1 // SPDX-License-Identifier: LGPL-2.1
2 /*
3  *
4  *   Copyright (C) International Business Machines  Corp., 2002,2008
5  *   Author(s): Steve French (sfrench@us.ibm.com)
6  *
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/ctype.h>
11 #include <linux/mempool.h>
12 #include <linux/vmalloc.h>
13 #include "cifspdu.h"
14 #include "cifsglob.h"
15 #include "cifsproto.h"
16 #include "cifs_debug.h"
17 #include "smberr.h"
18 #include "nterr.h"
19 #include "cifs_unicode.h"
20 #include "smb2pdu.h"
21 #include "cifsfs.h"
22 #ifdef CONFIG_CIFS_DFS_UPCALL
23 #include "dns_resolve.h"
24 #endif
25 #include "fs_context.h"
26 
27 extern mempool_t *cifs_sm_req_poolp;
28 extern mempool_t *cifs_req_poolp;
29 
30 /* The xid serves as a useful identifier for each incoming vfs request,
31    in a similar way to the mid which is useful to track each sent smb,
32    and CurrentXid can also provide a running counter (although it
33    will eventually wrap past zero) of the total vfs operations handled
34    since the cifs fs was mounted */
35 
36 unsigned int
_get_xid(void)37 _get_xid(void)
38 {
39 	unsigned int xid;
40 
41 	spin_lock(&GlobalMid_Lock);
42 	GlobalTotalActiveXid++;
43 
44 	/* keep high water mark for number of simultaneous ops in filesystem */
45 	if (GlobalTotalActiveXid > GlobalMaxActiveXid)
46 		GlobalMaxActiveXid = GlobalTotalActiveXid;
47 	if (GlobalTotalActiveXid > 65000)
48 		cifs_dbg(FYI, "warning: more than 65000 requests active\n");
49 	xid = GlobalCurrentXid++;
50 	spin_unlock(&GlobalMid_Lock);
51 	return xid;
52 }
53 
54 void
_free_xid(unsigned int xid)55 _free_xid(unsigned int xid)
56 {
57 	spin_lock(&GlobalMid_Lock);
58 	/* if (GlobalTotalActiveXid == 0)
59 		BUG(); */
60 	GlobalTotalActiveXid--;
61 	spin_unlock(&GlobalMid_Lock);
62 }
63 
64 struct cifs_ses *
sesInfoAlloc(void)65 sesInfoAlloc(void)
66 {
67 	struct cifs_ses *ret_buf;
68 
69 	ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL);
70 	if (ret_buf) {
71 		atomic_inc(&sesInfoAllocCount);
72 		ret_buf->status = CifsNew;
73 		++ret_buf->ses_count;
74 		INIT_LIST_HEAD(&ret_buf->smb_ses_list);
75 		INIT_LIST_HEAD(&ret_buf->tcon_list);
76 		mutex_init(&ret_buf->session_mutex);
77 		spin_lock_init(&ret_buf->iface_lock);
78 		spin_lock_init(&ret_buf->chan_lock);
79 	}
80 	return ret_buf;
81 }
82 
83 void
sesInfoFree(struct cifs_ses * buf_to_free)84 sesInfoFree(struct cifs_ses *buf_to_free)
85 {
86 	if (buf_to_free == NULL) {
87 		cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n");
88 		return;
89 	}
90 
91 	atomic_dec(&sesInfoAllocCount);
92 	kfree(buf_to_free->serverOS);
93 	kfree(buf_to_free->serverDomain);
94 	kfree(buf_to_free->serverNOS);
95 	kfree_sensitive(buf_to_free->password);
96 	kfree(buf_to_free->user_name);
97 	kfree(buf_to_free->domainName);
98 	kfree(buf_to_free->workstation_name);
99 	kfree_sensitive(buf_to_free->auth_key.response);
100 	kfree(buf_to_free->iface_list);
101 	kfree_sensitive(buf_to_free);
102 }
103 
104 struct cifs_tcon *
tconInfoAlloc(void)105 tconInfoAlloc(void)
106 {
107 	struct cifs_tcon *ret_buf;
108 
109 	ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL);
110 	if (!ret_buf)
111 		return NULL;
112 	ret_buf->crfid.fid = kzalloc(sizeof(*ret_buf->crfid.fid), GFP_KERNEL);
113 	if (!ret_buf->crfid.fid) {
114 		kfree(ret_buf);
115 		return NULL;
116 	}
117 
118 	atomic_inc(&tconInfoAllocCount);
119 	ret_buf->tidStatus = CifsNew;
120 	++ret_buf->tc_count;
121 	INIT_LIST_HEAD(&ret_buf->openFileList);
122 	INIT_LIST_HEAD(&ret_buf->tcon_list);
123 	spin_lock_init(&ret_buf->open_file_lock);
124 	mutex_init(&ret_buf->crfid.fid_mutex);
125 	spin_lock_init(&ret_buf->stat_lock);
126 	atomic_set(&ret_buf->num_local_opens, 0);
127 	atomic_set(&ret_buf->num_remote_opens, 0);
128 
129 	return ret_buf;
130 }
131 
132 void
tconInfoFree(struct cifs_tcon * buf_to_free)133 tconInfoFree(struct cifs_tcon *buf_to_free)
134 {
135 	if (buf_to_free == NULL) {
136 		cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n");
137 		return;
138 	}
139 	atomic_dec(&tconInfoAllocCount);
140 	kfree(buf_to_free->nativeFileSystem);
141 	kfree_sensitive(buf_to_free->password);
142 	kfree(buf_to_free->crfid.fid);
143 	kfree(buf_to_free);
144 }
145 
146 struct smb_hdr *
cifs_buf_get(void)147 cifs_buf_get(void)
148 {
149 	struct smb_hdr *ret_buf = NULL;
150 	/*
151 	 * SMB2 header is bigger than CIFS one - no problems to clean some
152 	 * more bytes for CIFS.
153 	 */
154 	size_t buf_size = sizeof(struct smb2_hdr);
155 
156 	/*
157 	 * We could use negotiated size instead of max_msgsize -
158 	 * but it may be more efficient to always alloc same size
159 	 * albeit slightly larger than necessary and maxbuffersize
160 	 * defaults to this and can not be bigger.
