1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/printk.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * Modified to make sys_syslog() more flexible: added commands to
8 * return the last 4k of kernel messages, regardless of whether
9 * they've been read or not. Added option to suppress kernel printk's
10 * to the console. Added hook for sending the console messages
11 * elsewhere, in preparation for a serial line console (someday).
12 * Ted Ts'o, 2/11/93.
13 * Modified for sysctl support, 1/8/97, Chris Horn.
14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
15 * manfred@colorfullife.com
16 * Rewrote bits to get rid of console_lock
17 * 01Mar01 Andrew Morton
18 */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/tty.h>
25 #include <linux/tty_driver.h>
26 #include <linux/console.h>
27 #include <linux/init.h>
28 #include <linux/jiffies.h>
29 #include <linux/nmi.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/delay.h>
33 #include <linux/smp.h>
34 #include <linux/security.h>
35 #include <linux/memblock.h>
36 #include <linux/syscalls.h>
37 #include <linux/crash_core.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/ctype.h>
46 #include <linux/uio.h>
47 #include <linux/sched/clock.h>
48 #include <linux/sched/debug.h>
49 #include <linux/sched/task_stack.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/sections.h>
53
54 #include <trace/events/initcall.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57
58 #include "printk_ringbuffer.h"
59 #include "console_cmdline.h"
60 #include "braille.h"
61 #include "internal.h"
62
63 int console_printk[4] = {
64 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
65 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
66 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
67 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
68 };
69 EXPORT_SYMBOL_GPL(console_printk);
70
71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
72 EXPORT_SYMBOL(ignore_console_lock_warning);
73
74 /*
75 * Low level drivers may need that to know if they can schedule in
76 * their unblank() callback or not. So let's export it.
77 */
78 int oops_in_progress;
79 EXPORT_SYMBOL(oops_in_progress);
80
81 /*
82 * console_sem protects the console_drivers list, and also
83 * provides serialisation for access to the entire console
84 * driver system.
85 */
86 static DEFINE_SEMAPHORE(console_sem);
87 struct console *console_drivers;
88 EXPORT_SYMBOL_GPL(console_drivers);
89
90 /*
91 * System may need to suppress printk message under certain
92 * circumstances, like after kernel panic happens.
93 */
94 int __read_mostly suppress_printk;
95
96 #ifdef CONFIG_LOCKDEP
97 static struct lockdep_map console_lock_dep_map = {
98 .name = "console_lock"
99 };
100 #endif
101
102 enum devkmsg_log_bits {
103 __DEVKMSG_LOG_BIT_ON = 0,
104 __DEVKMSG_LOG_BIT_OFF,
105 __DEVKMSG_LOG_BIT_LOCK,
106 };
107
108 enum devkmsg_log_masks {
109 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON),
110 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF),
111 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK),
112 };
113
114 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
115 #define DEVKMSG_LOG_MASK_DEFAULT 0
116
117 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
118
__control_devkmsg(char * str)119 static int __control_devkmsg(char *str)
120 {
121 size_t len;
122
123 if (!str)
124 return -EINVAL;
125
126 len = str_has_prefix(str, "on");
127 if (len) {
128 devkmsg_log = DEVKMSG_LOG_MASK_ON;
129 return len;
130 }
131
132 len = str_has_prefix(str, "off");
133 if (len) {
134 devkmsg_log = DEVKMSG_LOG_MASK_OFF;
135 return len;
136 }
137
138 len = str_has_prefix(str, "ratelimit");
139 if (len) {
140 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
141 return len;
142 }
143
144 return -EINVAL;
145 }
146
control_devkmsg(char * str)147 static int __init control_devkmsg(char *str)
148 {
149 if (__control_devkmsg(str) < 0)
150 return 1;
151
152 /*
153 * Set sysctl string accordingly:
154 */
155 if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
156 strcpy(devkmsg_log_str, "on");
157 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
158 strcpy(devkmsg_log_str, "off");
159 /* else "ratelimit" which is set by default. */
160
161 /*
162 * Sysctl cannot change it anymore. The kernel command line setting of
163 * this parameter is to force the setting to be permanent throughout the
164 * runtime of the system. This is a precation measure against userspace
165 * trying to be a smarta** and attempting to change it up on us.
166 */
167 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
168
169 return 0;
170 }
171 __setup("printk.devkmsg=", control_devkmsg);
172
173 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
174
devkmsg_sysctl_set_loglvl(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)175 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
176 void *buffer, size_t *lenp, loff_t *ppos)
177 {
178 char old_str[DEVKMSG_STR_MAX_SIZE];
179 unsigned int old;
180 int err;
181
182 if (write) {
183 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
184 return -EINVAL;
185
186 old = devkmsg_log;
187 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
188 }
189
190 err = proc_dostring(table, write, buffer, lenp, ppos);
191 if (err)
192 return err;
193
194 if (write) {
195 err = __control_devkmsg(devkmsg_log_str);
196
197 /*
198 * Do not accept an unknown string OR a known string with
199 * trailing crap...
200 */
201 if (err < 0 || (err + 1 != *lenp)) {
202
203 /* ... and restore old setting. */
204 devkmsg_log = old;
205 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
206
207 return -EINVAL;
208 }
209 }
210
211 return 0;
212 }
213
214 /* Number of registered extended console drivers. */
215 static int nr_ext_console_drivers;
216
217 /*
218 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
219 * macros instead of functions so that _RET_IP_ contains useful information.
220 */
221 #define down_console_sem() do { \
222 down(&console_sem);\
223 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
224 } while (0)
225
__down_trylock_console_sem(unsigned long ip)226 static int __down_trylock_console_sem(unsigned long ip)
227 {
228 int lock_failed;
229 unsigned long flags;
230
231 /*
232 * Here and in __up_console_sem() we need to be in safe mode,
233 * because spindump/WARN/etc from under console ->lock will
234 * deadlock in printk()->down_trylock_console_sem() otherwise.
235 */
236 printk_safe_enter_irqsave(flags);
237 lock_failed = down_trylock(&console_sem);
238 printk_safe_exit_irqrestore(flags);
239
240 if (lock_failed)
241 return 1;
242 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
243 return 0;
244 }
245 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
246
__up_console_sem(unsigned long ip)247 static void __up_console_sem(unsigned long ip)
248 {
249 unsigned long flags;
250
251 mutex_release(&console_lock_dep_map, ip);
252
253 printk_safe_enter_irqsave(flags);
254 up(&console_sem);
255 printk_safe_exit_irqrestore(flags);
256 }
257 #define up_console_sem() __up_console_sem(_RET_IP_)
258
259 /*
260 * This is used for debugging the mess that is the VT code by
261 * keeping track if we have the console semaphore held. It's
262 * definitely not the perfect debug tool (we don't know if _WE_
263 * hold it and are racing, but it helps tracking those weird code
264 * paths in the console code where we end up in places I want
265 * locked without the console semaphore held).
266 */
267 static int console_locked, console_suspended;
268
269 /*
270 * If exclusive_console is non-NULL then only this console is to be printed to.
271 */
272 static struct console *exclusive_console;
273
274 /*
275 * Array of consoles built from command line options (console=)
276 */
277
278 #define MAX_CMDLINECONSOLES 8
279
280 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
281
282 static int preferred_console = -1;
283 static bool has_preferred_console;
284 int console_set_on_cmdline;
285 EXPORT_SYMBOL(console_set_on_cmdline);
286
287 /* Flag: console code may call schedule() */
288 static int console_may_schedule;
289
290 enum con_msg_format_flags {
291 MSG_FORMAT_DEFAULT = 0,
292 MSG_FORMAT_SYSLOG = (1 << 0),
293 };
294
295 static int console_msg_format = MSG_FORMAT_DEFAULT;
296
297 /*
298 * The printk log buffer consists of a sequenced collection of records, each
299 * containing variable length message text. Every record also contains its
300 * own meta-data (@info).
301 *
302 * Every record meta-data carries the timestamp in microseconds, as well as
303 * the standard userspace syslog level and syslog facility. The usual kernel
304 * messages use LOG_KERN; userspace-injected messages always carry a matching
305 * syslog facility, by default LOG_USER. The origin of every message can be
306 * reliably determined that way.
