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
668 int offset, int len)
669 {
670 struct skb_shared_info *sh = skb_shinfo(skb);
671 const skb_frag_t *frag = &sh->frags[0];
672 struct page *frag_page;
673 void *frag_ptr;
674 int frag_len, frag_size;
675 int head_size = skb->len - skb->data_len;
676 int cur_len;
677
678 frag_page = virt_to_head_page(skb->head);
679 frag_ptr = skb->data;
680 frag_size = head_size;
681
682 while (offset >= frag_size) {
683 offset -= frag_size;
684 frag_page = skb_frag_page(frag);
685 frag_ptr = skb_frag_address(frag);
686 frag_size = skb_frag_size(frag);
687 frag++;
688 }
689
690 frag_ptr += offset;
691 frag_len = frag_size - offset;
692
693 cur_len = min(len, frag_len);
694
695 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
696 len -= cur_len;
697
698 while (len > 0) {
699 frag_len = skb_frag_size(frag);
700 cur_len = min(len, frag_len);
701 __frame_add_frag(frame, skb_frag_page(frag),
702 skb_frag_address(frag), cur_len, frag_len);
703 len -= cur_len;
704 frag++;
705 }
706 }
707
708 static struct sk_buff *
__ieee80211_amsdu_copy(struct sk_buff * skb,unsigned int hlen,int offset,int len,bool reuse_frag)709 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
710 int offset, int len, bool reuse_frag)
711 {
712 struct sk_buff *frame;
713 int cur_len = len;
714
715 if (skb->len - offset < len)
716 return NULL;
717
718 /*
719 * When reusing framents, copy some data to the head to simplify
720 * ethernet header handling and speed up protocol header processing
721 * in the stack later.
722 */
723 if (reuse_frag)
724 cur_len = min_t(int, len, 32);
725
726 /*
727 * Allocate and reserve two bytes more for payload
728 * alignment since sizeof(struct ethhdr) is 14.
729 */
730 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
731 if (!frame)
732 return NULL;
733
734 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
735 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
736
737 len -= cur_len;
738 if (!len)
739 return frame;
740
741 offset += cur_len;
742 __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
743
744 return frame;
745 }
746
ieee80211_amsdu_to_8023s(struct sk_buff * skb,struct sk_buff_head * list,const u8 * addr,enum nl80211_iftype iftype,const unsigned int extra_headroom,const u8 * check_da,const u8 * check_sa)747 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
748 const u8 *addr, enum nl80211_iftype iftype,
749 const unsigned int extra_headroom,
750 const u8 *check_da, const u8 *check_sa)
751 {
752 unsigned int hlen = ALIGN(extra_headroom, 4);
753 struct sk_buff *frame = NULL;
754 u16 ethertype;
755 u8 *payload;
756 int offset = 0, remaining;
757 struct ethhdr eth;
758 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
759 bool reuse_skb = false;
760 bool last = false;
761
762 while (!last) {
763 unsigned int subframe_len;
764 int len;
765 u8 padding;
766
767 skb_copy_bits(skb, offset, ð, sizeof(eth));
768 len = ntohs(eth.h_proto);
769 subframe_len = sizeof(struct ethhdr) + len;
770 padding = (4 - subframe_len) & 0x3;
771
772 /* the last MSDU has no padding */
773 remaining = skb->len - offset;
774 if (subframe_len > remaining)
775 goto purge;
776 /* mitigate A-MSDU aggregation injection attacks */
777 if (ether_addr_equal(eth.h_dest, rfc1042_header))
778 goto purge;
779
780 offset += sizeof(struct ethhdr);
781 last = remaining <= subframe_len + padding;
782
783 /* FIXME: should we really accept multicast DA? */
784 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
785 !ether_addr_equal(check_da, eth.h_dest)) ||
786 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
787 offset += len + padding;
788 continue;
789 }
790
791 /* reuse skb for the last subframe */
792 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
793 skb_pull(skb, offset);
794 frame = skb;
795 reuse_skb = true;
796 } else {
797 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
798 reuse_frag);
799 if (!frame)
800 goto purge;
801
802 offset += len + padding;
803 }
804
805 skb_reset_network_header(frame);
806 frame->dev = skb->dev;
807 frame->priority = skb->priority;
808
809 payload = frame->data;
810 ethertype = (payload[6] << 8) | payload[7];
811 if (likely((ether_addr_equal(payload, rfc1042_header) &&
812 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
813 ether_addr_equal(payload, bridge_tunnel_header))) {
814 eth.h_proto = htons(ethertype);
815 skb_pull(frame, ETH_ALEN + 2);
816 }
817
818 memcpy(skb_push(frame, sizeof(eth)), ð, sizeof(eth));
819 __skb_queue_tail(list, frame);
820 }
821
822 if (!reuse_skb)
823 dev_kfree_skb(skb);
824
825 return;
826
827 purge:
828 __skb_queue_purge(list);
829 dev_kfree_skb(skb);
830 }
831 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
832
833 /* Given a data frame determine the 802.1p/1d tag to use. */
cfg80211_classify8021d(struct sk_buff * skb,struct cfg80211_qos_map * qos_map)834 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
835 struct cfg80211_qos_map *qos_map)
836 {
837 unsigned int dscp;
838 unsigned char vlan_priority;
839 unsigned int ret;
840
841 /* skb->priority values from 256->263 are magic values to
842 * directly indicate a specific 802.1d priority. This is used
843 * to allow 802.1d priority to be passed directly in from VLAN
844 * tags, etc.