161 	 */
162 	ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS);
163 
164 	/* clear the first few header bytes */
165 	/* for most paths, more is cleared in header_assemble */
166 	memset(ret_buf, 0, buf_size + 3);
167 	atomic_inc(&bufAllocCount);
168 #ifdef CONFIG_CIFS_STATS2
169 	atomic_inc(&totBufAllocCount);
170 #endif /* CONFIG_CIFS_STATS2 */
171 
172 	return ret_buf;
173 }
174 
175 void
cifs_buf_release(void * buf_to_free)176 cifs_buf_release(void *buf_to_free)
177 {
178 	if (buf_to_free == NULL) {
179 		/* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/
180 		return;
181 	}
182 	mempool_free(buf_to_free, cifs_req_poolp);
183 
184 	atomic_dec(&bufAllocCount);
185 	return;
186 }
187 
188 struct smb_hdr *
cifs_small_buf_get(void)189 cifs_small_buf_get(void)
190 {
191 	struct smb_hdr *ret_buf = NULL;
192 
193 /* We could use negotiated size instead of max_msgsize -
194    but it may be more efficient to always alloc same size
195    albeit slightly larger than necessary and maxbuffersize
196    defaults to this and can not be bigger */
197 	ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS);
198 	/* No need to clear memory here, cleared in header assemble */
199 	/*	memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/
200 	atomic_inc(&smBufAllocCount);
201 #ifdef CONFIG_CIFS_STATS2
202 	atomic_inc(&totSmBufAllocCount);
203 #endif /* CONFIG_CIFS_STATS2 */
204 
205 	return ret_buf;
206 }
207 
208 void
cifs_small_buf_release(void * buf_to_free)209 cifs_small_buf_release(void *buf_to_free)
210 {
211 
212 	if (buf_to_free == NULL) {
213 		cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n");
214 		return;
215 	}
216 	mempool_free(buf_to_free, cifs_sm_req_poolp);
217 
218 	atomic_dec(&smBufAllocCount);
219 	return;
220 }
221 
222 void
free_rsp_buf(int resp_buftype,void * rsp)223 free_rsp_buf(int resp_buftype, void *rsp)
224 {
225 	if (resp_buftype == CIFS_SMALL_BUFFER)
226 		cifs_small_buf_release(rsp);
227 	else if (resp_buftype == CIFS_LARGE_BUFFER)
228 		cifs_buf_release(rsp);
229 }
230 
231 /* NB: MID can not be set if treeCon not passed in, in that
232    case it is responsbility of caller to set the mid */
233 void
header_assemble(struct smb_hdr * buffer,char smb_command,const struct cifs_tcon * treeCon,int word_count)234 header_assemble(struct smb_hdr *buffer, char smb_command /* command */ ,
235 		const struct cifs_tcon *treeCon, int word_count
236 		/* length of fixed section (word count) in two byte units  */)
237 {
238 	char *temp = (char *) buffer;
239 
240 	memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */
241 
242 	buffer->smb_buf_length = cpu_to_be32(
243 	    (2 * word_count) + sizeof(struct smb_hdr) -
244 	    4 /*  RFC 1001 length field does not count */  +
245 	    2 /* for bcc field itself */) ;
246 
247 	buffer->Protocol[0] = 0xFF;
248 	buffer->Protocol[1] = 'S';
249 	buffer->Protocol[2] = 'M';
250 	buffer->Protocol[3] = 'B';
251 	buffer->Command = smb_command;
252 	buffer->Flags = 0x00;	/* case sensitive */
253 	buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES;
254 	buffer->Pid = cpu_to_le16((__u16)current->tgid);
255 	buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16));
256 	if (treeCon) {
257 		buffer->Tid = treeCon->tid;
258 		if (treeCon->ses) {
259 			if (treeCon->ses->capabilities & CAP_UNICODE)
260 				buffer->Flags2 |= SMBFLG2_UNICODE;
261 			if (treeCon->ses->capabilities & CAP_STATUS32)
262 				buffer->Flags2 |= SMBFLG2_ERR_STATUS;
263 
264 			/* Uid is not converted */
265 			buffer->Uid = treeCon->ses->Suid;
266 			if (treeCon->ses->server)
267 				buffer->Mid = get_next_mid(treeCon->ses->server);
268 		}
269 		if (treeCon->Flags & SMB_SHARE_IS_IN_DFS)
270 			buffer->Flags2 |= SMBFLG2_DFS;
271 		if (treeCon->nocase)
272 			buffer->Flags  |= SMBFLG_CASELESS;
273 		if ((treeCon->ses) && (treeCon->ses->server))
274 			if (treeCon->ses->server->sign)
275 				buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE;
276 	}
277 
278 /*  endian conversion of flags is now done just before sending */
279 	buffer->WordCount = (char) word_count;
280 	return;
281 }
282 
283 static int
check_smb_hdr(struct smb_hdr * smb)284 check_smb_hdr(struct smb_hdr *smb)
285 {
286 	/* does it have the right SMB "signature" ? */
287 	if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) {
288 		cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n",
289 			 *(unsigned int *)smb->Protocol);
290 		return 1;
291 	}
292 
293 	/* if it's a response then accept */
294 	if (smb->Flags & SMBFLG_RESPONSE)
295 		return 0;
296 
297 	/* only one valid case where server sends us request */
298 	if (smb->Command == SMB_COM_LOCKING_ANDX)
299 		return 0;
300 
301 	cifs_dbg(VFS, "Server sent request, not response. mid=%u\n",
302 		 get_mid(smb));
303 	return 1;
304 }
305 
306 int
checkSMB(char * buf,unsigned int total_read,struct TCP_Server_Info * server)307 checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server)
308 {
309 	struct smb_hdr *smb = (struct smb_hdr *)buf;
310 	__u32 rfclen = be32_to_cpu(smb->smb_buf_length);
311 	__u32 clc_len;  /* calculated length */
312 	cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n",
313 		 total_read, rfclen);
314 
315 	/* is this frame too small to even get to a BCC? */
316 	if (total_read < 2 + sizeof(struct smb_hdr)) {
317 		if ((total_read >= sizeof(struct smb_hdr) - 1)
318 			    && (smb->Status.CifsError != 0)) {
319 			/* it's an error return */
320 			smb->WordCount = 0;
321 			/* some error cases do not return wct and bcc */
322 			return 0;
323 		} else if ((total_read == sizeof(struct smb_hdr) + 1) &&
324 				(smb->WordCount == 0)) {
325 			char *tmp = (char *)smb;
326 			/* Need to work around a bug in two servers here */
327 			/* First, check if the part of bcc they sent was zero */
328 			if (tmp[sizeof(struct smb_hdr)] == 0) {
329 				/* some servers return only half of bcc