307 *
308 * The human readable log message of a record is available in @text, the
309 * length of the message text in @text_len. The stored message is not
310 * terminated.
311 *
312 * Optionally, a record can carry a dictionary of properties (key/value
313 * pairs), to provide userspace with a machine-readable message context.
314 *
315 * Examples for well-defined, commonly used property names are:
316 * DEVICE=b12:8 device identifier
317 * b12:8 block dev_t
318 * c127:3 char dev_t
319 * n8 netdev ifindex
320 * +sound:card0 subsystem:devname
321 * SUBSYSTEM=pci driver-core subsystem name
322 *
323 * Valid characters in property names are [a-zA-Z0-9.-_]. Property names
324 * and values are terminated by a '\0' character.
325 *
326 * Example of record values:
327 * record.text_buf = "it's a line" (unterminated)
328 * record.info.seq = 56
329 * record.info.ts_nsec = 36863
330 * record.info.text_len = 11
331 * record.info.facility = 0 (LOG_KERN)
332 * record.info.flags = 0
333 * record.info.level = 3 (LOG_ERR)
334 * record.info.caller_id = 299 (task 299)
335 * record.info.dev_info.subsystem = "pci" (terminated)
336 * record.info.dev_info.device = "+pci:0000:00:01.0" (terminated)
337 *
338 * The 'struct printk_info' buffer must never be directly exported to
339 * userspace, it is a kernel-private implementation detail that might
340 * need to be changed in the future, when the requirements change.
341 *
342 * /dev/kmsg exports the structured data in the following line format:
343 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
344 *
345 * Users of the export format should ignore possible additional values
346 * separated by ',', and find the message after the ';' character.
347 *
348 * The optional key/value pairs are attached as continuation lines starting
349 * with a space character and terminated by a newline. All possible
350 * non-prinatable characters are escaped in the "\xff" notation.
351 */
352
353 /* syslog_lock protects syslog_* variables and write access to clear_seq. */
354 static DEFINE_MUTEX(syslog_lock);
355
356 #ifdef CONFIG_PRINTK
357 DECLARE_WAIT_QUEUE_HEAD(log_wait);
358 /* All 3 protected by @syslog_lock. */
359 /* the next printk record to read by syslog(READ) or /proc/kmsg */
360 static u64 syslog_seq;
361 static size_t syslog_partial;
362 static bool syslog_time;
363
364 /* All 3 protected by @console_sem. */
365 /* the next printk record to write to the console */
366 static u64 console_seq;
367 static u64 exclusive_console_stop_seq;
368 static unsigned long console_dropped;
369
370 struct latched_seq {
371 seqcount_latch_t latch;
372 u64 val[2];
373 };
374
375 /*
376 * The next printk record to read after the last 'clear' command. There are
377 * two copies (updated with seqcount_latch) so that reads can locklessly
378 * access a valid value. Writers are synchronized by @syslog_lock.
379 */
380 static struct latched_seq clear_seq = {
381 .latch = SEQCNT_LATCH_ZERO(clear_seq.latch),
382 .val[0] = 0,
383 .val[1] = 0,
384 };
385
386 #ifdef CONFIG_PRINTK_CALLER
387 #define PREFIX_MAX 48
388 #else
389 #define PREFIX_MAX 32
390 #endif
391
392 /* the maximum size of a formatted record (i.e. with prefix added per line) */
393 #define CONSOLE_LOG_MAX 1024
394
395 /* the maximum size allowed to be reserved for a record */
396 #define LOG_LINE_MAX (CONSOLE_LOG_MAX - PREFIX_MAX)
397
398 #define LOG_LEVEL(v) ((v) & 0x07)
399 #define LOG_FACILITY(v) ((v) >> 3 & 0xff)
400
401 /* record buffer */
402 #define LOG_ALIGN __alignof__(unsigned long)
403 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
404 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
405 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
406 static char *log_buf = __log_buf;
407 static u32 log_buf_len = __LOG_BUF_LEN;
408
409 /*
410 * Define the average message size. This only affects the number of
411 * descriptors that will be available. Underestimating is better than
412 * overestimating (too many available descriptors is better than not enough).
413 */
414 #define PRB_AVGBITS 5 /* 32 character average length */
415
416 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
417 #error CONFIG_LOG_BUF_SHIFT value too small.
418 #endif
419 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
420 PRB_AVGBITS, &__log_buf[0]);
421
422 static struct printk_ringbuffer printk_rb_dynamic;
423
424 static struct printk_ringbuffer *prb = &printk_rb_static;
425
426 /*
427 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
428 * per_cpu_areas are initialised. This variable is set to true when
429 * it's safe to access per-CPU data.
430 */
431 static bool __printk_percpu_data_ready __read_mostly;
432
printk_percpu_data_ready(void)433 bool printk_percpu_data_ready(void)
434 {
435 return __printk_percpu_data_ready;
436 }
437
438 /* Must be called under syslog_lock. */
latched_seq_write(struct latched_seq * ls,u64 val)439 static void latched_seq_write(struct latched_seq *ls, u64 val)
440 {
441 raw_write_seqcount_latch(&ls->latch);
442 ls->val[0] = val;
443 raw_write_seqcount_latch(&ls->latch);
444 ls->val[1] = val;
445 }
446
447 /* Can be called from any context. */
latched_seq_read_nolock(struct latched_seq * ls)448 static u64 latched_seq_read_nolock(struct latched_seq *ls)
449 {
450 unsigned int seq;
451 unsigned int idx;
452 u64 val;
453
454 do {
455 seq = raw_read_seqcount_latch(&ls->latch);
456 idx = seq & 0x1;
457 val = ls->val[idx];
458 } while (read_seqcount_latch_retry(&ls->latch, seq));
459
460 return val;
461 }
462
463 /* Return log buffer address */
log_buf_addr_get(void)464 char *log_buf_addr_get(void)
465 {
466 return log_buf;
467 }
468
469 /* Return log buffer size */
log_buf_len_get(void)470 u32 log_buf_len_get(void)
471 {
472 return log_buf_len;
473 }
474
475 /*
476 * Define how much of the log buffer we could take at maximum. The value
477 * must be greater than two. Note that only half of the buffer is available
478 * when the index points to the middle.
479 */
480 #define MAX_LOG_TAKE_PART 4
481 static const char trunc_msg[] = "<truncated>";
482
truncate_msg(u16 * text_len,u16 * trunc_msg_len)483 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
484 {
485 /*
486 * The message should not take the whole buffer. Otherwise, it might
487 * get removed too soon.
488 */
489 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
490
491 if (*text_len > max_text_len)
492 *text_len = max_text_len;
493
494 /* enable the warning message (if there is room) */
495 *trunc_msg_len = strlen(trunc_msg);
496 if (*text_len >= *trunc_msg_len)
497 *text_len -= *trunc_msg_len;
498 else
499 *trunc_msg_len = 0;
500 }
501
502 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
503
syslog_action_restricted(int type)504 static int syslog_action_restricted(int type)
505 {
506 if (dmesg_restrict)
507 return 1;
508 /*
509 * Unless restricted, we allow "read all" and "get buffer size"
510 * for everybody.
511 */
512 return type != SYSLOG_ACTION_READ_ALL &&
513 type != SYSLOG_ACTION_SIZE_BUFFER;
514 }
515
check_syslog_permissions(int type,int source)516 static int check_syslog_permissions(int type, int source)
517 {
518 /*
519 * If this is from /proc/kmsg and we've already opened it, then we've
520 * already done the capabilities checks at open time.
521 */
522 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
523 goto ok;
524
525 if (syslog_action_restricted(type)) {
526 if (capable(CAP_SYSLOG))
527 goto ok;
528 /*
529 * For historical reasons, accept CAP_SYS_ADMIN too, with
530 * a warning.