845 */
846 if (skb->priority >= 256 && skb->priority <= 263) {
847 ret = skb->priority - 256;
848 goto out;
849 }
850
851 if (skb_vlan_tag_present(skb)) {
852 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
853 >> VLAN_PRIO_SHIFT;
854 if (vlan_priority > 0) {
855 ret = vlan_priority;
856 goto out;
857 }
858 }
859
860 switch (skb->protocol) {
861 case htons(ETH_P_IP):
862 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
863 break;
864 case htons(ETH_P_IPV6):
865 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
866 break;
867 case htons(ETH_P_MPLS_UC):
868 case htons(ETH_P_MPLS_MC): {
869 struct mpls_label mpls_tmp, *mpls;
870
871 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
872 sizeof(*mpls), &mpls_tmp);
873 if (!mpls)
874 return 0;
875
876 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
877 >> MPLS_LS_TC_SHIFT;
878 goto out;
879 }
880 case htons(ETH_P_80221):
881 /* 802.21 is always network control traffic */
882 return 7;
883 default:
884 return 0;
885 }
886
887 if (qos_map) {
888 unsigned int i, tmp_dscp = dscp >> 2;
889
890 for (i = 0; i < qos_map->num_des; i++) {
891 if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
892 ret = qos_map->dscp_exception[i].up;
893 goto out;
894 }
895 }
896
897 for (i = 0; i < 8; i++) {
898 if (tmp_dscp >= qos_map->up[i].low &&
899 tmp_dscp <= qos_map->up[i].high) {
900 ret = i;
901 goto out;
902 }
903 }
904 }
905
906 ret = dscp >> 5;
907 out:
908 return array_index_nospec(ret, IEEE80211_NUM_TIDS);
909 }
910 EXPORT_SYMBOL(cfg80211_classify8021d);
911
ieee80211_bss_get_elem(struct cfg80211_bss * bss,u8 id)912 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
913 {
914 const struct cfg80211_bss_ies *ies;
915
916 ies = rcu_dereference(bss->ies);
917 if (!ies)
918 return NULL;
919
920 return cfg80211_find_elem(id, ies->data, ies->len);
921 }
922 EXPORT_SYMBOL(ieee80211_bss_get_elem);
923
cfg80211_upload_connect_keys(struct wireless_dev * wdev)924 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
925 {
926 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
927 struct net_device *dev = wdev->netdev;
928 int i;
929
930 if (!wdev->connect_keys)
931 return;
932
933 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
934 if (!wdev->connect_keys->params[i].cipher)
935 continue;
936 if (rdev_add_key(rdev, dev, i, false, NULL,
937 &wdev->connect_keys->params[i])) {
938 netdev_err(dev, "failed to set key %d\n", i);
939 continue;
940 }
941 if (wdev->connect_keys->def == i &&
942 rdev_set_default_key(rdev, dev, i, true, true)) {
943 netdev_err(dev, "failed to set defkey %d\n", i);
944 continue;
945 }
946 }
947
948 kfree_sensitive(wdev->connect_keys);
949 wdev->connect_keys = NULL;
950 }
951
cfg80211_process_wdev_events(struct wireless_dev * wdev)952 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
953 {
954 struct cfg80211_event *ev;
955 unsigned long flags;
956
957 spin_lock_irqsave(&wdev->event_lock, flags);
958 while (!list_empty(&wdev->event_list)) {
959 ev = list_first_entry(&wdev->event_list,
960 struct cfg80211_event, list);
961 list_del(&ev->list);
962 spin_unlock_irqrestore(&wdev->event_lock, flags);
963
964 wdev_lock(wdev);
965 switch (ev->type) {
966 case EVENT_CONNECT_RESULT:
967 __cfg80211_connect_result(
968 wdev->netdev,
969 &ev->cr,
970 ev->cr.status == WLAN_STATUS_SUCCESS);
971 break;
972 case EVENT_ROAMED:
973 __cfg80211_roamed(wdev, &ev->rm);
974 break;
975 case EVENT_DISCONNECTED:
976 __cfg80211_disconnected(wdev->netdev,
977 ev->dc.ie, ev->dc.ie_len,
978 ev->dc.reason,
979 !ev->dc.locally_generated);
980 break;
981 case EVENT_IBSS_JOINED:
982 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
983 ev->ij.channel);
984 break;
985 case EVENT_STOPPED:
986 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
987 break;
988 case EVENT_PORT_AUTHORIZED:
989 __cfg80211_port_authorized(wdev, ev->pa.bssid);
990 break;
991 }
992 wdev_unlock(wdev);
993
994 kfree(ev);
995
996 spin_lock_irqsave(&wdev->event_lock, flags);
997 }
998 spin_unlock_irqrestore(&wdev->event_lock, flags);
999 }
1000
cfg80211_process_rdev_events(struct cfg80211_registered_device * rdev)1001 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1002 {
1003 struct wireless_dev *wdev;
1004
1005 lockdep_assert_held(&rdev->wiphy.mtx);
1006
1007 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1008 cfg80211_process_wdev_events(wdev);
1009 }
1010
cfg80211_change_iface(struct cfg80211_registered_device * rdev,struct net_device * dev,enum nl80211_iftype ntype,struct vif_params * params)1011 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1012 struct net_device *dev, enum nl80211_iftype ntype,
1013 struct vif_params *params)
1014 {
1015 int err;
1016 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1017
1018 lockdep_assert_held(&rdev->wiphy.mtx);
1019
1020 /* don't support changing VLANs, you just re-create them */
1021 if (otype == NL80211_IFTYPE_AP_VLAN)
1022 return -EOPNOTSUPP;
1023
1024 /* cannot change into P2P device or NAN */
1025 if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1026 ntype == NL80211_IFTYPE_NAN)
1027 return -EOPNOTSUPP;
1028
1029 if (!rdev->ops->change_virtual_intf ||
1030 !(rdev->wiphy.interface_modes & (1 << ntype)))
1031 return -EOPNOTSUPP;
1032
1033 if (ntype != otype) {
1034 /* if it's part of a bridge, reject changing type to station/ibss */
1035 if (netif_is_bridge_port(dev) &&
1036 (ntype == NL80211_IFTYPE_ADHOC ||
1037 ntype == NL80211_IFTYPE_STATION ||
1038 ntype == NL80211_IFTYPE_P2P_CLIENT))
1039 return -EBUSY;
1040