330 				 * on simple responses (wct, bcc both zero)
331 				 * in particular have seen this on
332 				 * ulogoffX and FindClose. This leaves
333 				 * one byte of bcc potentially unitialized
334 				 */
335 				/* zero rest of bcc */
336 				tmp[sizeof(struct smb_hdr)+1] = 0;
337 				return 0;
338 			}
339 			cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n");
340 		} else {
341 			cifs_dbg(VFS, "Length less than smb header size\n");
342 		}
343 		return -EIO;
344 	}
345 
346 	/* otherwise, there is enough to get to the BCC */
347 	if (check_smb_hdr(smb))
348 		return -EIO;
349 	clc_len = smbCalcSize(smb, server);
350 
351 	if (4 + rfclen != total_read) {
352 		cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n",
353 			 rfclen);
354 		return -EIO;
355 	}
356 
357 	if (4 + rfclen != clc_len) {
358 		__u16 mid = get_mid(smb);
359 		/* check if bcc wrapped around for large read responses */
360 		if ((rfclen > 64 * 1024) && (rfclen > clc_len)) {
361 			/* check if lengths match mod 64K */
362 			if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF))
363 				return 0; /* bcc wrapped */
364 		}
365 		cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n",
366 			 clc_len, 4 + rfclen, mid);
367 
368 		if (4 + rfclen < clc_len) {
369 			cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n",
370 				 rfclen, mid);
371 			return -EIO;
372 		} else if (rfclen > clc_len + 512) {
373 			/*
374 			 * Some servers (Windows XP in particular) send more
375 			 * data than the lengths in the SMB packet would
376 			 * indicate on certain calls (byte range locks and
377 			 * trans2 find first calls in particular). While the
378 			 * client can handle such a frame by ignoring the
379 			 * trailing data, we choose limit the amount of extra
380 			 * data to 512 bytes.
381 			 */
382 			cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n",
383 				 rfclen, mid);
384 			return -EIO;
385 		}
386 	}
387 	return 0;
388 }
389 
390 bool
is_valid_oplock_break(char * buffer,struct TCP_Server_Info * srv)391 is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv)
392 {
393 	struct smb_hdr *buf = (struct smb_hdr *)buffer;
394 	struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf;
395 	struct list_head *tmp, *tmp1, *tmp2;
396 	struct cifs_ses *ses;
397 	struct cifs_tcon *tcon;
398 	struct cifsInodeInfo *pCifsInode;
399 	struct cifsFileInfo *netfile;
400 
401 	cifs_dbg(FYI, "Checking for oplock break or dnotify response\n");
402 	if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) &&
403 	   (pSMB->hdr.Flags & SMBFLG_RESPONSE)) {
404 		struct smb_com_transaction_change_notify_rsp *pSMBr =
405 			(struct smb_com_transaction_change_notify_rsp *)buf;
406 		struct file_notify_information *pnotify;
407 		__u32 data_offset = 0;
408 		size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length);
409 
410 		if (get_bcc(buf) > sizeof(struct file_notify_information)) {
411 			data_offset = le32_to_cpu(pSMBr->DataOffset);
412 
413 			if (data_offset >
414 			    len - sizeof(struct file_notify_information)) {
415 				cifs_dbg(FYI, "Invalid data_offset %u\n",
416 					 data_offset);
417 				return true;
418 			}
419 			pnotify = (struct file_notify_information *)
420 				((char *)&pSMBr->hdr.Protocol + data_offset);
421 			cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n",
422 				 pnotify->FileName, pnotify->Action);
423 			/*   cifs_dump_mem("Rcvd notify Data: ",buf,
424 				sizeof(struct smb_hdr)+60); */
425 			return true;
426 		}
427 		if (pSMBr->hdr.Status.CifsError) {
428 			cifs_dbg(FYI, "notify err 0x%x\n",
429 				 pSMBr->hdr.Status.CifsError);
430 			return true;
431 		}
432 		return false;
433 	}
434 	if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX)
435 		return false;
436 	if (pSMB->hdr.Flags & SMBFLG_RESPONSE) {
437 		/* no sense logging error on invalid handle on oplock
438 		   break - harmless race between close request and oplock
439 		   break response is expected from time to time writing out
440 		   large dirty files cached on the client */
441 		if ((NT_STATUS_INVALID_HANDLE) ==
442 		   le32_to_cpu(pSMB->hdr.Status.CifsError)) {
443 			cifs_dbg(FYI, "Invalid handle on oplock break\n");
444 			return true;
445 		} else if (ERRbadfid ==
446 		   le16_to_cpu(pSMB->hdr.Status.DosError.Error)) {
447 			return true;
448 		} else {
449 			return false; /* on valid oplock brk we get "request" */
450 		}
451 	}
452 	if (pSMB->hdr.WordCount != 8)
453 		return false;
454 
455 	cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n",
456 		 pSMB->LockType, pSMB->OplockLevel);
457 	if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE))
458 		return false;
459 
460 	/* look up tcon based on tid & uid */
461 	spin_lock(&cifs_tcp_ses_lock);
462 	list_for_each(tmp, &srv->smb_ses_list) {
463 		ses = list_entry(tmp, struct cifs_ses, smb_ses_list);
464 		list_for_each(tmp1, &ses->tcon_list) {
465 			tcon = list_entry(tmp1, struct cifs_tcon, tcon_list);
466 			if (tcon->tid != buf->Tid)
467 				continue;
468 
469 			cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks);
470 			spin_lock(&tcon->open_file_lock);
471 			list_for_each(tmp2, &tcon->openFileList) {
472 				netfile = list_entry(tmp2, struct cifsFileInfo,
473 						     tlist);
474 				if (pSMB->Fid != netfile->fid.netfid)
475 					continue;
476 
477 				cifs_dbg(FYI, "file id match, oplock break\n");
478 				pCifsInode = CIFS_I(d_inode(netfile->dentry));
479 
480 				set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK,
481 					&pCifsInode->flags);
482 
483 				netfile->oplock_epoch = 0;
484 				netfile->oplock_level = pSMB->OplockLevel;
485 				netfile->oplock_break_cancelled = false;
486 				cifs_queue_oplock_break(netfile);
487 
488 				spin_unlock(&tcon->open_file_lock);
489 				spin_unlock(&cifs_tcp_ses_lock);
490 				return true;
491 			}
492 			spin_unlock(&tcon->open_file_lock);
