1 /*
2  * Copyright (c) 2013-2021, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stdbool.h>
9 #include <string.h>
10 
11 #include <platform_def.h>
12 
13 #include <arch.h>
14 #include <arch_helpers.h>
15 #include <arch_features.h>
16 #include <bl31/interrupt_mgmt.h>
17 #include <common/bl_common.h>
18 #include <context.h>
19 #include <lib/el3_runtime/context_mgmt.h>
20 #include <lib/el3_runtime/pubsub_events.h>
21 #include <lib/extensions/amu.h>
22 #include <lib/extensions/mpam.h>
23 #include <lib/extensions/spe.h>
24 #include <lib/extensions/sve.h>
25 #include <lib/extensions/twed.h>
26 #include <lib/utils.h>
27 
28 static void enable_extensions_secure(cpu_context_t *ctx);
29 
30 /*******************************************************************************
31  * Context management library initialisation routine. This library is used by
32  * runtime services to share pointers to 'cpu_context' structures for the secure
33  * and non-secure states. Management of the structures and their associated
34  * memory is not done by the context management library e.g. the PSCI service
35  * manages the cpu context used for entry from and exit to the non-secure state.
36  * The Secure payload dispatcher service manages the context(s) corresponding to
37  * the secure state. It also uses this library to get access to the non-secure
38  * state cpu context pointers.
39  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
40  * which will used for programming an entry into a lower EL. The same context
41  * will used to save state upon exception entry from that EL.
42  ******************************************************************************/
cm_init(void)43 void __init cm_init(void)
44 {
45 	/*
46 	 * The context management library has only global data to intialize, but
47 	 * that will be done when the BSS is zeroed out
48 	 */
49 }
50 
51 /*******************************************************************************
52  * The following function initializes the cpu_context 'ctx' for
53  * first use, and sets the initial entrypoint state as specified by the
54  * entry_point_info structure.
55  *
56  * The security state to initialize is determined by the SECURE attribute
57  * of the entry_point_info.
58  *
59  * The EE and ST attributes are used to configure the endianness and secure
60  * timer availability for the new execution context.
61  *
62  * To prepare the register state for entry call cm_prepare_el3_exit() and
63  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
64  * cm_el1_sysregs_context_restore().
65  ******************************************************************************/
cm_setup_context(cpu_context_t * ctx,const entry_point_info_t * ep)66 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
67 {
68 	unsigned int security_state;
69 	u_register_t scr_el3;
70 	el3_state_t *state;
71 	gp_regs_t *gp_regs;
72 	u_register_t sctlr_elx, actlr_elx;
73 
74 	assert(ctx != NULL);
75 
76 	security_state = GET_SECURITY_STATE(ep->h.attr);
77 
78 	/* Clear any residual register values from the context */
79 	zeromem(ctx, sizeof(*ctx));
80 
81 	/*
82 	 * SCR_EL3 was initialised during reset sequence in macro
83 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
84 	 * affect the next EL.
85 	 *
86 	 * The following fields are initially set to zero and then updated to
87 	 * the required value depending on the state of the SPSR_EL3 and the
88 	 * Security state and entrypoint attributes of the next EL.
89 	 */
90 	scr_el3 = read_scr();
91 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
92 			SCR_ST_BIT | SCR_HCE_BIT);
93 	/*
94 	 * SCR_NS: Set the security state of the next EL.
95 	 */
96 	if (security_state != SECURE)
97 		scr_el3 |= SCR_NS_BIT;
98 	/*
99 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
100 	 *  Exception level as specified by SPSR.
101 	 */
102 	if (GET_RW(ep->spsr) == MODE_RW_64)
103 		scr_el3 |= SCR_RW_BIT;
104 	/*
105 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
106 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
107 	 *  by the entrypoint attributes.
108 	 */
109 	if (EP_GET_ST(ep->h.attr) != 0U)
110 		scr_el3 |= SCR_ST_BIT;
111 
112 #if RAS_TRAP_LOWER_EL_ERR_ACCESS
113 	/*
114 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
115 	 * and RAS ERX registers from EL1 and EL2 are trapped to EL3.