531 */
532 if (capable(CAP_SYS_ADMIN)) {
533 pr_warn_once("%s (%d): Attempt to access syslog with "
534 "CAP_SYS_ADMIN but no CAP_SYSLOG "
535 "(deprecated).\n",
536 current->comm, task_pid_nr(current));
537 goto ok;
538 }
539 return -EPERM;
540 }
541 ok:
542 return security_syslog(type);
543 }
544
append_char(char ** pp,char * e,char c)545 static void append_char(char **pp, char *e, char c)
546 {
547 if (*pp < e)
548 *(*pp)++ = c;
549 }
550
info_print_ext_header(char * buf,size_t size,struct printk_info * info)551 static ssize_t info_print_ext_header(char *buf, size_t size,
552 struct printk_info *info)
553 {
554 u64 ts_usec = info->ts_nsec;
555 char caller[20];
556 #ifdef CONFIG_PRINTK_CALLER
557 u32 id = info->caller_id;
558
559 snprintf(caller, sizeof(caller), ",caller=%c%u",
560 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
561 #else
562 caller[0] = '\0';
563 #endif
564
565 do_div(ts_usec, 1000);
566
567 return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
568 (info->facility << 3) | info->level, info->seq,
569 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
570 }
571
msg_add_ext_text(char * buf,size_t size,const char * text,size_t text_len,unsigned char endc)572 static ssize_t msg_add_ext_text(char *buf, size_t size,
573 const char *text, size_t text_len,
574 unsigned char endc)
575 {
576 char *p = buf, *e = buf + size;
577 size_t i;
578
579 /* escape non-printable characters */
580 for (i = 0; i < text_len; i++) {
581 unsigned char c = text[i];
582
583 if (c < ' ' || c >= 127 || c == '\\')
584 p += scnprintf(p, e - p, "\\x%02x", c);
585 else
586 append_char(&p, e, c);
587 }
588 append_char(&p, e, endc);
589
590 return p - buf;
591 }
592
msg_add_dict_text(char * buf,size_t size,const char * key,const char * val)593 static ssize_t msg_add_dict_text(char *buf, size_t size,
594 const char *key, const char *val)
595 {
596 size_t val_len = strlen(val);
597 ssize_t len;
598
599 if (!val_len)
600 return 0;
601
602 len = msg_add_ext_text(buf, size, "", 0, ' '); /* dict prefix */
603 len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
604 len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
605
606 return len;
607 }
608
msg_print_ext_body(char * buf,size_t size,char * text,size_t text_len,struct dev_printk_info * dev_info)609 static ssize_t msg_print_ext_body(char *buf, size_t size,
610 char *text, size_t text_len,
611 struct dev_printk_info *dev_info)
612 {
613 ssize_t len;
614
615 len = msg_add_ext_text(buf, size, text, text_len, '\n');
616
617 if (!dev_info)
618 goto out;
619
620 len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
621 dev_info->subsystem);
622 len += msg_add_dict_text(buf + len, size - len, "DEVICE",
623 dev_info->device);
624 out:
625 return len;
626 }
627
628 /* /dev/kmsg - userspace message inject/listen interface */
629 struct devkmsg_user {
630 atomic64_t seq;
631 struct ratelimit_state rs;
632 struct mutex lock;
633 char buf[CONSOLE_EXT_LOG_MAX];
634
635 struct printk_info info;
636 char text_buf[CONSOLE_EXT_LOG_MAX];
637 struct printk_record record;
638 };
639
640 static __printf(3, 4) __cold
devkmsg_emit(int facility,int level,const char * fmt,...)641 int devkmsg_emit(int facility, int level, const char *fmt, ...)
642 {
643 va_list args;
644 int r;
645
646 va_start(args, fmt);
647 r = vprintk_emit(facility, level, NULL, fmt, args);
648 va_end(args);
649
650 return r;
651 }
652
devkmsg_write(struct kiocb * iocb,struct iov_iter * from)653 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
654 {
655 char *buf, *line;
656 int level = default_message_loglevel;
657 int facility = 1; /* LOG_USER */
658 struct file *file = iocb->ki_filp;
659 struct devkmsg_user *user = file->private_data;
660 size_t len = iov_iter_count(from);
661 ssize_t ret = len;
662
663 if (!user || len > LOG_LINE_MAX)
664 return -EINVAL;
665
666 /* Ignore when user logging is disabled. */
667 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
668 return len;
669
670 /* Ratelimit when not explicitly enabled. */
671 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
672 if (!___ratelimit(&user->rs, current->comm))
673 return ret;
674 }
675
676 buf = kmalloc(len+1, GFP_KERNEL);
677 if (buf == NULL)
678 return -ENOMEM;
679
680 buf[len] = '\0';
681 if (!copy_from_iter_full(buf, len, from)) {
682 kfree(buf);
683 return -EFAULT;
684 }
685
686 /*
687 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
688 * the decimal value represents 32bit, the lower 3 bit are the log
689 * level, the rest are the log facility.
690 *
691 * If no prefix or no userspace facility is specified, we
692 * enforce LOG_USER, to be able to reliably distinguish
693 * kernel-generated messages from userspace-injected ones.
694 */
695 line = buf;
696 if (line[0] == '<') {
697 char *endp = NULL;
698 unsigned int u;
699
700 u = simple_strtoul(line + 1, &endp, 10);
701 if (endp && endp[0] == '>') {
702 level = LOG_LEVEL(u);
703 if (LOG_FACILITY(u) != 0)
704 facility = LOG_FACILITY(u);
705 endp++;
706 line = endp;
707 }
708 }
709
710 devkmsg_emit(facility, level, "%s", line);
711 kfree(buf);
712 return ret;
713 }
714
devkmsg_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)715 static ssize_t devkmsg_read(struct file *file, char __user *buf,
716 size_t count, loff_t *ppos)
717 {
718 struct devkmsg_user *user = file->private_data;
719 struct printk_record *r = &user->record;
720 size_t len;
721 ssize_t ret;
722
723 if (!user)
724 return -EBADF;
725
726 ret = mutex_lock_interruptible(&user->lock);
727 if (ret)
728 return ret;
729
730 if (!prb_read_valid(prb, atomic64_read(&user->seq), r)) {
731 if (file->f_flags & O_NONBLOCK) {
732 ret = -EAGAIN;
733 goto out;
734 }
735
736 ret = wait_event_interruptible(log_wait,
737 prb_read_valid(prb, atomic64_read(&user->seq), r));
738 if (ret)
739 goto out;
740 }
741
742 if (r->info->seq != atomic64_read(&user->seq)) {
743 /* our last seen message is gone, return error and reset */
744 atomic64_set(&user->seq, r->info->seq);
745 ret = -EPIPE;
746 goto out;
747 }
748
749 len = info_print_ext_header(user->buf, sizeof(user->buf), r->info);
750 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
751 &r->text_buf[0], r->info->text_len,
752 &r->info->dev_info);
753
754 atomic64_set(&user->seq, r->info->seq + 1);
755
756 if (len > count) {
757 ret = -EINVAL;
758 goto out;
759 }
760
761 if (copy_to_user(buf, user->buf, len)) {
762 ret = -EFAULT;
763 goto out;
764 }
765 ret = len;
766 out:
767 mutex_unlock(&user->lock);
768 return ret;
769 }
770
771 /*
772 * Be careful when modifying this function!!!
773 *
774 * Only few operations are supported because the device works only with the
775 * entire variable length messages (records). Non-standard values are
776 * returned in the other cases and has been this way for quite some time.
777 * User space applications might depend on this behavior.
778 */
devkmsg_llseek(struct file * file,loff_t offset,int whence)779 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
780 {
781 struct devkmsg_user *user = file->private_data;
782 loff_t ret = 0;
783
784 if (!user)
785 return -EBADF;
786 if (offset)
787 return -ESPIPE;
788
789 switch (whence) {
790 case SEEK_SET:
791 /* the first record */
792 atomic64_set(&user->seq, prb_first_valid_seq(prb));
793 break;
794 case SEEK_DATA:
795 /*
796 * The first record after the last SYSLOG_ACTION_CLEAR,
797 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
798 * changes no global state, and does not clear anything.