1041 dev->ieee80211_ptr->use_4addr = false;
1042 dev->ieee80211_ptr->mesh_id_up_len = 0;
1043 wdev_lock(dev->ieee80211_ptr);
1044 rdev_set_qos_map(rdev, dev, NULL);
1045 wdev_unlock(dev->ieee80211_ptr);
1046
1047 switch (otype) {
1048 case NL80211_IFTYPE_AP:
1049 case NL80211_IFTYPE_P2P_GO:
1050 cfg80211_stop_ap(rdev, dev, true);
1051 break;
1052 case NL80211_IFTYPE_ADHOC:
1053 cfg80211_leave_ibss(rdev, dev, false);
1054 break;
1055 case NL80211_IFTYPE_STATION:
1056 case NL80211_IFTYPE_P2P_CLIENT:
1057 wdev_lock(dev->ieee80211_ptr);
1058 cfg80211_disconnect(rdev, dev,
1059 WLAN_REASON_DEAUTH_LEAVING, true);
1060 wdev_unlock(dev->ieee80211_ptr);
1061 break;
1062 case NL80211_IFTYPE_MESH_POINT:
1063 /* mesh should be handled? */
1064 break;
1065 case NL80211_IFTYPE_OCB:
1066 cfg80211_leave_ocb(rdev, dev);
1067 break;
1068 default:
1069 break;
1070 }
1071
1072 cfg80211_process_rdev_events(rdev);
1073 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1074 }
1075
1076 err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1077
1078 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1079
1080 if (!err && params && params->use_4addr != -1)
1081 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1082
1083 if (!err) {
1084 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1085 switch (ntype) {
1086 case NL80211_IFTYPE_STATION:
1087 if (dev->ieee80211_ptr->use_4addr)
1088 break;
1089 fallthrough;
1090 case NL80211_IFTYPE_OCB:
1091 case NL80211_IFTYPE_P2P_CLIENT:
1092 case NL80211_IFTYPE_ADHOC:
1093 dev->priv_flags |= IFF_DONT_BRIDGE;
1094 break;
1095 case NL80211_IFTYPE_P2P_GO:
1096 case NL80211_IFTYPE_AP:
1097 case NL80211_IFTYPE_AP_VLAN:
1098 case NL80211_IFTYPE_MESH_POINT:
1099 /* bridging OK */
1100 break;
1101 case NL80211_IFTYPE_MONITOR:
1102 /* monitor can't bridge anyway */
1103 break;
1104 case NL80211_IFTYPE_UNSPECIFIED:
1105 case NUM_NL80211_IFTYPES:
1106 /* not happening */
1107 break;
1108 case NL80211_IFTYPE_P2P_DEVICE:
1109 case NL80211_IFTYPE_WDS:
1110 case NL80211_IFTYPE_NAN:
1111 WARN_ON(1);
1112 break;
1113 }
1114 }
1115
1116 if (!err && ntype != otype && netif_running(dev)) {
1117 cfg80211_update_iface_num(rdev, ntype, 1);
1118 cfg80211_update_iface_num(rdev, otype, -1);
1119 }
1120
1121 return err;
1122 }
1123
cfg80211_calculate_bitrate_ht(struct rate_info * rate)1124 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1125 {
1126 int modulation, streams, bitrate;
1127
1128 /* the formula below does only work for MCS values smaller than 32 */
1129 if (WARN_ON_ONCE(rate->mcs >= 32))
1130 return 0;
1131
1132 modulation = rate->mcs & 7;
1133 streams = (rate->mcs >> 3) + 1;
1134
1135 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1136
1137 if (modulation < 4)
1138 bitrate *= (modulation + 1);
1139 else if (modulation == 4)
1140 bitrate *= (modulation + 2);
1141 else
1142 bitrate *= (modulation + 3);
1143
1144 bitrate *= streams;
1145
1146 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1147 bitrate = (bitrate / 9) * 10;
1148
1149 /* do NOT round down here */
1150 return (bitrate + 50000) / 100000;
1151 }
1152
cfg80211_calculate_bitrate_dmg(struct rate_info * rate)1153 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1154 {
1155 static const u32 __mcs2bitrate[] = {
1156 /* control PHY */
1157 [0] = 275,
1158 /* SC PHY */
1159 [1] = 3850,
1160 [2] = 7700,
1161 [3] = 9625,
1162 [4] = 11550,
1163 [5] = 12512, /* 1251.25 mbps */
1164 [6] = 15400,
1165 [7] = 19250,
1166 [8] = 23100,
1167 [9] = 25025,
1168 [10] = 30800,
1169 [11] = 38500,
1170 [12] = 46200,
1171 /* OFDM PHY */
1172 [13] = 6930,
1173 [14] = 8662, /* 866.25 mbps */
1174 [15] = 13860,
1175 [16] = 17325,
1176 [17] = 20790,
1177 [18] = 27720,
1178 [19] = 34650,
1179 [20] = 41580,
1180 [21] = 45045,
1181 [22] = 51975,
1182 [23] = 62370,
1183 [24] = 67568, /* 6756.75 mbps */
1184 /* LP-SC PHY */
1185 [25] = 6260,
1186 [26] = 8340,
1187 [27] = 11120,
1188 [28] = 12510,
1189 [29] = 16680,
1190 [30] = 22240,
1191 [31] = 25030,
1192 };
1193
1194 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1195 return 0;
1196
1197 return __mcs2bitrate[rate->mcs];
1198 }
1199
cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info * rate)1200 static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate)
1201 {
1202 static const u32 __mcs2bitrate[] = {
1203 [6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */
1204 [7 - 6] = 50050, /* MCS 12.1 */
1205 [8 - 6] = 53900,
1206 [9 - 6] = 57750,
1207 [10 - 6] = 63900,
1208 [11 - 6] = 75075,
1209 [12 - 6] = 80850,
1210 };
1211
1212 /* Extended SC MCS not defined for base MCS below 6 or above 12 */
1213 if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12))
1214 return 0;
1215
1216 return __mcs2bitrate[rate->mcs - 6];
1217 }
1218
cfg80211_calculate_bitrate_edmg(struct rate_info * rate)1219 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1220 {
1221 static const u32 __mcs2bitrate[] = {
1222 /* control PHY */
1223 [0] = 275,
1224 /* SC PHY */
1225 [1] = 3850,
1226 [2] = 7700,
1227 [3] = 9625,
1228 [4] = 11550,
1229 [5] = 12512, /* 1251.25 mbps */
1230 [6] = 13475,
1231 [7] = 15400,
1232 [8] = 19250,
1233 [9] = 23100,
1234 [10] = 25025,
1235 [11] = 26950,
1236 [12] = 30800,
1237 [13] = 38500,
1238 [14] = 46200,
1239 [15] = 50050,
1240 [16] = 53900,
1241 [17] = 57750,
1242 [18] = 69300,
1243 [19] = 75075,
1244 [20] = 80850,
1245 };
1246
1247 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1248 return 0;
1249
1250 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1251 }
1252