116 	 */
117 	scr_el3 |= SCR_TERR_BIT;
118 #endif
119 
120 #if !HANDLE_EA_EL3_FIRST
121 	/*
122 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
123 	 *  to EL3 when executing at a lower EL. When executing at EL3, External
124 	 *  Aborts are taken to EL3.
125 	 */
126 	scr_el3 &= ~SCR_EA_BIT;
127 #endif
128 
129 #if FAULT_INJECTION_SUPPORT
130 	/* Enable fault injection from lower ELs */
131 	scr_el3 |= SCR_FIEN_BIT;
132 #endif
133 
134 #if !CTX_INCLUDE_PAUTH_REGS
135 	/*
136 	 * If the pointer authentication registers aren't saved during world
137 	 * switches the value of the registers can be leaked from the Secure to
138 	 * the Non-secure world. To prevent this, rather than enabling pointer
139 	 * authentication everywhere, we only enable it in the Non-secure world.
140 	 *
141 	 * If the Secure world wants to use pointer authentication,
142 	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
143 	 */
144 	if (security_state == NON_SECURE)
145 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
146 #endif /* !CTX_INCLUDE_PAUTH_REGS */
147 
148 #if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS
149 	/* Get Memory Tagging Extension support level */
150 	unsigned int mte = get_armv8_5_mte_support();
151 #endif
152 	/*
153 	 * Enable MTE support. Support is enabled unilaterally for the normal
154 	 * world, and only for the secure world when CTX_INCLUDE_MTE_REGS is
155 	 * set.
156 	 */
157 #if CTX_INCLUDE_MTE_REGS
158 	assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY));
159 	scr_el3 |= SCR_ATA_BIT;
160 #else
161 	/*
162 	 * When MTE is only implemented at EL0, it can be enabled
163 	 * across both worlds as no MTE registers are used.
164 	 */
165 	if ((mte == MTE_IMPLEMENTED_EL0) ||
166 	/*
167 	 * When MTE is implemented at all ELs, it can be only enabled
168 	 * in Non-Secure world without register saving.
169 	 */
170 	  (((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY)) &&
171 	    (security_state == NON_SECURE))) {
172 		scr_el3 |= SCR_ATA_BIT;
173 	}
174 #endif	/* CTX_INCLUDE_MTE_REGS */
175 
176 #ifdef IMAGE_BL31
177 	/*
178 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
179 	 *  indicated by the interrupt routing model for BL31.
180 	 */
181 	scr_el3 |= get_scr_el3_from_routing_model(security_state);
182 #endif
183 
184 	/* Save the initialized value of CPTR_EL3 register */
185 	write_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3, read_cptr_el3());
186 	if (security_state == SECURE) {
187 		enable_extensions_secure(ctx);
188 	}
189 
190 	/*
191 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
192 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
193 	 * next mode is Hyp.
194 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
195 	 * same conditions as HVC instructions and when the processor supports
196 	 * ARMv8.6-FGT.
197 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
198 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
199 	 * and when the processor supports ECV.
200 	 */
201 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
202 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
203 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
204 		scr_el3 |= SCR_HCE_BIT;
205 
206 		if (is_armv8_6_fgt_present()) {
207 			scr_el3 |= SCR_FGTEN_BIT;
208 		}
209 
210 		if (get_armv8_6_ecv_support()
211 		    == ID_AA64MMFR0_EL1_ECV_SELF_SYNCH) {
212 			scr_el3 |= SCR_ECVEN_BIT;
213 		}
214 	}
215 
216 	/* Enable S-EL2 if the next EL is EL2 and security state is secure */
217 	if ((security_state == SECURE) && (GET_EL(ep->spsr) == MODE_EL2)) {
218 		if (GET_RW(ep->spsr) != MODE_RW_64) {
219 			ERROR("S-EL2 can not be used in AArch32.");
220 			panic();
221 		}
222 
223 		scr_el3 |= SCR_EEL2_BIT;
224 	}
225 
226 	/*
227 	 * FEAT_AMUv1p1 virtual offset registers are only accessible from EL3
228 	 * and EL2, when clear, this bit traps accesses from EL2 so we set it
229 	 * to 1 when EL2 is present.