493 			spin_unlock(&cifs_tcp_ses_lock);
494 			cifs_dbg(FYI, "No matching file for oplock break\n");
495 			return true;
496 		}
497 	}
498 	spin_unlock(&cifs_tcp_ses_lock);
499 	cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n");
500 	return true;
501 }
502 
503 void
dump_smb(void * buf,int smb_buf_length)504 dump_smb(void *buf, int smb_buf_length)
505 {
506 	if (traceSMB == 0)
507 		return;
508 
509 	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf,
510 		       smb_buf_length, true);
511 }
512 
513 void
cifs_autodisable_serverino(struct cifs_sb_info * cifs_sb)514 cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb)
515 {
516 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) {
517 		struct cifs_tcon *tcon = NULL;
518 
519 		if (cifs_sb->master_tlink)
520 			tcon = cifs_sb_master_tcon(cifs_sb);
521 
522 		cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM;
523 		cifs_sb->mnt_cifs_serverino_autodisabled = true;
524 		cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n",
525 			 tcon ? tcon->treeName : "new server");
526 		cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n");
527 		cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n");
528 
529 	}
530 }
531 
cifs_set_oplock_level(struct cifsInodeInfo * cinode,__u32 oplock)532 void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock)
533 {
534 	oplock &= 0xF;
535 
536 	if (oplock == OPLOCK_EXCLUSIVE) {
537 		cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG;
538 		cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n",
539 			 &cinode->vfs_inode);
540 	} else if (oplock == OPLOCK_READ) {
541 		cinode->oplock = CIFS_CACHE_READ_FLG;
542 		cifs_dbg(FYI, "Level II Oplock granted on inode %p\n",
543 			 &cinode->vfs_inode);
544 	} else
545 		cinode->oplock = 0;
546 }
547 
548 /*
549  * We wait for oplock breaks to be processed before we attempt to perform
550  * writes.
551  */
cifs_get_writer(struct cifsInodeInfo * cinode)552 int cifs_get_writer(struct cifsInodeInfo *cinode)
553 {
554 	int rc;
555 
556 start:
557 	rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK,
558 			 TASK_KILLABLE);
559 	if (rc)
560 		return rc;
561 
562 	spin_lock(&cinode->writers_lock);
563 	if (!cinode->writers)
564 		set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
565 	cinode->writers++;
566 	/* Check to see if we have started servicing an oplock break */
567 	if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) {
568 		cinode->writers--;
569 		if (cinode->writers == 0) {
570 			clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
571 			wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
572 		}
573 		spin_unlock(&cinode->writers_lock);
574 		goto start;
575 	}
576 	spin_unlock(&cinode->writers_lock);
577 	return 0;
578 }
579 
cifs_put_writer(struct cifsInodeInfo * cinode)580 void cifs_put_writer(struct cifsInodeInfo *cinode)
581 {
582 	spin_lock(&cinode->writers_lock);
583 	cinode->writers--;
584 	if (cinode->writers == 0) {
585 		clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
586 		wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
587 	}
588 	spin_unlock(&cinode->writers_lock);
589 }
590 
591 /**
592  * cifs_queue_oplock_break - queue the oplock break handler for cfile
593  * @cfile: The file to break the oplock on
594  *
595  * This function is called from the demultiplex thread when it
596  * receives an oplock break for @cfile.
597  *
598  * Assumes the tcon->open_file_lock is held.
599  * Assumes cfile->file_info_lock is NOT held.
600  */
cifs_queue_oplock_break(struct cifsFileInfo * cfile)601 void cifs_queue_oplock_break(struct cifsFileInfo *cfile)
602 {
603 	/*
604 	 * Bump the handle refcount now while we hold the
605 	 * open_file_lock to enforce the validity of it for the oplock
606 	 * break handler. The matching put is done at the end of the
607 	 * handler.
608 	 */
609 	cifsFileInfo_get(cfile);
610 
611 	queue_work(cifsoplockd_wq, &cfile->oplock_break);
612 }
613 
cifs_done_oplock_break(struct cifsInodeInfo * cinode)614 void cifs_done_oplock_break(struct cifsInodeInfo *cinode)
615 {
616 	clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags);
617 	wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK);
618 }
619 
620 bool
backup_cred(struct cifs_sb_info * cifs_sb)621 backup_cred(struct cifs_sb_info *cifs_sb)
622 {
623 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) {
624 		if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid()))
625 			return true;
626 	}
627 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) {
628 		if (in_group_p(cifs_sb->ctx->backupgid))
629 			return true;
630 	}
631 
632 	return false;
633 }
634 
635 void
cifs_del_pending_open(struct cifs_pending_open * open)636 cifs_del_pending_open(struct cifs_pending_open *open)
637 {
638 	spin_lock(&tlink_tcon(open->tlink)->open_file_lock);
639 	list_del(&open->olist);
640 	spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
641 }
642 
643 void
cifs_add_pending_open_locked(struct cifs_fid * fid,struct tcon_link * tlink,struct cifs_pending_open * open)644 cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink,
645 			     struct cifs_pending_open *open)
646 {
647 	memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE);
648 	open->oplock = CIFS_OPLOCK_NO_CHANGE;
649 	open->tlink = tlink;
650 	fid->pending_open = open;
651 	list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens);
652 }
653 
654 void
cifs_add_pending_open(struct cifs_fid * fid,struct tcon_link * tlink,struct cifs_pending_open * open)655 cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink,
656 		      struct cifs_pending_open *open)
657 {
658 	spin_lock(&tlink_tcon(tlink)->open_file_lock);
659 	cifs_add_pending_open_locked(fid, tlink, open);
660 	spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
661 }
662 
663 /*
664  * Critical section which runs after acquiring deferred_lock.