cfg80211_calculate_bitrate_vht(struct rate_info * rate)1253 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1254 {
1255 static const u32 base[4][12] = {
1256 { 6500000,
1257 13000000,
1258 19500000,
1259 26000000,
1260 39000000,
1261 52000000,
1262 58500000,
1263 65000000,
1264 78000000,
1265 /* not in the spec, but some devices use this: */
1266 86700000,
1267 97500000,
1268 108300000,
1269 },
1270 { 13500000,
1271 27000000,
1272 40500000,
1273 54000000,
1274 81000000,
1275 108000000,
1276 121500000,
1277 135000000,
1278 162000000,
1279 180000000,
1280 202500000,
1281 225000000,
1282 },
1283 { 29300000,
1284 58500000,
1285 87800000,
1286 117000000,
1287 175500000,
1288 234000000,
1289 263300000,
1290 292500000,
1291 351000000,
1292 390000000,
1293 438800000,
1294 487500000,
1295 },
1296 { 58500000,
1297 117000000,
1298 175500000,
1299 234000000,
1300 351000000,
1301 468000000,
1302 526500000,
1303 585000000,
1304 702000000,
1305 780000000,
1306 877500000,
1307 975000000,
1308 },
1309 };
1310 u32 bitrate;
1311 int idx;
1312
1313 if (rate->mcs > 11)
1314 goto warn;
1315
1316 switch (rate->bw) {
1317 case RATE_INFO_BW_160:
1318 idx = 3;
1319 break;
1320 case RATE_INFO_BW_80:
1321 idx = 2;
1322 break;
1323 case RATE_INFO_BW_40:
1324 idx = 1;
1325 break;
1326 case RATE_INFO_BW_5:
1327 case RATE_INFO_BW_10:
1328 default:
1329 goto warn;
1330 case RATE_INFO_BW_20:
1331 idx = 0;
1332 }
1333
1334 bitrate = base[idx][rate->mcs];
1335 bitrate *= rate->nss;
1336
1337 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1338 bitrate = (bitrate / 9) * 10;
1339
1340 /* do NOT round down here */
1341 return (bitrate + 50000) / 100000;
1342 warn:
1343 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1344 rate->bw, rate->mcs, rate->nss);
1345 return 0;
1346 }
1347
cfg80211_calculate_bitrate_he(struct rate_info * rate)1348 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1349 {
1350 #define SCALE 6144
1351 u32 mcs_divisors[14] = {
1352 102399, /* 16.666666... */
1353 51201, /* 8.333333... */
1354 34134, /* 5.555555... */
1355 25599, /* 4.166666... */
1356 17067, /* 2.777777... */
1357 12801, /* 2.083333... */
1358 11769, /* 1.851851... */
1359 10239, /* 1.666666... */
1360 8532, /* 1.388888... */
1361 7680, /* 1.250000... */
1362 6828, /* 1.111111... */
1363 6144, /* 1.000000... */
1364 5690, /* 0.926106... */
1365 5120, /* 0.833333... */
1366 };
1367 u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1368 u32 rates_969[3] = { 480388888, 453700000, 408333333 };
1369 u32 rates_484[3] = { 229411111, 216666666, 195000000 };
1370 u32 rates_242[3] = { 114711111, 108333333, 97500000 };
1371 u32 rates_106[3] = { 40000000, 37777777, 34000000 };
1372 u32 rates_52[3] = { 18820000, 17777777, 16000000 };
1373 u32 rates_26[3] = { 9411111, 8888888, 8000000 };
1374 u64 tmp;
1375 u32 result;
1376
1377 if (WARN_ON_ONCE(rate->mcs > 13))
1378 return 0;
1379
1380 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1381 return 0;
1382 if (WARN_ON_ONCE(rate->he_ru_alloc >
1383 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1384 return 0;
1385 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1386 return 0;
1387
1388 if (rate->bw == RATE_INFO_BW_160)
1389 result = rates_160M[rate->he_gi];
1390 else if (rate->bw == RATE_INFO_BW_80 ||
1391 (rate->bw == RATE_INFO_BW_HE_RU &&
1392 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1393 result = rates_969[rate->he_gi];
1394 else if (rate->bw == RATE_INFO_BW_40 ||
1395 (rate->bw == RATE_INFO_BW_HE_RU &&
1396 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1397 result = rates_484[rate->he_gi];
1398 else if (rate->bw == RATE_INFO_BW_20 ||
1399 (rate->bw == RATE_INFO_BW_HE_RU &&
1400 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1401 result = rates_242[rate->he_gi];
1402 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1403 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1404 result = rates_106[rate->he_gi];
1405 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1406 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1407 result = rates_52[rate->he_gi];
1408 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1409 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1410 result = rates_26[rate->he_gi];
1411 else {
1412 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1413 rate->bw, rate->he_ru_alloc);
1414 return 0;
1415 }
1416
1417 /* now scale to the appropriate MCS */
1418 tmp = result;
1419 tmp *= SCALE;
1420 do_div(tmp, mcs_divisors[rate->mcs]);
1421 result = tmp;
1422
1423 /* and take NSS, DCM into account */
1424 result = (result * rate->nss) / 8;
1425 if (rate->he_dcm)
1426 result /= 2;
1427
1428 return result / 10000;
1429 }
1430
cfg80211_calculate_bitrate(struct rate_info * rate)1431 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1432 {
1433 if (rate->flags & RATE_INFO_FLAGS_MCS)
1434 return cfg80211_calculate_bitrate_ht(rate);
1435 if (rate->flags & RATE_INFO_FLAGS_DMG)
1436 return cfg80211_calculate_bitrate_dmg(rate);
1437 if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG)
1438 return cfg80211_calculate_bitrate_extended_sc_dmg(rate);
1439 if (rate->flags & RATE_INFO_FLAGS_EDMG)
1440 return cfg80211_calculate_bitrate_edmg(rate);
1441 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1442 return cfg80211_calculate_bitrate_vht(rate);
1443 if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1444 return cfg80211_calculate_bitrate_he(rate);
1445
1446 return rate->legacy;
1447 }
1448 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1449