230 	 */
231 	if (is_armv8_6_feat_amuv1p1_present() &&
232 		(el_implemented(2) != EL_IMPL_NONE)) {
233 		scr_el3 |= SCR_AMVOFFEN_BIT;
234 	}
235 
236 	/*
237 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
238 	 * execution state setting all fields rather than relying of the hw.
239 	 * Some fields have architecturally UNKNOWN reset values and these are
240 	 * set to zero.
241 	 *
242 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
243 	 *
244 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
245 	 *  required by PSCI specification)
246 	 */
247 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U;
248 	if (GET_RW(ep->spsr) == MODE_RW_64)
249 		sctlr_elx |= SCTLR_EL1_RES1;
250 	else {
251 		/*
252 		 * If the target execution state is AArch32 then the following
253 		 * fields need to be set.
254 		 *
255 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
256 		 *  instructions are not trapped to EL1.
257 		 *
258 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
259 		 *  instructions are not trapped to EL1.
260 		 *
261 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
262 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
263 		 */
264 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
265 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
266 	}
267 
268 #if ERRATA_A75_764081
269 	/*
270 	 * If workaround of errata 764081 for Cortex-A75 is used then set
271 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
272 	 */
273 	sctlr_elx |= SCTLR_IESB_BIT;
274 #endif
275 
276 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
277 	if (is_armv8_6_twed_present()) {
278 		uint32_t delay = plat_arm_set_twedel_scr_el3();
279 
280 		if (delay != TWED_DISABLED) {
281 			/* Make sure delay value fits */
282 			assert((delay & ~SCR_TWEDEL_MASK) == 0U);
283 
284 			/* Set delay in SCR_EL3 */
285 			scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
286 			scr_el3 |= ((delay & SCR_TWEDEL_MASK)
287 					<< SCR_TWEDEL_SHIFT);
288 
289 			/* Enable WFE delay */
290 			scr_el3 |= SCR_TWEDEn_BIT;
291 		}
292 	}
293 
294 	/*
295 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
296 	 * and other EL2 registers are set up by cm_prepare_el3_exit() as they
297 	 * are not part of the stored cpu_context.
298 	 */
299 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
300 
301 	/*
302 	 * Base the context ACTLR_EL1 on the current value, as it is
303 	 * implementation defined. The context restore process will write
304 	 * the value from the context to the actual register and can cause
305 	 * problems for processor cores that don't expect certain bits to
306 	 * be zero.
307 	 */
308 	actlr_elx = read_actlr_el1();
309 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
310 
311 	/*
312 	 * Populate EL3 state so that we've the right context
313 	 * before doing ERET
314 	 */
315 	state = get_el3state_ctx(ctx);
316 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
317 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
318 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
319 
320 	/*
321 	 * Store the X0-X7 value from the entrypoint into the context
322 	 * Use memcpy as we are in control of the layout of the structures
323 	 */
324 	gp_regs = get_gpregs_ctx(ctx);
325 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
326 }
327 
328 /*******************************************************************************
329  * Enable architecture extensions on first entry to Non-secure world.
330  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
331  * it is zero.
332  ******************************************************************************/
enable_extensions_nonsecure(bool el2_unused,cpu_context_t * ctx)333 static void enable_extensions_nonsecure(bool el2_unused, cpu_context_t *ctx)
334 {
335 #if IMAGE_BL31
336 #if ENABLE_SPE_FOR_LOWER_ELS
337 	spe_enable(el2_unused);
338 #endif
339 
340 #if ENABLE_AMU
341 	amu_enable(el2_unused, ctx);
342 #endif
343 
344 #if ENABLE_SVE_FOR_NS
345 	sve_enable(ctx);
346 #endif
347 
348 #if ENABLE_MPAM_FOR_LOWER_ELS
349 	mpam_enable(el2_unused);
350 #endif
351 #endif
352 }
353 
354 /*******************************************************************************
355  * Enable architecture extensions on first entry to Secure world.