665  * As there is no reference count on cifs_deferred_close, pdclose
666  * should not be used outside deferred_lock.
667  */
668 bool
cifs_is_deferred_close(struct cifsFileInfo * cfile,struct cifs_deferred_close ** pdclose)669 cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose)
670 {
671 	struct cifs_deferred_close *dclose;
672 
673 	list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) {
674 		if ((dclose->netfid == cfile->fid.netfid) &&
675 			(dclose->persistent_fid == cfile->fid.persistent_fid) &&
676 			(dclose->volatile_fid == cfile->fid.volatile_fid)) {
677 			*pdclose = dclose;
678 			return true;
679 		}
680 	}
681 	return false;
682 }
683 
684 /*
685  * Critical section which runs after acquiring deferred_lock.
686  */
687 void
cifs_add_deferred_close(struct cifsFileInfo * cfile,struct cifs_deferred_close * dclose)688 cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose)
689 {
690 	bool is_deferred = false;
691 	struct cifs_deferred_close *pdclose;
692 
693 	is_deferred = cifs_is_deferred_close(cfile, &pdclose);
694 	if (is_deferred) {
695 		kfree(dclose);
696 		return;
697 	}
698 
699 	dclose->tlink = cfile->tlink;
700 	dclose->netfid = cfile->fid.netfid;
701 	dclose->persistent_fid = cfile->fid.persistent_fid;
702 	dclose->volatile_fid = cfile->fid.volatile_fid;
703 	list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes);
704 }
705 
706 /*
707  * Critical section which runs after acquiring deferred_lock.
708  */
709 void
cifs_del_deferred_close(struct cifsFileInfo * cfile)710 cifs_del_deferred_close(struct cifsFileInfo *cfile)
711 {
712 	bool is_deferred = false;
713 	struct cifs_deferred_close *dclose;
714 
715 	is_deferred = cifs_is_deferred_close(cfile, &dclose);
716 	if (!is_deferred)
717 		return;
718 	list_del(&dclose->dlist);
719 	kfree(dclose);
720 }
721 
722 void
cifs_close_deferred_file(struct cifsInodeInfo * cifs_inode)723 cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode)
724 {
725 	struct cifsFileInfo *cfile = NULL;
726 	struct file_list *tmp_list, *tmp_next_list;
727 	struct list_head file_head;
728 
729 	if (cifs_inode == NULL)
730 		return;
731 
732 	INIT_LIST_HEAD(&file_head);
733 	spin_lock(&cifs_inode->open_file_lock);
734 	list_for_each_entry(cfile, &cifs_inode->openFileList, flist) {
735 		if (delayed_work_pending(&cfile->deferred)) {
736 			if (cancel_delayed_work(&cfile->deferred)) {
737 				tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
738 				if (tmp_list == NULL)
739 					break;
740 				tmp_list->cfile = cfile;
741 				list_add_tail(&tmp_list->list, &file_head);
742 			}
743 		}
744 	}
745 	spin_unlock(&cifs_inode->open_file_lock);
746 
747 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
748 		_cifsFileInfo_put(tmp_list->cfile, true, false);
749 		list_del(&tmp_list->list);
750 		kfree(tmp_list);
751 	}
752 }
753 
754 void
cifs_close_all_deferred_files(struct cifs_tcon * tcon)755 cifs_close_all_deferred_files(struct cifs_tcon *tcon)
756 {
757 	struct cifsFileInfo *cfile;
758 	struct list_head *tmp;
759 	struct file_list *tmp_list, *tmp_next_list;
760 	struct list_head file_head;
761 
762 	INIT_LIST_HEAD(&file_head);
763 	spin_lock(&tcon->open_file_lock);
764 	list_for_each(tmp, &tcon->openFileList) {
765 		cfile = list_entry(tmp, struct cifsFileInfo, tlist);
766 		if (delayed_work_pending(&cfile->deferred)) {
767 			if (cancel_delayed_work(&cfile->deferred)) {
768 				tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
769 				if (tmp_list == NULL)
770 					break;
771 				tmp_list->cfile = cfile;
772 				list_add_tail(&tmp_list->list, &file_head);
773 			}
774 		}
775 	}
776 	spin_unlock(&tcon->open_file_lock);
777 
778 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
779 		_cifsFileInfo_put(tmp_list->cfile, true, false);
780 		list_del(&tmp_list->list);
781 		kfree(tmp_list);
782 	}
783 }
784 void
cifs_close_deferred_file_under_dentry(struct cifs_tcon * tcon,const char * path)785 cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path)
786 {
787 	struct cifsFileInfo *cfile;
788 	struct list_head *tmp;
789 	struct file_list *tmp_list, *tmp_next_list;
790 	struct list_head file_head;
791 	void *page;
792 	const char *full_path;
793 
794 	INIT_LIST_HEAD(&file_head);
795 	page = alloc_dentry_path();
796 	spin_lock(&tcon->open_file_lock);
797 	list_for_each(tmp, &tcon->openFileList) {
798 		cfile = list_entry(tmp, struct cifsFileInfo, tlist);
799 		full_path = build_path_from_dentry(cfile->dentry, page);
800 		if (strstr(full_path, path)) {
801 			if (delayed_work_pending(&cfile->deferred)) {
802 				if (cancel_delayed_work(&cfile->deferred)) {
803 					tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
804 					if (tmp_list == NULL)
805 						break;
806 					tmp_list->cfile = cfile;
807 					list_add_tail(&tmp_list->list, &file_head);