cfg80211_get_p2p_attr(const u8 * ies,unsigned int len,enum ieee80211_p2p_attr_id attr,u8 * buf,unsigned int bufsize)1450 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1451 enum ieee80211_p2p_attr_id attr,
1452 u8 *buf, unsigned int bufsize)
1453 {
1454 u8 *out = buf;
1455 u16 attr_remaining = 0;
1456 bool desired_attr = false;
1457 u16 desired_len = 0;
1458
1459 while (len > 0) {
1460 unsigned int iedatalen;
1461 unsigned int copy;
1462 const u8 *iedata;
1463
1464 if (len < 2)
1465 return -EILSEQ;
1466 iedatalen = ies[1];
1467 if (iedatalen + 2 > len)
1468 return -EILSEQ;
1469
1470 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1471 goto cont;
1472
1473 if (iedatalen < 4)
1474 goto cont;
1475
1476 iedata = ies + 2;
1477
1478 /* check WFA OUI, P2P subtype */
1479 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1480 iedata[2] != 0x9a || iedata[3] != 0x09)
1481 goto cont;
1482
1483 iedatalen -= 4;
1484 iedata += 4;
1485
1486 /* check attribute continuation into this IE */
1487 copy = min_t(unsigned int, attr_remaining, iedatalen);
1488 if (copy && desired_attr) {
1489 desired_len += copy;
1490 if (out) {
1491 memcpy(out, iedata, min(bufsize, copy));
1492 out += min(bufsize, copy);
1493 bufsize -= min(bufsize, copy);
1494 }
1495
1496
1497 if (copy == attr_remaining)
1498 return desired_len;
1499 }
1500
1501 attr_remaining -= copy;
1502 if (attr_remaining)
1503 goto cont;
1504
1505 iedatalen -= copy;
1506 iedata += copy;
1507
1508 while (iedatalen > 0) {
1509 u16 attr_len;
1510
1511 /* P2P attribute ID & size must fit */
1512 if (iedatalen < 3)
1513 return -EILSEQ;
1514 desired_attr = iedata[0] == attr;
1515 attr_len = get_unaligned_le16(iedata + 1);
1516 iedatalen -= 3;
1517 iedata += 3;
1518
1519 copy = min_t(unsigned int, attr_len, iedatalen);
1520
1521 if (desired_attr) {
1522 desired_len += copy;
1523 if (out) {
1524 memcpy(out, iedata, min(bufsize, copy));
1525 out += min(bufsize, copy);
1526 bufsize -= min(bufsize, copy);
1527 }
1528
1529 if (copy == attr_len)
1530 return desired_len;
1531 }
1532
1533 iedata += copy;
1534 iedatalen -= copy;
1535 attr_remaining = attr_len - copy;
1536 }
1537
1538 cont:
1539 len -= ies[1] + 2;
1540 ies += ies[1] + 2;
1541 }
1542
1543 if (attr_remaining && desired_attr)
1544 return -EILSEQ;
1545
1546 return -ENOENT;
1547 }
1548 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1549
ieee80211_id_in_list(const u8 * ids,int n_ids,u8 id,bool id_ext)1550 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1551 {
1552 int i;
1553
1554 /* Make sure array values are legal */
1555 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1556 return false;
1557
1558 i = 0;
1559 while (i < n_ids) {
1560 if (ids[i] == WLAN_EID_EXTENSION) {
1561 if (id_ext && (ids[i + 1] == id))
1562 return true;
1563
1564 i += 2;
1565 continue;
1566 }
1567
1568 if (ids[i] == id && !id_ext)
1569 return true;
1570
1571 i++;
1572 }
1573 return false;
1574 }
1575
skip_ie(const u8 * ies,size_t ielen,size_t pos)1576 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1577 {
1578 /* we assume a validly formed IEs buffer */
1579 u8 len = ies[pos + 1];
1580
1581 pos += 2 + len;
1582
1583 /* the IE itself must have 255 bytes for fragments to follow */
1584 if (len < 255)
1585 return pos;
1586
1587 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1588 len = ies[pos + 1];
1589 pos += 2 + len;
1590 }
1591
1592 return pos;
1593 }
1594
ieee80211_ie_split_ric(const u8 * ies,size_t ielen,const u8 * ids,int n_ids,const u8 * after_ric,int n_after_ric,size_t offset)1595 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1596 const u8 *ids, int n_ids,
1597 const u8 *after_ric, int n_after_ric,
1598 size_t offset)
1599 {
1600 size_t pos = offset;
1601
1602 while (pos < ielen) {
1603 u8 ext = 0;
1604
1605 if (ies[pos] == WLAN_EID_EXTENSION)
1606 ext = 2;
1607 if ((pos + ext) >= ielen)
1608 break;
1609
1610 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1611 ies[pos] == WLAN_EID_EXTENSION))
1612 break;
1613
1614 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1615 pos = skip_ie(ies, ielen, pos);
1616
1617 while (pos < ielen) {
1618 if (ies[pos] == WLAN_EID_EXTENSION)
1619 ext = 2;
1620 else
1621 ext = 0;
1622
1623 if ((pos + ext) >= ielen)
1624 break;
1625
1626 if (!ieee80211_id_in_list(after_ric,
1627 n_after_ric,
1628 ies[pos + ext],
1629 ext == 2))
1630 pos = skip_ie(ies, ielen, pos);
1631 else
1632 break;
1633 }
1634 } else {
1635 pos = skip_ie(ies, ielen, pos);
1636 }
1637 }
1638
1639 return pos;
1640 }
1641 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1642
ieee80211_operating_class_to_band(u8 operating_class,enum nl80211_band * band)1643 bool ieee80211_operating_class_to_band(u8 operating_class,
1644 enum nl80211_band *band)
1645 {
1646 switch (operating_class) {
1647 case 112:
1648 case 115 ... 127:
1649 case 128 ... 130:
1650 *band = NL80211_BAND_5GHZ;
1651 return true;
1652 case 131 ... 135:
1653 *band = NL80211_BAND_6GHZ;
1654 return true;
1655 case 81:
1656 case 82:
1657 case 83:
1658 case 84:
1659 *band = NL80211_BAND_2GHZ;
1660 return true;
1661 case 180:
1662 *band = NL80211_BAND_60GHZ;
1663 return true;
1664 }
1665
1666 return false;
1667 }
1668 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1669
ieee80211_chandef_to_operating_class(struct cfg80211_chan_def * chandef,u8 * op_class)1670 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1671 u8 *op_class)
1672 {
1673 u8 vht_opclass;
1674 u32 freq = chandef->center_freq1;
1675
1676 if (freq >= 2412 && freq <= 2472) {
1677 if (chandef->width > NL80211_CHAN_WIDTH_40)
1678 return false;
1679