799 */
800 atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq));
801 break;
802 case SEEK_END:
803 /* after the last record */
804 atomic64_set(&user->seq, prb_next_seq(prb));
805 break;
806 default:
807 ret = -EINVAL;
808 }
809 return ret;
810 }
811
devkmsg_poll(struct file * file,poll_table * wait)812 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
813 {
814 struct devkmsg_user *user = file->private_data;
815 struct printk_info info;
816 __poll_t ret = 0;
817
818 if (!user)
819 return EPOLLERR|EPOLLNVAL;
820
821 poll_wait(file, &log_wait, wait);
822
823 if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) {
824 /* return error when data has vanished underneath us */
825 if (info.seq != atomic64_read(&user->seq))
826 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
827 else
828 ret = EPOLLIN|EPOLLRDNORM;
829 }
830
831 return ret;
832 }
833
devkmsg_open(struct inode * inode,struct file * file)834 static int devkmsg_open(struct inode *inode, struct file *file)
835 {
836 struct devkmsg_user *user;
837 int err;
838
839 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
840 return -EPERM;
841
842 /* write-only does not need any file context */
843 if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
844 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
845 SYSLOG_FROM_READER);
846 if (err)
847 return err;
848 }
849
850 user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
851 if (!user)
852 return -ENOMEM;
853
854 ratelimit_default_init(&user->rs);
855 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
856
857 mutex_init(&user->lock);
858
859 prb_rec_init_rd(&user->record, &user->info,
860 &user->text_buf[0], sizeof(user->text_buf));
861
862 atomic64_set(&user->seq, prb_first_valid_seq(prb));
863
864 file->private_data = user;
865 return 0;
866 }
867
devkmsg_release(struct inode * inode,struct file * file)868 static int devkmsg_release(struct inode *inode, struct file *file)
869 {
870 struct devkmsg_user *user = file->private_data;
871
872 if (!user)
873 return 0;
874
875 ratelimit_state_exit(&user->rs);
876
877 mutex_destroy(&user->lock);
878 kvfree(user);
879 return 0;
880 }
881
882 const struct file_operations kmsg_fops = {
883 .open = devkmsg_open,
884 .read = devkmsg_read,
885 .write_iter = devkmsg_write,
886 .llseek = devkmsg_llseek,
887 .poll = devkmsg_poll,
888 .release = devkmsg_release,
889 };
890
891 #ifdef CONFIG_CRASH_CORE
892 /*
893 * This appends the listed symbols to /proc/vmcore
894 *
895 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
896 * obtain access to symbols that are otherwise very difficult to locate. These
897 * symbols are specifically used so that utilities can access and extract the
898 * dmesg log from a vmcore file after a crash.
899 */
log_buf_vmcoreinfo_setup(void)900 void log_buf_vmcoreinfo_setup(void)
901 {
902 struct dev_printk_info *dev_info = NULL;
903
904 VMCOREINFO_SYMBOL(prb);
905 VMCOREINFO_SYMBOL(printk_rb_static);
906 VMCOREINFO_SYMBOL(clear_seq);
907
908 /*
909 * Export struct size and field offsets. User space tools can
910 * parse it and detect any changes to structure down the line.
911 */
912
913 VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
914 VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
915 VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
916 VMCOREINFO_OFFSET(printk_ringbuffer, fail);
917
918 VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
919 VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
920 VMCOREINFO_OFFSET(prb_desc_ring, descs);
921 VMCOREINFO_OFFSET(prb_desc_ring, infos);
922 VMCOREINFO_OFFSET(prb_desc_ring, head_id);
923 VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
924
925 VMCOREINFO_STRUCT_SIZE(prb_desc);
926 VMCOREINFO_OFFSET(prb_desc, state_var);
927 VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
928
929 VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
930 VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
931 VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
932
933 VMCOREINFO_STRUCT_SIZE(printk_info);
934 VMCOREINFO_OFFSET(printk_info, seq);
935 VMCOREINFO_OFFSET(printk_info, ts_nsec);
936 VMCOREINFO_OFFSET(printk_info, text_len);
937 VMCOREINFO_OFFSET(printk_info, caller_id);
938 VMCOREINFO_OFFSET(printk_info, dev_info);
939
940 VMCOREINFO_STRUCT_SIZE(dev_printk_info);
941 VMCOREINFO_OFFSET(dev_printk_info, subsystem);
942 VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
943 VMCOREINFO_OFFSET(dev_printk_info, device);
944 VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
945
946 VMCOREINFO_STRUCT_SIZE(prb_data_ring);
947 VMCOREINFO_OFFSET(prb_data_ring, size_bits);
948 VMCOREINFO_OFFSET(prb_data_ring, data);
949 VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
950 VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
951
952 VMCOREINFO_SIZE(atomic_long_t);
953 VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
954
955 VMCOREINFO_STRUCT_SIZE(latched_seq);
956 VMCOREINFO_OFFSET(latched_seq, val);
957 }
958 #endif
959
960 /* requested log_buf_len from kernel cmdline */
961 static unsigned long __initdata new_log_buf_len;
962
963 /* we practice scaling the ring buffer by powers of 2 */
log_buf_len_update(u64 size)964 static void __init log_buf_len_update(u64 size)
965 {
966 if (size > (u64)LOG_BUF_LEN_MAX) {
967 size = (u64)LOG_BUF_LEN_MAX;
968 pr_err("log_buf over 2G is not supported.\n");
969 }
970
971 if (size)
972 size = roundup_pow_of_two(size);
973 if (size > log_buf_len)
974 new_log_buf_len = (unsigned long)size;
975 }
976
977 /* save requested log_buf_len since it's too early to process it */
log_buf_len_setup(char * str)978 static int __init log_buf_len_setup(char *str)
979 {
980 u64 size;
981
982 if (!str)
983 return -EINVAL;
984
985 size = memparse(str, &str);
986
987 log_buf_len_update(size);
988
989 return 0;
990 }
991 early_param("log_buf_len", log_buf_len_setup);
992
993 #ifdef CONFIG_SMP
994 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
995
log_buf_add_cpu(void)996 static void __init log_buf_add_cpu(void)
997 {
998 unsigned int cpu_extra;
999
1000 /*
1001 * archs should set up cpu_possible_bits properly with
1002 * set_cpu_possible() after setup_arch() but just in
1003 * case lets ensure this is valid.
1004 */
1005 if (num_possible_cpus() == 1)
1006 return;
1007
1008 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1009
1010 /* by default this will only continue through for large > 64 CPUs */
1011 if (cpu_extra <= __LOG_BUF_LEN / 2)
1012 return;
1013
1014 pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1015 __LOG_CPU_MAX_BUF_LEN);
1016 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1017 cpu_extra);
1018 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1019
1020 log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1021 }
1022 #else /* !CONFIG_SMP */
log_buf_add_cpu(void)1023 static inline void log_buf_add_cpu(void) {}
1024 #endif /* CONFIG_SMP */
1025
set_percpu_data_ready(void)1026 static void __init set_percpu_data_ready(void)
1027 {
1028 __printk_percpu_data_ready = true;
1029 }
1030
add_to_rb(struct printk_ringbuffer * rb,struct printk_record * r)1031 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
1032 struct printk_record *r)
1033 {
1034 struct prb_reserved_entry e;
1035 struct printk_record dest_r;
1036
1037 prb_rec_init_wr(&dest_r, r->info->text_len);
1038
1039 if (!prb_reserve(&e, rb, &dest_r))
1040 return 0;
1041
1042 memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
1043 dest_r.info->text_len = r->info->text_len;
1044 dest_r.info->facility = r->info->facility;
1045 dest_r.info->level = r->info->level;
1046 dest_r.info->flags = r->info->flags;
1047 dest_r.info->ts_nsec = r->info->ts_nsec;
1048 dest_r.info->caller_id = r->info->caller_id;
1049 memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
1050
1051 prb_final_commit(&e);
1052
1053 return prb_record_text_space(&e);
1054 }
1055
1056 static char setup_text_buf[LOG_LINE_MAX] __initdata;
1057
setup_log_buf(int early)1058 void __init setup_log_buf(int early)
1059 {
1060 struct printk_info *new_infos;
1061 unsigned int new_descs_count;
1062 struct prb_desc *new_descs;
1063 struct printk_info info;
1064 struct printk_record r;
1065 unsigned int text_size;
1066 size_t new_descs_size;
1067 size_t new_infos_size;
1068 unsigned long flags;
1069 char *new_log_buf;
1070 unsigned int free;
1071 u64 seq;
1072
1073 /*
1074 * Some archs call setup_log_buf() multiple times - first is very
1075 * early, e.g. from setup_arch(), and second - when percpu_areas
1076 * are initialised.