808 				}
809 			}
810 		}
811 	}
812 	spin_unlock(&tcon->open_file_lock);
813 
814 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
815 		_cifsFileInfo_put(tmp_list->cfile, true, false);
816 		list_del(&tmp_list->list);
817 		kfree(tmp_list);
818 	}
819 	free_dentry_path(page);
820 }
821 
822 /* parses DFS refferal V3 structure
823  * caller is responsible for freeing target_nodes
824  * returns:
825  * - on success - 0
826  * - on failure - errno
827  */
828 int
parse_dfs_referrals(struct get_dfs_referral_rsp * rsp,u32 rsp_size,unsigned int * num_of_nodes,struct dfs_info3_param ** target_nodes,const struct nls_table * nls_codepage,int remap,const char * searchName,bool is_unicode)829 parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size,
830 		    unsigned int *num_of_nodes,
831 		    struct dfs_info3_param **target_nodes,
832 		    const struct nls_table *nls_codepage, int remap,
833 		    const char *searchName, bool is_unicode)
834 {
835 	int i, rc = 0;
836 	char *data_end;
837 	struct dfs_referral_level_3 *ref;
838 
839 	*num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals);
840 
841 	if (*num_of_nodes < 1) {
842 		cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n",
843 			 *num_of_nodes);
844 		rc = -EINVAL;
845 		goto parse_DFS_referrals_exit;
846 	}
847 
848 	ref = (struct dfs_referral_level_3 *) &(rsp->referrals);
849 	if (ref->VersionNumber != cpu_to_le16(3)) {
850 		cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n",
851 			 le16_to_cpu(ref->VersionNumber));
852 		rc = -EINVAL;
853 		goto parse_DFS_referrals_exit;
854 	}
855 
856 	/* get the upper boundary of the resp buffer */
857 	data_end = (char *)rsp + rsp_size;
858 
859 	cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n",
860 		 *num_of_nodes, le32_to_cpu(rsp->DFSFlags));
861 
862 	*target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param),
863 				GFP_KERNEL);
864 	if (*target_nodes == NULL) {
865 		rc = -ENOMEM;
866 		goto parse_DFS_referrals_exit;
867 	}
868 
869 	/* collect necessary data from referrals */
870 	for (i = 0; i < *num_of_nodes; i++) {
871 		char *temp;
872 		int max_len;
873 		struct dfs_info3_param *node = (*target_nodes)+i;
874 
875 		node->flags = le32_to_cpu(rsp->DFSFlags);
876 		if (is_unicode) {
877 			__le16 *tmp = kmalloc(strlen(searchName)*2 + 2,
878 						GFP_KERNEL);
879 			if (tmp == NULL) {
880 				rc = -ENOMEM;
881 				goto parse_DFS_referrals_exit;
882 			}
883 			cifsConvertToUTF16((__le16 *) tmp, searchName,
884 					   PATH_MAX, nls_codepage, remap);
885 			node->path_consumed = cifs_utf16_bytes(tmp,
886 					le16_to_cpu(rsp->PathConsumed),
887 					nls_codepage);
888 			kfree(tmp);
889 		} else
890 			node->path_consumed = le16_to_cpu(rsp->PathConsumed);
891 
892 		node->server_type = le16_to_cpu(ref->ServerType);
893 		node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags);
894 
895 		/* copy DfsPath */
896 		temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset);
897 		max_len = data_end - temp;
898 		node->path_name = cifs_strndup_from_utf16(temp, max_len,
899 						is_unicode, nls_codepage);
900 		if (!node->path_name) {
901 			rc = -ENOMEM;
902 			goto parse_DFS_referrals_exit;
903 		}
904 
905 		/* copy link target UNC */
906 		temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset);
907 		max_len = data_end - temp;
908 		node->node_name = cifs_strndup_from_utf16(temp, max_len,
909 						is_unicode, nls_codepage);
910 		if (!node->node_name) {
911 			rc = -ENOMEM;
912 			goto parse_DFS_referrals_exit;
913 		}
914 
915 		node->ttl = le32_to_cpu(ref->TimeToLive);
916 
917 		ref++;
918 	}
919 
920 parse_DFS_referrals_exit:
921 	if (rc) {
922 		free_dfs_info_array(*target_nodes, *num_of_nodes);
923 		*target_nodes = NULL;
924 		*num_of_nodes = 0;
925 	}
926 	return rc;
927 }
928 
929 struct cifs_aio_ctx *
cifs_aio_ctx_alloc(void)930 cifs_aio_ctx_alloc(void)
931 {
932 	struct cifs_aio_ctx *ctx;
933 
934 	/*
935 	 * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io
936 	 * to false so that we know when we have to unreference pages within
937 	 * cifs_aio_ctx_release()
938 	 */
939 	ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL);
940 	if (!ctx)
941 		return NULL;
942 
943 	INIT_LIST_HEAD(&ctx->list);
944 	mutex_init(&ctx->aio_mutex);
945 	init_completion(&ctx->done);
946 	kref_init(&ctx->refcount);
947 	return ctx;
948 }
949 
950 void
cifs_aio_ctx_release(struct kref * refcount)951 cifs_aio_ctx_release(struct kref *refcount)
952 {
953 	struct cifs_aio_ctx *ctx = container_of(refcount,
954 					struct cifs_aio_ctx, refcount);
955 
956 	cifsFileInfo_put(ctx->cfile);
957 
958 	/*
959 	 * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly
960 	 * which means that iov_iter_get_pages() was a success and thus that
961 	 * we have taken reference on pages.