1680 /* 2.407 GHz, channels 1..13 */
1681 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1682 if (freq > chandef->chan->center_freq)
1683 *op_class = 83; /* HT40+ */
1684 else
1685 *op_class = 84; /* HT40- */
1686 } else {
1687 *op_class = 81;
1688 }
1689
1690 return true;
1691 }
1692
1693 if (freq == 2484) {
1694 /* channel 14 is only for IEEE 802.11b */
1695 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1696 return false;
1697
1698 *op_class = 82; /* channel 14 */
1699 return true;
1700 }
1701
1702 switch (chandef->width) {
1703 case NL80211_CHAN_WIDTH_80:
1704 vht_opclass = 128;
1705 break;
1706 case NL80211_CHAN_WIDTH_160:
1707 vht_opclass = 129;
1708 break;
1709 case NL80211_CHAN_WIDTH_80P80:
1710 vht_opclass = 130;
1711 break;
1712 case NL80211_CHAN_WIDTH_10:
1713 case NL80211_CHAN_WIDTH_5:
1714 return false; /* unsupported for now */
1715 default:
1716 vht_opclass = 0;
1717 break;
1718 }
1719
1720 /* 5 GHz, channels 36..48 */
1721 if (freq >= 5180 && freq <= 5240) {
1722 if (vht_opclass) {
1723 *op_class = vht_opclass;
1724 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1725 if (freq > chandef->chan->center_freq)
1726 *op_class = 116;
1727 else
1728 *op_class = 117;
1729 } else {
1730 *op_class = 115;
1731 }
1732
1733 return true;
1734 }
1735
1736 /* 5 GHz, channels 52..64 */
1737 if (freq >= 5260 && freq <= 5320) {
1738 if (vht_opclass) {
1739 *op_class = vht_opclass;
1740 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1741 if (freq > chandef->chan->center_freq)
1742 *op_class = 119;
1743 else
1744 *op_class = 120;
1745 } else {
1746 *op_class = 118;
1747 }
1748
1749 return true;
1750 }
1751
1752 /* 5 GHz, channels 100..144 */
1753 if (freq >= 5500 && freq <= 5720) {
1754 if (vht_opclass) {
1755 *op_class = vht_opclass;
1756 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1757 if (freq > chandef->chan->center_freq)
1758 *op_class = 122;
1759 else
1760 *op_class = 123;
1761 } else {
1762 *op_class = 121;
1763 }
1764
1765 return true;
1766 }
1767
1768 /* 5 GHz, channels 149..169 */
1769 if (freq >= 5745 && freq <= 5845) {
1770 if (vht_opclass) {
1771 *op_class = vht_opclass;
1772 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1773 if (freq > chandef->chan->center_freq)
1774 *op_class = 126;
1775 else
1776 *op_class = 127;
1777 } else if (freq <= 5805) {
1778 *op_class = 124;
1779 } else {
1780 *op_class = 125;
1781 }
1782
1783 return true;
1784 }
1785
1786 /* 56.16 GHz, channel 1..4 */
1787 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1788 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1789 return false;
1790
1791 *op_class = 180;
1792 return true;
1793 }
1794
1795 /* not supported yet */
1796 return false;
1797 }
1798 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1799
cfg80211_calculate_bi_data(struct wiphy * wiphy,u32 new_beacon_int,u32 * beacon_int_gcd,bool * beacon_int_different)1800 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1801 u32 *beacon_int_gcd,
1802 bool *beacon_int_different)
1803 {
1804 struct wireless_dev *wdev;
1805
1806 *beacon_int_gcd = 0;
1807 *beacon_int_different = false;
1808
1809 list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1810 if (!wdev->beacon_interval)
1811 continue;
1812
1813 if (!*beacon_int_gcd) {
1814 *beacon_int_gcd = wdev->beacon_interval;
1815 continue;
1816 }
1817
1818 if (wdev->beacon_interval == *beacon_int_gcd)
1819 continue;
1820
1821 *beacon_int_different = true;
1822 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1823 }
1824
1825 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1826 if (*beacon_int_gcd)
1827 *beacon_int_different = true;
1828 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1829 }
1830 }
1831
cfg80211_validate_beacon_int(struct cfg80211_registered_device * rdev,enum nl80211_iftype iftype,u32 beacon_int)1832 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1833 enum nl80211_iftype iftype, u32 beacon_int)
1834 {
1835 /*
1836 * This is just a basic pre-condition check; if interface combinations
1837 * are possible the driver must already be checking those with a call
1838 * to cfg80211_check_combinations(), in which case we'll validate more
1839 * through the cfg80211_calculate_bi_data() call and code in
1840 * cfg80211_iter_combinations().
1841 */
1842
1843 if (beacon_int < 10 || beacon_int > 10000)
1844 return -EINVAL;
1845
1846 return 0;
1847 }
1848
cfg80211_iter_combinations(struct wiphy * wiphy,struct iface_combination_params * params,void (* iter)(const struct ieee80211_iface_combination * c,void * data),void * data)1849 int cfg80211_iter_combinations(struct wiphy *wiphy,
1850 struct iface_combination_params *params,
1851 void (*iter)(const struct ieee80211_iface_combination *c,
1852 void *data),
1853 void *data)
1854 {
1855 const struct ieee80211_regdomain *regdom;
1856 enum nl80211_dfs_regions region = 0;
1857 int i, j, iftype;
1858 int num_interfaces = 0;
1859 u32 used_iftypes = 0;
1860 u32 beacon_int_gcd;
1861 bool beacon_int_different;
1862
1863 /*
1864 * This is a bit strange, since the iteration used to rely only on
1865 * the data given by the driver, but here it now relies on context,
1866 * in form of the currently operating interfaces.
1867 * This is OK for all current users, and saves us from having to
1868 * push the GCD calculations into all the drivers.
1869 * In the future, this should probably rely more on data that's in
1870 * cfg80211 already - the only thing not would appear to be any new
1871 * interfaces (while being brought up) and channel/radar data.