1077 */
1078 if (!early)
1079 set_percpu_data_ready();
1080
1081 if (log_buf != __log_buf)
1082 return;
1083
1084 if (!early && !new_log_buf_len)
1085 log_buf_add_cpu();
1086
1087 if (!new_log_buf_len)
1088 return;
1089
1090 new_descs_count = new_log_buf_len >> PRB_AVGBITS;
1091 if (new_descs_count == 0) {
1092 pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
1093 return;
1094 }
1095
1096 new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1097 if (unlikely(!new_log_buf)) {
1098 pr_err("log_buf_len: %lu text bytes not available\n",
1099 new_log_buf_len);
1100 return;
1101 }
1102
1103 new_descs_size = new_descs_count * sizeof(struct prb_desc);
1104 new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
1105 if (unlikely(!new_descs)) {
1106 pr_err("log_buf_len: %zu desc bytes not available\n",
1107 new_descs_size);
1108 goto err_free_log_buf;
1109 }
1110
1111 new_infos_size = new_descs_count * sizeof(struct printk_info);
1112 new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
1113 if (unlikely(!new_infos)) {
1114 pr_err("log_buf_len: %zu info bytes not available\n",
1115 new_infos_size);
1116 goto err_free_descs;
1117 }
1118
1119 prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
1120
1121 prb_init(&printk_rb_dynamic,
1122 new_log_buf, ilog2(new_log_buf_len),
1123 new_descs, ilog2(new_descs_count),
1124 new_infos);
1125
1126 local_irq_save(flags);
1127
1128 log_buf_len = new_log_buf_len;
1129 log_buf = new_log_buf;
1130 new_log_buf_len = 0;
1131
1132 free = __LOG_BUF_LEN;
1133 prb_for_each_record(0, &printk_rb_static, seq, &r) {
1134 text_size = add_to_rb(&printk_rb_dynamic, &r);
1135 if (text_size > free)
1136 free = 0;
1137 else
1138 free -= text_size;
1139 }
1140
1141 prb = &printk_rb_dynamic;
1142
1143 local_irq_restore(flags);
1144
1145 /*
1146 * Copy any remaining messages that might have appeared from
1147 * NMI context after copying but before switching to the
1148 * dynamic buffer.
1149 */
1150 prb_for_each_record(seq, &printk_rb_static, seq, &r) {
1151 text_size = add_to_rb(&printk_rb_dynamic, &r);
1152 if (text_size > free)
1153 free = 0;
1154 else
1155 free -= text_size;
1156 }
1157
1158 if (seq != prb_next_seq(&printk_rb_static)) {
1159 pr_err("dropped %llu messages\n",
1160 prb_next_seq(&printk_rb_static) - seq);
1161 }
1162
1163 pr_info("log_buf_len: %u bytes\n", log_buf_len);
1164 pr_info("early log buf free: %u(%u%%)\n",
1165 free, (free * 100) / __LOG_BUF_LEN);
1166 return;
1167
1168 err_free_descs:
1169 memblock_free(new_descs, new_descs_size);
1170 err_free_log_buf:
1171 memblock_free(new_log_buf, new_log_buf_len);
1172 }
1173
1174 static bool __read_mostly ignore_loglevel;
1175
ignore_loglevel_setup(char * str)1176 static int __init ignore_loglevel_setup(char *str)
1177 {
1178 ignore_loglevel = true;
1179 pr_info("debug: ignoring loglevel setting.\n");
1180
1181 return 0;
1182 }
1183
1184 early_param("ignore_loglevel", ignore_loglevel_setup);
1185 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1186 MODULE_PARM_DESC(ignore_loglevel,
1187 "ignore loglevel setting (prints all kernel messages to the console)");
1188
suppress_message_printing(int level)1189 static bool suppress_message_printing(int level)
1190 {
1191 return (level >= console_loglevel && !ignore_loglevel);
1192 }
1193
1194 #ifdef CONFIG_BOOT_PRINTK_DELAY
1195
1196 static int boot_delay; /* msecs delay after each printk during bootup */
1197 static unsigned long long loops_per_msec; /* based on boot_delay */
1198
boot_delay_setup(char * str)1199 static int __init boot_delay_setup(char *str)
1200 {
1201 unsigned long lpj;
1202
1203 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
1204 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1205
1206 get_option(&str, &boot_delay);
1207 if (boot_delay > 10 * 1000)
1208 boot_delay = 0;
1209
1210 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1211 "HZ: %d, loops_per_msec: %llu\n",
1212 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1213 return 0;
1214 }
1215 early_param("boot_delay", boot_delay_setup);
1216
boot_delay_msec(int level)1217 static void boot_delay_msec(int level)
1218 {
1219 unsigned long long k;
1220 unsigned long timeout;
1221
1222 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1223 || suppress_message_printing(level)) {
1224 return;
1225 }
1226
1227 k = (unsigned long long)loops_per_msec * boot_delay;
1228
1229 timeout = jiffies + msecs_to_jiffies(boot_delay);
1230 while (k) {
1231 k--;
1232 cpu_relax();
1233 /*
1234 * use (volatile) jiffies to prevent
1235 * compiler reduction; loop termination via jiffies
1236 * is secondary and may or may not happen.
1237 */
1238 if (time_after(jiffies, timeout))
1239 break;
1240 touch_nmi_watchdog();
1241 }
1242 }
1243 #else
boot_delay_msec(int level)1244 static inline void boot_delay_msec(int level)
1245 {
1246 }
1247 #endif
1248
1249 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1250 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1251
print_syslog(unsigned int level,char * buf)1252 static size_t print_syslog(unsigned int level, char *buf)
1253 {
1254 return sprintf(buf, "<%u>", level);
1255 }
1256
print_time(u64 ts,char * buf)1257 static size_t print_time(u64 ts, char *buf)
1258 {
1259 unsigned long rem_nsec = do_div(ts, 1000000000);
1260
1261 return sprintf(buf, "[%5lu.%06lu]",
1262 (unsigned long)ts, rem_nsec / 1000);
1263 }
1264
1265 #ifdef CONFIG_PRINTK_CALLER
print_caller(u32 id,char * buf)1266 static size_t print_caller(u32 id, char *buf)
1267 {
1268 char caller[12];
1269
1270 snprintf(caller, sizeof(caller), "%c%u",
1271 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1272 return sprintf(buf, "[%6s]", caller);
1273 }
1274 #else
1275 #define print_caller(id, buf) 0
1276 #endif
1277
info_print_prefix(const struct printk_info * info,bool syslog,bool time,char * buf)1278 static size_t info_print_prefix(const struct printk_info *info, bool syslog,
1279 bool time, char *buf)
1280 {
1281 size_t len = 0;
1282
1283 if (syslog)
1284 len = print_syslog((info->facility << 3) | info->level, buf);
1285
1286 if (time)
1287 len += print_time(info->ts_nsec, buf + len);
1288
1289 len += print_caller(info->caller_id, buf + len);
1290
1291 if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1292 buf[len++] = ' ';
1293 buf[len] = '\0';
1294 }
1295
1296 return len;
1297 }
1298
1299 /*
1300 * Prepare the record for printing. The text is shifted within the given
1301 * buffer to avoid a need for another one. The following operations are
1302 * done:
1303 *
1304 * - Add prefix for each line.
1305 * - Drop truncated lines that no longer fit into the buffer.
1306 * - Add the trailing newline that has been removed in vprintk_store().
1307 * - Add a string terminator.
1308 *
1309 * Since the produced string is always terminated, the maximum possible
1310 * return value is @r->text_buf_size - 1;
1311 *
1312 * Return: The length of the updated/prepared text, including the added
1313 * prefixes and the newline. The terminator is not counted. The dropped
1314 * line(s) are not counted.
1315 */
record_print_text(struct printk_record * r,bool syslog,bool time)1316 static size_t record_print_text(struct printk_record *r, bool syslog,
1317 bool time)
1318 {
1319 size_t text_len = r->info->text_len;
1320 size_t buf_size = r->text_buf_size;
1321 char *text = r->text_buf;
1322 char prefix[PREFIX_MAX];
1323 bool truncated = false;
1324 size_t prefix_len;
1325 size_t line_len;
1326 size_t len = 0;
1327 char *next;
1328
1329 /*
1330 * If the message was truncated because the buffer was not large
1331 * enough, treat the available text as if it were the full text.