962 	 */
963 	if (ctx->bv) {
964 		unsigned i;
965 
966 		for (i = 0; i < ctx->npages; i++) {
967 			if (ctx->should_dirty)
968 				set_page_dirty(ctx->bv[i].bv_page);
969 			put_page(ctx->bv[i].bv_page);
970 		}
971 		kvfree(ctx->bv);
972 	}
973 
974 	kfree(ctx);
975 }
976 
977 #define CIFS_AIO_KMALLOC_LIMIT (1024 * 1024)
978 
979 int
setup_aio_ctx_iter(struct cifs_aio_ctx * ctx,struct iov_iter * iter,int rw)980 setup_aio_ctx_iter(struct cifs_aio_ctx *ctx, struct iov_iter *iter, int rw)
981 {
982 	ssize_t rc;
983 	unsigned int cur_npages;
984 	unsigned int npages = 0;
985 	unsigned int i;
986 	size_t len;
987 	size_t count = iov_iter_count(iter);
988 	unsigned int saved_len;
989 	size_t start;
990 	unsigned int max_pages = iov_iter_npages(iter, INT_MAX);
991 	struct page **pages = NULL;
992 	struct bio_vec *bv = NULL;
993 
994 	if (iov_iter_is_kvec(iter)) {
995 		memcpy(&ctx->iter, iter, sizeof(*iter));
996 		ctx->len = count;
997 		iov_iter_advance(iter, count);
998 		return 0;
999 	}
1000 
1001 	if (array_size(max_pages, sizeof(*bv)) <= CIFS_AIO_KMALLOC_LIMIT)
1002 		bv = kmalloc_array(max_pages, sizeof(*bv), GFP_KERNEL);
1003 
1004 	if (!bv) {
1005 		bv = vmalloc(array_size(max_pages, sizeof(*bv)));
1006 		if (!bv)
1007 			return -ENOMEM;
1008 	}
1009 
1010 	if (array_size(max_pages, sizeof(*pages)) <= CIFS_AIO_KMALLOC_LIMIT)
1011 		pages = kmalloc_array(max_pages, sizeof(*pages), GFP_KERNEL);
1012 
1013 	if (!pages) {
1014 		pages = vmalloc(array_size(max_pages, sizeof(*pages)));
1015 		if (!pages) {
1016 			kvfree(bv);
1017 			return -ENOMEM;
1018 		}
1019 	}
1020 
1021 	saved_len = count;
1022 
1023 	while (count && npages < max_pages) {
1024 		rc = iov_iter_get_pages(iter, pages, count, max_pages, &start);
1025 		if (rc < 0) {
1026 			cifs_dbg(VFS, "Couldn't get user pages (rc=%zd)\n", rc);
1027 			break;
1028 		}
1029 
1030 		if (rc > count) {
1031 			cifs_dbg(VFS, "get pages rc=%zd more than %zu\n", rc,
1032 				 count);
1033 			break;
1034 		}
1035 
1036 		iov_iter_advance(iter, rc);
1037 		count -= rc;
1038 		rc += start;
1039 		cur_npages = DIV_ROUND_UP(rc, PAGE_SIZE);
1040 
1041 		if (npages + cur_npages > max_pages) {
1042 			cifs_dbg(VFS, "out of vec array capacity (%u vs %u)\n",
1043 				 npages + cur_npages, max_pages);
1044 			break;
1045 		}
1046 
1047 		for (i = 0; i < cur_npages; i++) {
1048 			len = rc > PAGE_SIZE ? PAGE_SIZE : rc;
1049 			bv[npages + i].bv_page = pages[i];
1050 			bv[npages + i].bv_offset = start;
1051 			bv[npages + i].bv_len = len - start;
1052 			rc -= len;
1053 			start = 0;
1054 		}
1055 
1056 		npages += cur_npages;
1057 	}
1058 
1059 	kvfree(pages);
1060 	ctx->bv = bv;
1061 	ctx->len = saved_len - count;
1062 	ctx->npages = npages;
1063 	iov_iter_bvec(&ctx->iter, rw, ctx->bv, npages, ctx->len);
1064 	return 0;
1065 }
1066 
1067 /**
1068  * cifs_alloc_hash - allocate hash and hash context together
1069  * @name: The name of the crypto hash algo
1070  * @shash: Where to put the pointer to the hash algo
1071  * @sdesc: Where to put the pointer to the hash descriptor
1072  *
1073  * The caller has to make sure @sdesc is initialized to either NULL or
1074  * a valid context. Both can be freed via cifs_free_hash().
1075  */
1076 int
cifs_alloc_hash(const char * name,struct crypto_shash ** shash,struct sdesc ** sdesc)1077 cifs_alloc_hash(const char *name,
1078 		struct crypto_shash **shash, struct sdesc **sdesc)
1079 {
1080 	int rc = 0;
1081 	size_t size;
1082 
1083 	if (*sdesc != NULL)
1084 		return 0;
1085 
1086 	*shash = crypto_alloc_shash(name, 0, 0);
1087 	if (IS_ERR(*shash)) {
1088 		cifs_dbg(VFS, "Could not allocate crypto %s\n", name);
1089 		rc = PTR_ERR(*shash);
1090 		*shash = NULL;
1091 		*sdesc = NULL;
1092 		return rc;
1093 	}
1094 
1095 	size = sizeof(struct shash_desc) + crypto_shash_descsize(*shash);
1096 	*sdesc = kmalloc(size, GFP_KERNEL);
1097 	if (*sdesc == NULL) {
1098 		cifs_dbg(VFS, "no memory left to allocate crypto %s\n", name);
1099 		crypto_free_shash(*shash);
1100 		*shash = NULL;
1101 		return -ENOMEM;
1102 	}
1103 
1104 	(*sdesc)->shash.tfm = *shash;
1105 	return 0;
1106 }
1107 
1108 /**
1109  * cifs_free_hash - free hash and hash context together
1110  * @shash: Where to find the pointer to the hash algo
1111  * @sdesc: Where to find the pointer to the hash descriptor
1112  *
1113  * Freeing a NULL hash or context is safe.