356  ******************************************************************************/
enable_extensions_secure(cpu_context_t * ctx)357 static void enable_extensions_secure(cpu_context_t *ctx)
358 {
359 #if IMAGE_BL31
360 #if ENABLE_SVE_FOR_SWD
361 	sve_enable(ctx);
362 #endif
363 #endif
364 }
365 
366 /*******************************************************************************
367  * The following function initializes the cpu_context for a CPU specified by
368  * its `cpu_idx` for first use, and sets the initial entrypoint state as
369  * specified by the entry_point_info structure.
370  ******************************************************************************/
cm_init_context_by_index(unsigned int cpu_idx,const entry_point_info_t * ep)371 void cm_init_context_by_index(unsigned int cpu_idx,
372 			      const entry_point_info_t *ep)
373 {
374 	cpu_context_t *ctx;
375 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
376 	cm_setup_context(ctx, ep);
377 }
378 
379 /*******************************************************************************
380  * The following function initializes the cpu_context for the current CPU
381  * for first use, and sets the initial entrypoint state as specified by the
382  * entry_point_info structure.
383  ******************************************************************************/
cm_init_my_context(const entry_point_info_t * ep)384 void cm_init_my_context(const entry_point_info_t *ep)
385 {
386 	cpu_context_t *ctx;
387 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
388 	cm_setup_context(ctx, ep);
389 }
390 
391 /*******************************************************************************
392  * Prepare the CPU system registers for first entry into secure or normal world
393  *
394  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
395  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
396  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
397  * For all entries, the EL1 registers are initialized from the cpu_context
398  ******************************************************************************/
cm_prepare_el3_exit(uint32_t security_state)399 void cm_prepare_el3_exit(uint32_t security_state)
400 {
401 	u_register_t sctlr_elx, scr_el3, mdcr_el2;
402 	cpu_context_t *ctx = cm_get_context(security_state);
403 	bool el2_unused = false;
404 	uint64_t hcr_el2 = 0U;
405 
406 	assert(ctx != NULL);
407 
408 	if (security_state == NON_SECURE) {
409 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
410 						 CTX_SCR_EL3);
411 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
412 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
413 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
414 							   CTX_SCTLR_EL1);
415 			sctlr_elx &= SCTLR_EE_BIT;
416 			sctlr_elx |= SCTLR_EL2_RES1;
417 #if ERRATA_A75_764081
418 			/*
419 			 * If workaround of errata 764081 for Cortex-A75 is used
420 			 * then set SCTLR_EL2.IESB to enable Implicit Error
421 			 * Synchronization Barrier.
422 			 */
423 			sctlr_elx |= SCTLR_IESB_BIT;
424 #endif
425 			write_sctlr_el2(sctlr_elx);
426 		} else if (el_implemented(2) != EL_IMPL_NONE) {
427 			el2_unused = true;
428 
429 			/*
430 			 * EL2 present but unused, need to disable safely.
431 			 * SCTLR_EL2 can be ignored in this case.
432 			 *
433 			 * Set EL2 register width appropriately: Set HCR_EL2
434 			 * field to match SCR_EL3.RW.
435 			 */
436 			if ((scr_el3 & SCR_RW_BIT) != 0U)
437 				hcr_el2 |= HCR_RW_BIT;
438 
439 			/*
440 			 * For Armv8.3 pointer authentication feature, disable
441 			 * traps to EL2 when accessing key registers or using
442 			 * pointer authentication instructions from lower ELs.