1872 */
1873 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1874 &beacon_int_gcd, &beacon_int_different);
1875
1876 if (params->radar_detect) {
1877 rcu_read_lock();
1878 regdom = rcu_dereference(cfg80211_regdomain);
1879 if (regdom)
1880 region = regdom->dfs_region;
1881 rcu_read_unlock();
1882 }
1883
1884 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1885 num_interfaces += params->iftype_num[iftype];
1886 if (params->iftype_num[iftype] > 0 &&
1887 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1888 used_iftypes |= BIT(iftype);
1889 }
1890
1891 for (i = 0; i < wiphy->n_iface_combinations; i++) {
1892 const struct ieee80211_iface_combination *c;
1893 struct ieee80211_iface_limit *limits;
1894 u32 all_iftypes = 0;
1895
1896 c = &wiphy->iface_combinations[i];
1897
1898 if (num_interfaces > c->max_interfaces)
1899 continue;
1900 if (params->num_different_channels > c->num_different_channels)
1901 continue;
1902
1903 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1904 GFP_KERNEL);
1905 if (!limits)
1906 return -ENOMEM;
1907
1908 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1909 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1910 continue;
1911 for (j = 0; j < c->n_limits; j++) {
1912 all_iftypes |= limits[j].types;
1913 if (!(limits[j].types & BIT(iftype)))
1914 continue;
1915 if (limits[j].max < params->iftype_num[iftype])
1916 goto cont;
1917 limits[j].max -= params->iftype_num[iftype];
1918 }
1919 }
1920
1921 if (params->radar_detect !=
1922 (c->radar_detect_widths & params->radar_detect))
1923 goto cont;
1924
1925 if (params->radar_detect && c->radar_detect_regions &&
1926 !(c->radar_detect_regions & BIT(region)))
1927 goto cont;
1928
1929 /* Finally check that all iftypes that we're currently
1930 * using are actually part of this combination. If they
1931 * aren't then we can't use this combination and have
1932 * to continue to the next.
1933 */
1934 if ((all_iftypes & used_iftypes) != used_iftypes)
1935 goto cont;
1936
1937 if (beacon_int_gcd) {
1938 if (c->beacon_int_min_gcd &&
1939 beacon_int_gcd < c->beacon_int_min_gcd)
1940 goto cont;
1941 if (!c->beacon_int_min_gcd && beacon_int_different)
1942 goto cont;
1943 }
1944
1945 /* This combination covered all interface types and
1946 * supported the requested numbers, so we're good.
1947 */
1948
1949 (*iter)(c, data);
1950 cont:
1951 kfree(limits);
1952 }
1953
1954 return 0;
1955 }
1956 EXPORT_SYMBOL(cfg80211_iter_combinations);
1957
1958 static void
cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination * c,void * data)1959 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1960 void *data)
1961 {
1962 int *num = data;
1963 (*num)++;
1964 }
1965
cfg80211_check_combinations(struct wiphy * wiphy,struct iface_combination_params * params)1966 int cfg80211_check_combinations(struct wiphy *wiphy,
1967 struct iface_combination_params *params)
1968 {
1969 int err, num = 0;
1970
1971 err = cfg80211_iter_combinations(wiphy, params,
1972 cfg80211_iter_sum_ifcombs, &num);
1973 if (err)
1974 return err;
1975 if (num == 0)
1976 return -EBUSY;
1977
1978 return 0;
1979 }
1980 EXPORT_SYMBOL(cfg80211_check_combinations);
1981
ieee80211_get_ratemask(struct ieee80211_supported_band * sband,const u8 * rates,unsigned int n_rates,u32 * mask)1982 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1983 const u8 *rates, unsigned int n_rates,
1984 u32 *mask)
1985 {
1986 int i, j;
1987
1988 if (!sband)
1989 return -EINVAL;
1990
1991 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1992 return -EINVAL;
1993
1994 *mask = 0;
1995
1996 for (i = 0; i < n_rates; i++) {
1997 int rate = (rates[i] & 0x7f) * 5;
1998 bool found = false;
1999
2000 for (j = 0; j < sband->n_bitrates; j++) {
2001 if (sband->bitrates[j].bitrate == rate) {
2002 found = true;
2003 *mask |= BIT(j);
2004 break;
2005 }
2006 }
2007 if (!found)
2008 return -EINVAL;
2009 }
2010
2011 /*
2012 * mask must have at least one bit set here since we
2013 * didn't accept a 0-length rates array nor allowed
2014 * entries in the array that didn't exist
2015 */
2016
2017 return 0;
2018 }
2019
ieee80211_get_num_supported_channels(struct wiphy * wiphy)2020 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
2021 {
2022 enum nl80211_band band;
2023 unsigned int n_channels = 0;
2024
2025 for (band = 0; band < NUM_NL80211_BANDS; band++)
2026 if (wiphy->bands[band])
2027 n_channels += wiphy->bands[band]->n_channels;
2028
2029 return n_channels;
2030 }
2031 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2032
cfg80211_get_station(struct net_device * dev,const u8 * mac_addr,struct station_info * sinfo)2033 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2034 struct station_info *sinfo)
2035 {
2036 struct cfg80211_registered_device *rdev;
2037 struct wireless_dev *wdev;
2038
2039 wdev = dev->ieee80211_ptr;
2040 if (!wdev)
2041 return -EOPNOTSUPP;
2042
2043 rdev = wiphy_to_rdev(wdev->wiphy);
2044 if (!rdev->ops->get_station)
2045 return -EOPNOTSUPP;
2046
2047 memset(sinfo, 0, sizeof(*sinfo));
2048
2049 return rdev_get_station(rdev, dev, mac_addr, sinfo);
2050 }
2051 EXPORT_SYMBOL(cfg80211_get_station);
2052
cfg80211_free_nan_func(struct cfg80211_nan_func * f)2053 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2054 {
2055 int i;
2056
2057 if (!f)
2058 return;
2059
2060 kfree(f->serv_spec_info);
2061 kfree(f->srf_bf);
2062 kfree(f->srf_macs);
2063 for (i = 0; i < f->num_rx_filters; i++)
2064 kfree(f->rx_filters[i].filter);
2065
2066 for (i = 0; i < f->num_tx_filters; i++)
2067 kfree(f->tx_filters[i].filter);
2068
2069 kfree(f->rx_filters);
2070 kfree(f->tx_filters);
2071 kfree(f);
2072 }
2073 EXPORT_SYMBOL(cfg80211_free_nan_func);
2074
cfg80211_does_bw_fit_range(const struct ieee80211_freq_range * freq_range,u32 center_freq_khz,u32 bw_khz)2075 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2076 u32 center_freq_khz, u32 bw_khz)
2077 {
2078 u32 start_freq_khz, end_freq_khz;
2079
2080 start_freq_khz = center_freq_khz - (bw_khz / 2);
2081 end_freq_khz = center_freq_khz + (bw_khz / 2);
2082
2083 if (start_freq_khz >= freq_range->start_freq_khz &&
2084 end_freq_khz <= freq_range->end_freq_khz)
2085 return true;
2086
2087 return false;
2088 }
2089
cfg80211_sinfo_alloc_tid_stats(struct station_info * sinfo,gfp_t gfp)2090 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2091 {
2092 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2093 sizeof(*(sinfo->pertid)),
2094 gfp);
2095 if (!sinfo->pertid)
2096 return -ENOMEM;
2097
2098 return 0;
2099 }
2100 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2101
2102 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2103 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2104 const unsigned char rfc1042_header[] __aligned(2) =
2105 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2106 EXPORT_SYMBOL(rfc1042_header);
2107
2108 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2109 const unsigned char bridge_tunnel_header[] __aligned(2) =
2110 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2111 EXPORT_SYMBOL(bridge_tunnel_header);
2112
2113 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2114 struct iapp_layer2_update {
2115 u8 da[ETH_ALEN]; /* broadcast */
2116 u8 sa[ETH_ALEN]; /* STA addr */
2117 __be16 len; /* 6 */
2118 u8 dsap; /* 0 */
2119 u8 ssap; /* 0 */
2120 u8 control;
2121 u8 xid_info[3];
2122 } __packed;
2123
cfg80211_send_layer2_update(struct net_device * dev,const u8 * addr)2124 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2125 {
2126 struct iapp_layer2_update *msg;
2127 struct sk_buff *skb;
2128
2129 /* Send Level 2 Update Frame to update forwarding tables in layer 2
2130 * bridge devices */
2131
2132 skb = dev_alloc_skb(sizeof(*msg));
2133 if (!skb)
2134 return;
2135 msg = skb_put(skb, sizeof(*msg));
2136
2137 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2138 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2139
2140 eth_broadcast_addr(msg->da);
2141 ether_addr_copy(msg->sa, addr);
2142 msg->len = htons(6);
2143 msg->dsap = 0;
2144 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */
2145 msg->control = 0xaf; /* XID response lsb.1111F101.