1114  */
1115 void
cifs_free_hash(struct crypto_shash ** shash,struct sdesc ** sdesc)1116 cifs_free_hash(struct crypto_shash **shash, struct sdesc **sdesc)
1117 {
1118 	kfree(*sdesc);
1119 	*sdesc = NULL;
1120 	if (*shash)
1121 		crypto_free_shash(*shash);
1122 	*shash = NULL;
1123 }
1124 
1125 /**
1126  * rqst_page_get_length - obtain the length and offset for a page in smb_rqst
1127  * @rqst: The request descriptor
1128  * @page: The index of the page to query
1129  * @len: Where to store the length for this page:
1130  * @offset: Where to store the offset for this page
1131  */
rqst_page_get_length(struct smb_rqst * rqst,unsigned int page,unsigned int * len,unsigned int * offset)1132 void rqst_page_get_length(struct smb_rqst *rqst, unsigned int page,
1133 				unsigned int *len, unsigned int *offset)
1134 {
1135 	*len = rqst->rq_pagesz;
1136 	*offset = (page == 0) ? rqst->rq_offset : 0;
1137 
1138 	if (rqst->rq_npages == 1 || page == rqst->rq_npages-1)
1139 		*len = rqst->rq_tailsz;
1140 	else if (page == 0)
1141 		*len = rqst->rq_pagesz - rqst->rq_offset;
1142 }
1143 
extract_unc_hostname(const char * unc,const char ** h,size_t * len)1144 void extract_unc_hostname(const char *unc, const char **h, size_t *len)
1145 {
1146 	const char *end;
1147 
1148 	/* skip initial slashes */
1149 	while (*unc && (*unc == '\\' || *unc == '/'))
1150 		unc++;
1151 
1152 	end = unc;
1153 
1154 	while (*end && !(*end == '\\' || *end == '/'))
1155 		end++;
1156 
1157 	*h = unc;
1158 	*len = end - unc;
1159 }
1160 
1161 /**
1162  * copy_path_name - copy src path to dst, possibly truncating
1163  * @dst: The destination buffer
1164  * @src: The source name
1165  *
1166  * returns number of bytes written (including trailing nul)
1167  */
copy_path_name(char * dst,const char * src)1168 int copy_path_name(char *dst, const char *src)
1169 {
1170 	int name_len;
1171 
1172 	/*
1173 	 * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it
1174 	 * will truncate and strlen(dst) will be PATH_MAX-1
1175 	 */
1176 	name_len = strscpy(dst, src, PATH_MAX);
1177 	if (WARN_ON_ONCE(name_len < 0))
1178 		name_len = PATH_MAX-1;
1179 
1180 	/* we count the trailing nul */
1181 	name_len++;
1182 	return name_len;
1183 }
1184 
1185 struct super_cb_data {
1186 	void *data;
1187 	struct super_block *sb;
1188 };
1189 
tcp_super_cb(struct super_block * sb,void * arg)1190 static void tcp_super_cb(struct super_block *sb, void *arg)
1191 {
1192 	struct super_cb_data *sd = arg;
1193 	struct TCP_Server_Info *server = sd->data;
1194 	struct cifs_sb_info *cifs_sb;
1195 	struct cifs_tcon *tcon;
1196 
1197 	if (sd->sb)
1198 		return;
1199 
1200 	cifs_sb = CIFS_SB(sb);
1201 	tcon = cifs_sb_master_tcon(cifs_sb);
1202 	if (tcon->ses->server == server)
1203 		sd->sb = sb;
1204 }
1205 
__cifs_get_super(void (* f)(struct super_block *,void *),void * data)1206 static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *),
1207 					    void *data)
1208 {
1209 	struct super_cb_data sd = {
1210 		.data = data,
1211 		.sb = NULL,
1212 	};
1213 
1214 	iterate_supers_type(&cifs_fs_type, f, &sd);
1215 
1216 	if (!sd.sb)
1217 		return ERR_PTR(-EINVAL);
1218 	/*
1219 	 * Grab an active reference in order to prevent automounts (DFS links)
1220 	 * of expiring and then freeing up our cifs superblock pointer while
1221 	 * we're doing failover.
1222 	 */
1223 	cifs_sb_active(sd.sb);
1224 	return sd.sb;
1225 }
1226 
__cifs_put_super(struct super_block * sb)1227 static void __cifs_put_super(struct super_block *sb)
1228 {
1229 	if (!IS_ERR_OR_NULL(sb))
1230 		cifs_sb_deactive(sb);
1231 }
1232 
cifs_get_tcp_super(struct TCP_Server_Info * server)1233 struct super_block *cifs_get_tcp_super(struct TCP_Server_Info *server)
1234 {
1235 	return __cifs_get_super(tcp_super_cb, server);
1236 }
1237 
cifs_put_tcp_super(struct super_block * sb)1238 void cifs_put_tcp_super(struct super_block *sb)
1239 {
1240 	__cifs_put_super(sb);
1241 }
1242 
1243 #ifdef CONFIG_CIFS_DFS_UPCALL
match_target_ip(struct TCP_Server_Info * server,const char * share,size_t share_len,bool * result)1244 int match_target_ip(struct TCP_Server_Info *server,
1245 		    const char *share, size_t share_len,
1246 		    bool *result)
1247 {
1248 	int rc;
1249 	char *target, *tip = NULL;
1250 	struct sockaddr tipaddr;
1251 
1252 	*result = false;
1253 
1254 	target = kzalloc(share_len + 3, GFP_KERNEL);
1255 	if (!target) {
1256 		rc = -ENOMEM;
1257 		goto out;
1258 	}
1259 
1260 	scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share);
1261 
1262 	cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2);
1263 
1264 	rc = dns_resolve_server_name_to_ip(target, &tip, NULL);
1265 	if (rc < 0)
1266 		goto out;
1267 
1268 	cifs_dbg(FYI, "%s: target ip: %s\n", __func__, tip);
1269 
1270 	if (!cifs_convert_address(&tipaddr, tip, strlen(tip))) {
1271 		cifs_dbg(VFS, "%s: failed to convert target ip address\n",
1272 			 __func__);
1273 		rc = -EINVAL;
1274 		goto out;
1275 	}
1276 
1277 	*result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr,
1278 				    &tipaddr);
1279 	cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result);
1280 	rc = 0;
1281 
1282 out:
1283 	kfree(target);
1284 	kfree(tip);
1285 
1286 	return rc;
1287 }
1288 
cifs_update_super_prepath(struct cifs_sb_info * cifs_sb,char * prefix)1289 int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix)
1290 {
1291 	kfree(cifs_sb->prepath);
1292 
1293 	if (prefix && *prefix) {
1294 		cifs_sb->prepath = kstrdup(prefix, GFP_ATOMIC);
1295 		if (!cifs_sb->prepath)
1296 			return -ENOMEM;
1297 
1298 		convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb));
1299 	} else
1300 		cifs_sb->prepath = NULL;
1301 
1302 	cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
1303 	return 0;
1304 }
1305 #endif
1306