1332 */
1333 if (text_len > buf_size)
1334 text_len = buf_size;
1335
1336 prefix_len = info_print_prefix(r->info, syslog, time, prefix);
1337
1338 /*
1339 * @text_len: bytes of unprocessed text
1340 * @line_len: bytes of current line _without_ newline
1341 * @text: pointer to beginning of current line
1342 * @len: number of bytes prepared in r->text_buf
1343 */
1344 for (;;) {
1345 next = memchr(text, '\n', text_len);
1346 if (next) {
1347 line_len = next - text;
1348 } else {
1349 /* Drop truncated line(s). */
1350 if (truncated)
1351 break;
1352 line_len = text_len;
1353 }
1354
1355 /*
1356 * Truncate the text if there is not enough space to add the
1357 * prefix and a trailing newline and a terminator.
1358 */
1359 if (len + prefix_len + text_len + 1 + 1 > buf_size) {
1360 /* Drop even the current line if no space. */
1361 if (len + prefix_len + line_len + 1 + 1 > buf_size)
1362 break;
1363
1364 text_len = buf_size - len - prefix_len - 1 - 1;
1365 truncated = true;
1366 }
1367
1368 memmove(text + prefix_len, text, text_len);
1369 memcpy(text, prefix, prefix_len);
1370
1371 /*
1372 * Increment the prepared length to include the text and
1373 * prefix that were just moved+copied. Also increment for the
1374 * newline at the end of this line. If this is the last line,
1375 * there is no newline, but it will be added immediately below.
1376 */
1377 len += prefix_len + line_len + 1;
1378 if (text_len == line_len) {
1379 /*
1380 * This is the last line. Add the trailing newline
1381 * removed in vprintk_store().
1382 */
1383 text[prefix_len + line_len] = '\n';
1384 break;
1385 }
1386
1387 /*
1388 * Advance beyond the added prefix and the related line with
1389 * its newline.
1390 */
1391 text += prefix_len + line_len + 1;
1392
1393 /*
1394 * The remaining text has only decreased by the line with its
1395 * newline.
1396 *
1397 * Note that @text_len can become zero. It happens when @text
1398 * ended with a newline (either due to truncation or the
1399 * original string ending with "\n\n"). The loop is correctly
1400 * repeated and (if not truncated) an empty line with a prefix
1401 * will be prepared.
1402 */
1403 text_len -= line_len + 1;
1404 }
1405
1406 /*
1407 * If a buffer was provided, it will be terminated. Space for the
1408 * string terminator is guaranteed to be available. The terminator is
1409 * not counted in the return value.
1410 */
1411 if (buf_size > 0)
1412 r->text_buf[len] = 0;
1413
1414 return len;
1415 }
1416
get_record_print_text_size(struct printk_info * info,unsigned int line_count,bool syslog,bool time)1417 static size_t get_record_print_text_size(struct printk_info *info,
1418 unsigned int line_count,
1419 bool syslog, bool time)
1420 {
1421 char prefix[PREFIX_MAX];
1422 size_t prefix_len;
1423
1424 prefix_len = info_print_prefix(info, syslog, time, prefix);
1425
1426 /*
1427 * Each line will be preceded with a prefix. The intermediate
1428 * newlines are already within the text, but a final trailing
1429 * newline will be added.
1430 */
1431 return ((prefix_len * line_count) + info->text_len + 1);
1432 }
1433
1434 /*
1435 * Beginning with @start_seq, find the first record where it and all following
1436 * records up to (but not including) @max_seq fit into @size.
1437 *
1438 * @max_seq is simply an upper bound and does not need to exist. If the caller
1439 * does not require an upper bound, -1 can be used for @max_seq.
1440 */
find_first_fitting_seq(u64 start_seq,u64 max_seq,size_t size,bool syslog,bool time)1441 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size,
1442 bool syslog, bool time)
1443 {
1444 struct printk_info info;
1445 unsigned int line_count;
1446 size_t len = 0;
1447 u64 seq;
1448
1449 /* Determine the size of the records up to @max_seq. */
1450 prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1451 if (info.seq >= max_seq)
1452 break;
1453 len += get_record_print_text_size(&info, line_count, syslog, time);
1454 }
1455
1456 /*
1457 * Adjust the upper bound for the next loop to avoid subtracting
1458 * lengths that were never added.
1459 */
1460 if (seq < max_seq)
1461 max_seq = seq;
1462
1463 /*
1464 * Move first record forward until length fits into the buffer. Ignore
1465 * newest messages that were not counted in the above cycle. Messages
1466 * might appear and get lost in the meantime. This is a best effort
1467 * that prevents an infinite loop that could occur with a retry.
1468 */
1469 prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1470 if (len <= size || info.seq >= max_seq)
1471 break;
1472 len -= get_record_print_text_size(&info, line_count, syslog, time);
1473 }
1474
1475 return seq;
1476 }
1477
1478 /* The caller is responsible for making sure @size is greater than 0. */
syslog_print(char __user * buf,int size)1479 static int syslog_print(char __user *buf, int size)
1480 {
1481 struct printk_info info;
1482 struct printk_record r;
1483 char *text;
1484 int len = 0;
1485 u64 seq;
1486
1487 text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL);
1488 if (!text)
1489 return -ENOMEM;
1490
1491 prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX);
1492
1493 mutex_lock(&syslog_lock);
1494
1495 /*
1496 * Wait for the @syslog_seq record to be available. @syslog_seq may
1497 * change while waiting.
1498 */
1499 do {
1500 seq = syslog_seq;
1501
1502 mutex_unlock(&syslog_lock);
1503 len = wait_event_interruptible(log_wait, prb_read_valid(prb, seq, NULL));
1504 mutex_lock(&syslog_lock);
1505
1506 if (len)
1507 goto out;
1508 } while (syslog_seq != seq);
1509
1510 /*
1511 * Copy records that fit into the buffer. The above cycle makes sure
1512 * that the first record is always available.
1513 */
1514 do {
1515 size_t n;
1516 size_t skip;
1517 int err;
1518
1519 if (!prb_read_valid(prb, syslog_seq, &r))
1520 break;
1521
1522 if (r.info->seq != syslog_seq) {
1523 /* message is gone, move to next valid one */
1524 syslog_seq = r.info->seq;
1525 syslog_partial = 0;
1526 }
1527
1528 /*
1529 * To keep reading/counting partial line consistent,
1530 * use printk_time value as of the beginning of a line.
1531 */
1532 if (!syslog_partial)
1533 syslog_time = printk_time;
1534
1535 skip = syslog_partial;
1536 n = record_print_text(&r, true, syslog_time);
1537 if (n - syslog_partial <= size) {
1538 /* message fits into buffer, move forward */
1539 syslog_seq = r.info->seq + 1;
1540 n -= syslog_partial;
1541 syslog_partial = 0;
1542 } else if (!len){
1543 /* partial read(), remember position */
1544 n = size;
1545 syslog_partial += n;
1546 } else
1547 n = 0;
1548
1549 if (!n)
1550 break;
1551
1552 mutex_unlock(&syslog_lock);
1553 err = copy_to_user(buf, text + skip, n);
1554 mutex_lock(&syslog_lock);
1555
1556 if (err) {
1557 if (!len)
1558 len = -EFAULT;
1559 break;
1560 }
1561
1562 len += n;
1563 size -= n;
1564 buf += n;
1565 } while (size);
1566 out:
1567 mutex_unlock(&syslog_lock);
1568 kfree(text);
1569 return len;
1570 }
1571
syslog_print_all(char __user * buf,int size,bool clear)1572 static int syslog_print_all(char __user *buf, int size, bool clear)
1573 {
1574 struct printk_info info;
1575 struct printk_record r;
1576 char *text;
1577 int len = 0;
1578 u64 seq;
1579 bool time;
1580
1581 text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL);
1582 if (!text)
1583 return -ENOMEM;
1584
1585 time = printk_time;
1586 /*
1587 * Find first record that fits, including all following records,
1588 * into the user-provided buffer for this dump.