443 			 */
444 			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
445 
446 			write_hcr_el2(hcr_el2);
447 
448 			/*
449 			 * Initialise CPTR_EL2 setting all fields rather than
450 			 * relying on the hw. All fields have architecturally
451 			 * UNKNOWN reset values.
452 			 *
453 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
454 			 *  accesses to the CPACR_EL1 or CPACR from both
455 			 *  Execution states do not trap to EL2.
456 			 *
457 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
458 			 *  register accesses to the trace registers from both
459 			 *  Execution states do not trap to EL2.
460 			 *
461 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
462 			 *  to SIMD and floating-point functionality from both
463 			 *  Execution states do not trap to EL2.
464 			 */
465 			write_cptr_el2(CPTR_EL2_RESET_VAL &
466 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
467 					| CPTR_EL2_TFP_BIT));
468 
469 			/*
470 			 * Initialise CNTHCTL_EL2. All fields are
471 			 * architecturally UNKNOWN on reset and are set to zero
472 			 * except for field(s) listed below.
473 			 *
474 			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
475 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
476 			 *  physical timer registers.
477 			 *
478 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
479 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
480 			 *  physical counter registers.
481 			 */
482 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
483 						EL1PCEN_BIT | EL1PCTEN_BIT);
484 
485 			/*
486 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
487 			 * architecturally UNKNOWN value.
488 			 */
489 			write_cntvoff_el2(0);
490 
491 			/*
492 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
493 			 * MPIDR_EL1 respectively.
494 			 */
495 			write_vpidr_el2(read_midr_el1());
496 			write_vmpidr_el2(read_mpidr_el1());
497 
498 			/*
499 			 * Initialise VTTBR_EL2. All fields are architecturally
500 			 * UNKNOWN on reset.
501 			 *
502 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
503 			 *  2 address translation is disabled, cache maintenance
504 			 *  operations depend on the VMID.
505 			 *
506 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
507 			 *  translation is disabled.
508 			 */
509 			write_vttbr_el2(VTTBR_RESET_VAL &
510 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
511 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
512 
513 			/*
514 			 * Initialise MDCR_EL2, setting all fields rather than
515 			 * relying on hw. Some fields are architecturally
516 			 * UNKNOWN on reset.
517 			 *
518 			 * MDCR_EL2.HLP: Set to one so that event counter
519 			 *  overflow, that is recorded in PMOVSCLR_EL0[0-30],
520 			 *  occurs on the increment that changes
521 			 *  PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
522 			 *  implemented. This bit is RES0 in versions of the
523 			 *  architecture earlier than ARMv8.5, setting it to 1
524 			 *  doesn't have any effect on them.
525 			 *
526 			 * MDCR_EL2.TTRF: Set to zero so that access to Trace
527 			 *  Filter Control register TRFCR_EL1 at EL1 is not
528 			 *  trapped to EL2. This bit is RES0 in versions of
529 			 *  the architecture earlier than ARMv8.4.
530 			 *
531 			 * MDCR_EL2.HPMD: Set to one so that event counting is
532 			 *  prohibited at EL2. This bit is RES0 in versions of
533 			 *  the architecture earlier than ARMv8.1, setting it
534 			 *  to 1 doesn't have any effect on them.
535 			 *
536 			 * MDCR_EL2.TPMS: Set to zero so that accesses to
537 			 *  Statistical Profiling control registers from EL1
538 			 *  do not trap to EL2. This bit is RES0 when SPE is
539 			 *  not implemented.
540 			 *
541 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
542 			 *  EL1 System register accesses to the Debug ROM
543 			 *  registers are not trapped to EL2.
544 			 *
545 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
546 			 *  System register accesses to the powerdown debug
547 			 *  registers are not trapped to EL2.
548 			 *
549 			 * MDCR_EL2.TDA: Set to zero so that System register
550 			 *  accesses to the debug registers do not trap to EL2.
551 			 *
552 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
553 			 *  are not routed to EL2.
554 			 *
555 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
556 			 *  Monitors.