2146 * F=0 (no poll command; unsolicited frame) */
2147 msg->xid_info[0] = 0x81; /* XID format identifier */
2148 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */
2149 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */
2150
2151 skb->dev = dev;
2152 skb->protocol = eth_type_trans(skb, dev);
2153 memset(skb->cb, 0, sizeof(skb->cb));
2154 netif_rx_ni(skb);
2155 }
2156 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2157
ieee80211_get_vht_max_nss(struct ieee80211_vht_cap * cap,enum ieee80211_vht_chanwidth bw,int mcs,bool ext_nss_bw_capable,unsigned int max_vht_nss)2158 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2159 enum ieee80211_vht_chanwidth bw,
2160 int mcs, bool ext_nss_bw_capable,
2161 unsigned int max_vht_nss)
2162 {
2163 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2164 int ext_nss_bw;
2165 int supp_width;
2166 int i, mcs_encoding;
2167
2168 if (map == 0xffff)
2169 return 0;
2170
2171 if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2172 return 0;
2173 if (mcs <= 7)
2174 mcs_encoding = 0;
2175 else if (mcs == 8)
2176 mcs_encoding = 1;
2177 else
2178 mcs_encoding = 2;
2179
2180 if (!max_vht_nss) {
2181 /* find max_vht_nss for the given MCS */
2182 for (i = 7; i >= 0; i--) {
2183 int supp = (map >> (2 * i)) & 3;
2184
2185 if (supp == 3)
2186 continue;
2187
2188 if (supp >= mcs_encoding) {
2189 max_vht_nss = i + 1;
2190 break;
2191 }
2192 }
2193 }
2194
2195 if (!(cap->supp_mcs.tx_mcs_map &
2196 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2197 return max_vht_nss;
2198
2199 ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2200 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2201 supp_width = le32_get_bits(cap->vht_cap_info,
2202 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2203
2204 /* if not capable, treat ext_nss_bw as 0 */
2205 if (!ext_nss_bw_capable)
2206 ext_nss_bw = 0;
2207
2208 /* This is invalid */
2209 if (supp_width == 3)
2210 return 0;
2211
2212 /* This is an invalid combination so pretend nothing is supported */
2213 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2214 return 0;
2215
2216 /*
2217 * Cover all the special cases according to IEEE 802.11-2016
2218 * Table 9-250. All other cases are either factor of 1 or not
2219 * valid/supported.
2220 */
2221 switch (bw) {
2222 case IEEE80211_VHT_CHANWIDTH_USE_HT:
2223 case IEEE80211_VHT_CHANWIDTH_80MHZ:
2224 if ((supp_width == 1 || supp_width == 2) &&
2225 ext_nss_bw == 3)
2226 return 2 * max_vht_nss;
2227 break;
2228 case IEEE80211_VHT_CHANWIDTH_160MHZ:
2229 if (supp_width == 0 &&
2230 (ext_nss_bw == 1 || ext_nss_bw == 2))
2231 return max_vht_nss / 2;
2232 if (supp_width == 0 &&
2233 ext_nss_bw == 3)
2234 return (3 * max_vht_nss) / 4;
2235 if (supp_width == 1 &&
2236 ext_nss_bw == 3)
2237 return 2 * max_vht_nss;
2238 break;
2239 case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2240 if (supp_width == 0 && ext_nss_bw == 1)
2241 return 0; /* not possible */
2242 if (supp_width == 0 &&
2243 ext_nss_bw == 2)
2244 return max_vht_nss / 2;
2245 if (supp_width == 0 &&
2246 ext_nss_bw == 3)
2247 return (3 * max_vht_nss) / 4;
2248 if (supp_width == 1 &&
2249 ext_nss_bw == 0)
2250 return 0; /* not possible */
2251 if (supp_width == 1 &&
2252 ext_nss_bw == 1)
2253 return max_vht_nss / 2;
2254 if (supp_width == 1 &&
2255 ext_nss_bw == 2)
2256 return (3 * max_vht_nss) / 4;
2257 break;
2258 }
2259
2260 /* not covered or invalid combination received */
2261 return max_vht_nss;
2262 }
2263 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2264
cfg80211_iftype_allowed(struct wiphy * wiphy,enum nl80211_iftype iftype,bool is_4addr,u8 check_swif)2265 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2266 bool is_4addr, u8 check_swif)
2267
2268 {
2269 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2270
2271 switch (check_swif) {
2272 case 0:
2273 if (is_vlan && is_4addr)
2274 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2275 return wiphy->interface_modes & BIT(iftype);
2276 case 1:
2277 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2278 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2279 return wiphy->software_iftypes & BIT(iftype);
2280 default:
2281 break;
2282 }
2283
2284 return false;
2285 }
2286 EXPORT_SYMBOL(cfg80211_iftype_allowed);
2287