1589 */
1590 seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1,
1591 size, true, time);
1592
1593 prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX);
1594
1595 len = 0;
1596 prb_for_each_record(seq, prb, seq, &r) {
1597 int textlen;
1598
1599 textlen = record_print_text(&r, true, time);
1600
1601 if (len + textlen > size) {
1602 seq--;
1603 break;
1604 }
1605
1606 if (copy_to_user(buf + len, text, textlen))
1607 len = -EFAULT;
1608 else
1609 len += textlen;
1610
1611 if (len < 0)
1612 break;
1613 }
1614
1615 if (clear) {
1616 mutex_lock(&syslog_lock);
1617 latched_seq_write(&clear_seq, seq);
1618 mutex_unlock(&syslog_lock);
1619 }
1620
1621 kfree(text);
1622 return len;
1623 }
1624
syslog_clear(void)1625 static void syslog_clear(void)
1626 {
1627 mutex_lock(&syslog_lock);
1628 latched_seq_write(&clear_seq, prb_next_seq(prb));
1629 mutex_unlock(&syslog_lock);
1630 }
1631
do_syslog(int type,char __user * buf,int len,int source)1632 int do_syslog(int type, char __user *buf, int len, int source)
1633 {
1634 struct printk_info info;
1635 bool clear = false;
1636 static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1637 int error;
1638
1639 error = check_syslog_permissions(type, source);
1640 if (error)
1641 return error;
1642
1643 switch (type) {
1644 case SYSLOG_ACTION_CLOSE: /* Close log */
1645 break;
1646 case SYSLOG_ACTION_OPEN: /* Open log */
1647 break;
1648 case SYSLOG_ACTION_READ: /* Read from log */
1649 if (!buf || len < 0)
1650 return -EINVAL;
1651 if (!len)
1652 return 0;
1653 if (!access_ok(buf, len))
1654 return -EFAULT;
1655 error = syslog_print(buf, len);
1656 break;
1657 /* Read/clear last kernel messages */
1658 case SYSLOG_ACTION_READ_CLEAR:
1659 clear = true;
1660 fallthrough;
1661 /* Read last kernel messages */
1662 case SYSLOG_ACTION_READ_ALL:
1663 if (!buf || len < 0)
1664 return -EINVAL;
1665 if (!len)
1666 return 0;
1667 if (!access_ok(buf, len))
1668 return -EFAULT;
1669 error = syslog_print_all(buf, len, clear);
1670 break;
1671 /* Clear ring buffer */
1672 case SYSLOG_ACTION_CLEAR:
1673 syslog_clear();
1674 break;
1675 /* Disable logging to console */
1676 case SYSLOG_ACTION_CONSOLE_OFF:
1677 if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1678 saved_console_loglevel = console_loglevel;
1679 console_loglevel = minimum_console_loglevel;
1680 break;
1681 /* Enable logging to console */
1682 case SYSLOG_ACTION_CONSOLE_ON:
1683 if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1684 console_loglevel = saved_console_loglevel;
1685 saved_console_loglevel = LOGLEVEL_DEFAULT;
1686 }
1687 break;
1688 /* Set level of messages printed to console */
1689 case SYSLOG_ACTION_CONSOLE_LEVEL:
1690 if (len < 1 || len > 8)
1691 return -EINVAL;
1692 if (len < minimum_console_loglevel)
1693 len = minimum_console_loglevel;
1694 console_loglevel = len;
1695 /* Implicitly re-enable logging to console */
1696 saved_console_loglevel = LOGLEVEL_DEFAULT;
1697 break;
1698 /* Number of chars in the log buffer */
1699 case SYSLOG_ACTION_SIZE_UNREAD:
1700 mutex_lock(&syslog_lock);
1701 if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
1702 /* No unread messages. */
1703 mutex_unlock(&syslog_lock);
1704 return 0;
1705 }
1706 if (info.seq != syslog_seq) {
1707 /* messages are gone, move to first one */
1708 syslog_seq = info.seq;
1709 syslog_partial = 0;
1710 }
1711 if (source == SYSLOG_FROM_PROC) {
1712 /*
1713 * Short-cut for poll(/"proc/kmsg") which simply checks
1714 * for pending data, not the size; return the count of
1715 * records, not the length.
1716 */
1717 error = prb_next_seq(prb) - syslog_seq;
1718 } else {
1719 bool time = syslog_partial ? syslog_time : printk_time;
1720 unsigned int line_count;
1721 u64 seq;
1722
1723 prb_for_each_info(syslog_seq, prb, seq, &info,
1724 &line_count) {
1725 error += get_record_print_text_size(&info, line_count,
1726 true, time);
1727 time = printk_time;
1728 }
1729 error -= syslog_partial;
1730 }
1731 mutex_unlock(&syslog_lock);
1732 break;
1733 /* Size of the log buffer */
1734 case SYSLOG_ACTION_SIZE_BUFFER:
1735 error = log_buf_len;
1736 break;
1737 default:
1738 error = -EINVAL;
1739 break;
1740 }
1741
1742 return error;
1743 }
1744
SYSCALL_DEFINE3(syslog,int,type,char __user *,buf,int,len)1745 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1746 {
1747 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1748 }
1749
1750 /*
1751 * Special console_lock variants that help to reduce the risk of soft-lockups.
1752 * They allow to pass console_lock to another printk() call using a busy wait.
1753 */
1754
1755 #ifdef CONFIG_LOCKDEP
1756 static struct lockdep_map console_owner_dep_map = {
1757 .name = "console_owner"
1758 };
1759 #endif
1760
1761 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1762 static struct task_struct *console_owner;
1763 static bool console_waiter;
1764
1765 /**
1766 * console_lock_spinning_enable - mark beginning of code where another
1767 * thread might safely busy wait
1768 *
1769 * This basically converts console_lock into a spinlock. This marks
1770 * the section where the console_lock owner can not sleep, because
1771 * there may be a waiter spinning (like a spinlock). Also it must be
1772 * ready to hand over the lock at the end of the section.
1773 */
console_lock_spinning_enable(void)1774 static void console_lock_spinning_enable(void)
1775 {
1776 raw_spin_lock(&console_owner_lock);
1777 console_owner = current;
1778 raw_spin_unlock(&console_owner_lock);
1779
1780 /* The waiter may spin on us after setting console_owner */
1781 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1782 }
1783
1784 /**
1785 * console_lock_spinning_disable_and_check - mark end of code where another
1786 * thread was able to busy wait and check if there is a waiter
1787 *
1788 * This is called at the end of the section where spinning is allowed.
1789 * It has two functions. First, it is a signal that it is no longer
1790 * safe to start busy waiting for the lock. Second, it checks if
1791 * there is a busy waiter and passes the lock rights to her.
1792 *
1793 * Important: Callers lose the lock if there was a busy waiter.
1794 * They must not touch items synchronized by console_lock
1795 * in this case.
1796 *
1797 * Return: 1 if the lock rights were passed, 0 otherwise.
1798 */
console_lock_spinning_disable_and_check(void)1799 static int console_lock_spinning_disable_and_check(void)
1800 {
1801 int waiter;
1802
1803 raw_spin_lock(&console_owner_lock);
1804 waiter = READ_ONCE(console_waiter);
1805 console_owner = NULL;
1806 raw_spin_unlock(&console_owner_lock);
1807
1808 if (!waiter) {
1809 spin_release(&console_owner_dep_map, _THIS_IP_);
1810 return 0;
1811 }
1812
1813 /* The waiter is now free to continue */
1814 WRITE_ONCE(console_waiter, false);
1815
1816 spin_release(&console_owner_dep_map, _THIS_IP_);
1817
1818 /*
1819 * Hand off console_lock to waiter. The waiter will perform
1820 * the up(). After this, the waiter is the console_lock owner.
1821 */
1822 mutex_release(&console_lock_dep_map, _THIS_IP_);
1823 return 1;
1824 }
1825
1826 /**
1827 * console_trylock_spinning - try to get console_lock by busy waiting
1828 *
1829 * This allows to busy wait for the console_lock when the current
1830 * owner is running in specially marked sections. It means that
1831 * the current owner is running and cannot reschedule until it
1832 * is ready to lose the lock.