557 			 *
558 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
559 			 *  EL1 accesses to all Performance Monitors registers
560 			 *  are not trapped to EL2.
561 			 *
562 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
563 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
564 			 *  trapped to EL2.
565 			 *
566 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
567 			 *  architecturally-defined reset value.
568 			 */
569 			mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
570 				     MDCR_EL2_HPMD) |
571 				   ((read_pmcr_el0() & PMCR_EL0_N_BITS)
572 				   >> PMCR_EL0_N_SHIFT)) &
573 				   ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
574 				     MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
575 				     MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
576 				     MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
577 				     MDCR_EL2_TPMCR_BIT);
578 
579 			write_mdcr_el2(mdcr_el2);
580 
581 			/*
582 			 * Initialise HSTR_EL2. All fields are architecturally
583 			 * UNKNOWN on reset.
584 			 *
585 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
586 			 *  Non-secure EL0 or EL1 accesses to System registers
587 			 *  do not trap to EL2.
588 			 */
589 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
590 			/*
591 			 * Initialise CNTHP_CTL_EL2. All fields are
592 			 * architecturally UNKNOWN on reset.
593 			 *
594 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
595 			 *  physical timer and prevent timer interrupts.
596 			 */
597 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
598 						~(CNTHP_CTL_ENABLE_BIT));
599 		}
600 		enable_extensions_nonsecure(el2_unused, ctx);
601 	}
602 
603 	cm_el1_sysregs_context_restore(security_state);
604 	cm_set_next_eret_context(security_state);
605 }
606 
607 #if CTX_INCLUDE_EL2_REGS
608 /*******************************************************************************
609  * Save EL2 sysreg context
610  ******************************************************************************/
cm_el2_sysregs_context_save(uint32_t security_state)611 void cm_el2_sysregs_context_save(uint32_t security_state)
612 {
613 	u_register_t scr_el3 = read_scr();
614 
615 	/*
616 	 * Always save the non-secure EL2 context, only save the
617 	 * S-EL2 context if S-EL2 is enabled.
618 	 */
619 	if ((security_state == NON_SECURE) ||
620 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
621 		cpu_context_t *ctx;
622 
623 		ctx = cm_get_context(security_state);
624 		assert(ctx != NULL);
625 
626 		el2_sysregs_context_save(get_el2_sysregs_ctx(ctx));
627 	}
628 }
629 
630 /*******************************************************************************
631  * Restore EL2 sysreg context
632  ******************************************************************************/
cm_el2_sysregs_context_restore(uint32_t security_state)633 void cm_el2_sysregs_context_restore(uint32_t security_state)
634 {
635 	u_register_t scr_el3 = read_scr();
636 
637 	/*
638 	 * Always restore the non-secure EL2 context, only restore the
639 	 * S-EL2 context if S-EL2 is enabled.
640 	 */
641 	if ((security_state == NON_SECURE) ||
642 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
643 		cpu_context_t *ctx;
644 
645 		ctx = cm_get_context(security_state);
646 		assert(ctx != NULL);
647 
648 		el2_sysregs_context_restore(get_el2_sysregs_ctx(ctx));
649 	}
650 }
651 #endif /* CTX_INCLUDE_EL2_REGS */
652 
653 /*******************************************************************************
654  * The next four functions are used by runtime services to save and restore
655  * EL1 context on the 'cpu_context' structure for the specified security
656  * state.
657  ******************************************************************************/
cm_el1_sysregs_context_save(uint32_t security_state)658 void cm_el1_sysregs_context_save(uint32_t security_state)
659 {
660 	cpu_context_t *ctx;
661 
662 	ctx = cm_get_context(security_state);
663 	assert(ctx != NULL);
664 
665 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
666 
667 #if IMAGE_BL31
668 	if (security_state == SECURE)
669 		PUBLISH_EVENT(cm_exited_secure_world);
670 	else
671 		PUBLISH_EVENT(cm_exited_normal_world);
672 #endif
673 }
674 
cm_el1_sysregs_context_restore(uint32_t security_state)675 void cm_el1_sysregs_context_restore(uint32_t security_state)
676 {
677 	cpu_context_t *ctx;
678 
679 	ctx = cm_get_context(security_state);
680 	assert(ctx != NULL);
681 
682 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
683 
684 #if IMAGE_BL31
685 	if (security_state == SECURE)
686 		PUBLISH_EVENT(cm_entering_secure_world);
687 	else
688 		PUBLISH_EVENT(cm_entering_normal_world);
689 #endif
690 }
691 
692 /*******************************************************************************
693  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
694  * given security state with the given entrypoint
695  ******************************************************************************/
cm_set_elr_el3(uint32_t security_state,uintptr_t entrypoint)696 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
697 {
698 	cpu_context_t *ctx;
699 	el3_state_t *state;
700 
701 	ctx = cm_get_context(security_state);
702 	assert(ctx != NULL);
703 
704 	/* Populate EL3 state so that ERET jumps to the correct entry */
705 	state = get_el3state_ctx(ctx);
706 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
707 }
708 
709 /*******************************************************************************
710  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
711  * pertaining to the given security state
712  ******************************************************************************/
cm_set_elr_spsr_el3(uint32_t security_state,uintptr_t entrypoint,uint32_t spsr)713 void cm_set_elr_spsr_el3(uint32_t security_state,
714 			uintptr_t entrypoint, uint32_t spsr)
715 {
716 	cpu_context_t *ctx;
717 	el3_state_t *state;
718 
719 	ctx = cm_get_context(security_state);
720 	assert(ctx != NULL);
721 
722 	/* Populate EL3 state so that ERET jumps to the correct entry */
723 	state = get_el3state_ctx(ctx);
724 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
725 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
726 }
727 
728 /*******************************************************************************
729  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
730  * pertaining to the given security state using the value and bit position
731  * specified in the parameters. It preserves all other bits.
732  ******************************************************************************/
cm_write_scr_el3_bit(uint32_t security_state,uint32_t bit_pos,uint32_t value)733 void cm_write_scr_el3_bit(uint32_t security_state,
734 			  uint32_t bit_pos,
735 			  uint32_t value)
736 {
737 	cpu_context_t *ctx;
738 	el3_state_t *state;
739 	u_register_t scr_el3;
740 
741 	ctx = cm_get_context(security_state);
742 	assert(ctx != NULL);
743 
744 	/* Ensure that the bit position is a valid one */
745 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
746 
747 	/* Ensure that the 'value' is only a bit wide */
748 	assert(value <= 1U);
749 
750 	/*
751 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
752 	 * and set it to its new value.
753 	 */
754 	state = get_el3state_ctx(ctx);
755 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
756 	scr_el3 &= ~(1UL << bit_pos);
757 	scr_el3 |= (u_register_t)value << bit_pos;
758 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
759 }
760 
761 /*******************************************************************************
762  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
763  * given security state.
764  ******************************************************************************/
cm_get_scr_el3(uint32_t security_state)765 u_register_t cm_get_scr_el3(uint32_t security_state)
766 {
767 	cpu_context_t *ctx;
768 	el3_state_t *state;
769 
770 	ctx = cm_get_context(security_state);
771 	assert(ctx != NULL);
772 
773 	/* Populate EL3 state so that ERET jumps to the correct entry */
774 	state = get_el3state_ctx(ctx);
775 	return read_ctx_reg(state, CTX_SCR_EL3);
776 }
777 
778 /*******************************************************************************
779  * This function is used to program the context that's used for exception
780  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
781  * the required security state
782  ******************************************************************************/
cm_set_next_eret_context(uint32_t security_state)783 void cm_set_next_eret_context(uint32_t security_state)
784 {
785 	cpu_context_t *ctx;
786 
787 	ctx = cm_get_context(security_state);
788 	assert(ctx != NULL);
789 
790 	cm_set_next_context(ctx);
791 }
792