1833 *
1834 * Return: 1 if we got the lock, 0 othrewise
1835 */
console_trylock_spinning(void)1836 static int console_trylock_spinning(void)
1837 {
1838 struct task_struct *owner = NULL;
1839 bool waiter;
1840 bool spin = false;
1841 unsigned long flags;
1842
1843 if (console_trylock())
1844 return 1;
1845
1846 printk_safe_enter_irqsave(flags);
1847
1848 raw_spin_lock(&console_owner_lock);
1849 owner = READ_ONCE(console_owner);
1850 waiter = READ_ONCE(console_waiter);
1851 if (!waiter && owner && owner != current) {
1852 WRITE_ONCE(console_waiter, true);
1853 spin = true;
1854 }
1855 raw_spin_unlock(&console_owner_lock);
1856
1857 /*
1858 * If there is an active printk() writing to the
1859 * consoles, instead of having it write our data too,
1860 * see if we can offload that load from the active
1861 * printer, and do some printing ourselves.
1862 * Go into a spin only if there isn't already a waiter
1863 * spinning, and there is an active printer, and
1864 * that active printer isn't us (recursive printk?).
1865 */
1866 if (!spin) {
1867 printk_safe_exit_irqrestore(flags);
1868 return 0;
1869 }
1870
1871 /* We spin waiting for the owner to release us */
1872 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1873 /* Owner will clear console_waiter on hand off */
1874 while (READ_ONCE(console_waiter))
1875 cpu_relax();
1876 spin_release(&console_owner_dep_map, _THIS_IP_);
1877
1878 printk_safe_exit_irqrestore(flags);
1879 /*
1880 * The owner passed the console lock to us.
1881 * Since we did not spin on console lock, annotate
1882 * this as a trylock. Otherwise lockdep will
1883 * complain.
1884 */
1885 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1886
1887 return 1;
1888 }
1889
1890 /*
1891 * Call the console drivers, asking them to write out
1892 * log_buf[start] to log_buf[end - 1].
1893 * The console_lock must be held.
1894 */
call_console_drivers(const char * ext_text,size_t ext_len,const char * text,size_t len)1895 static void call_console_drivers(const char *ext_text, size_t ext_len,
1896 const char *text, size_t len)
1897 {
1898 static char dropped_text[64];
1899 size_t dropped_len = 0;
1900 struct console *con;
1901
1902 trace_console_rcuidle(text, len);
1903
1904 if (!console_drivers)
1905 return;
1906
1907 if (console_dropped) {
1908 dropped_len = snprintf(dropped_text, sizeof(dropped_text),
1909 "** %lu printk messages dropped **\n",
1910 console_dropped);
1911 console_dropped = 0;
1912 }
1913
1914 for_each_console(con) {
1915 if (exclusive_console && con != exclusive_console)
1916 continue;
1917 if (!(con->flags & CON_ENABLED))
1918 continue;
1919 if (!con->write)
1920 continue;
1921 if (!cpu_online(smp_processor_id()) &&
1922 !(con->flags & CON_ANYTIME))
1923 continue;
1924 if (con->flags & CON_EXTENDED)
1925 con->write(con, ext_text, ext_len);
1926 else {
1927 if (dropped_len)
1928 con->write(con, dropped_text, dropped_len);
1929 con->write(con, text, len);
1930 }
1931 }
1932 }
1933
1934 /*
1935 * Recursion is tracked separately on each CPU. If NMIs are supported, an
1936 * additional NMI context per CPU is also separately tracked. Until per-CPU
1937 * is available, a separate "early tracking" is performed.
1938 */
1939 static DEFINE_PER_CPU(u8, printk_count);
1940 static u8 printk_count_early;
1941 #ifdef CONFIG_HAVE_NMI
1942 static DEFINE_PER_CPU(u8, printk_count_nmi);
1943 static u8 printk_count_nmi_early;
1944 #endif
1945
1946 /*
1947 * Recursion is limited to keep the output sane. printk() should not require
1948 * more than 1 level of recursion (allowing, for example, printk() to trigger
1949 * a WARN), but a higher value is used in case some printk-internal errors
1950 * exist, such as the ringbuffer validation checks failing.
1951 */
1952 #define PRINTK_MAX_RECURSION 3
1953
1954 /*
1955 * Return a pointer to the dedicated counter for the CPU+context of the
1956 * caller.
1957 */
__printk_recursion_counter(void)1958 static u8 *__printk_recursion_counter(void)
1959 {
1960 #ifdef CONFIG_HAVE_NMI
1961 if (in_nmi()) {
1962 if (printk_percpu_data_ready())
1963 return this_cpu_ptr(&printk_count_nmi);
1964 return &printk_count_nmi_early;
1965 }
1966 #endif
1967 if (printk_percpu_data_ready())
1968 return this_cpu_ptr(&printk_count);
1969 return &printk_count_early;
1970 }
1971
1972 /*
1973 * Enter recursion tracking. Interrupts are disabled to simplify tracking.
1974 * The caller must check the boolean return value to see if the recursion is
1975 * allowed. On failure, interrupts are not disabled.
1976 *
1977 * @recursion_ptr must be a variable of type (u8 *) and is the same variable
1978 * that is passed to printk_exit_irqrestore().
1979 */
1980 #define printk_enter_irqsave(recursion_ptr, flags) \
1981 ({ \
1982 bool success = true; \
1983 \
1984 typecheck(u8 *, recursion_ptr); \
1985 local_irq_save(flags); \
1986 (recursion_ptr) = __printk_recursion_counter(); \
1987 if (*(recursion_ptr) > PRINTK_MAX_RECURSION) { \
1988 local_irq_restore(flags); \
1989 success = false; \
1990 } else { \
1991 (*(recursion_ptr))++; \
1992 } \
1993 success; \
1994 })
1995
1996 /* Exit recursion tracking, restoring interrupts. */
1997 #define printk_exit_irqrestore(recursion_ptr, flags) \
1998 do { \
1999 typecheck(u8 *, recursion_ptr); \
2000 (*(recursion_ptr))--; \
2001 local_irq_restore(flags); \
2002 } while (0)
2003
2004 int printk_delay_msec __read_mostly;
2005
printk_delay(void)2006 static inline void printk_delay(void)
2007 {
2008 if (unlikely(printk_delay_msec)) {
2009 int m = printk_delay_msec;
2010
2011 while (m--) {
2012 mdelay(1);
2013 touch_nmi_watchdog();
2014 }
2015 }
2016 }
2017
printk_caller_id(void)2018 static inline u32 printk_caller_id(void)
2019 {
2020 return in_task() ? task_pid_nr(current) :
2021 0x80000000 + raw_smp_processor_id();
2022 }
2023
2024 /**
2025 * printk_parse_prefix - Parse level and control flags.
2026 *
2027 * @text: The terminated text message.
2028 * @level: A pointer to the current level value, will be updated.
2029 * @flags: A pointer to the current printk_info flags, will be updated.
2030 *
2031 * @level may be NULL if the caller is not interested in the parsed value.
2032 * Otherwise the variable pointed to by @level must be set to
2033 * LOGLEVEL_DEFAULT in order to be updated with the parsed value.
2034 *
2035 * @flags may be NULL if the caller is not interested in the parsed value.
2036 * Otherwise the variable pointed to by @flags will be OR'd with the parsed
2037 * value.
2038 *
2039 * Return: The length of the parsed level and control flags.
2040 */
printk_parse_prefix(const char * text,int * level,enum printk_info_flags * flags)2041 u16 printk_parse_prefix(const char *text, int *level,
2042 enum printk_info_flags *flags)
2043 {
2044 u16 prefix_len = 0;
2045 int kern_level;
2046
2047 while (*text) {
2048 kern_level = printk_get_level(text);
2049 if (!kern_level)
2050 break;
2051
2052 switch (kern_level) {
2053 case '0' ... '7':
2054 if (level && *level == LOGLEVEL_DEFAULT)
2055 *level = kern_level - '0';
2056 break;
2057 case 'c': /* KERN_CONT */
2058 if (flags)
2059 *flags |= LOG_CONT;
2060 }
2061
2062 prefix_len += 2;
2063 text += 2;
2064 }
2065
2066 return prefix_len;
2067 }
2068
2069 __printf(5, 0)
printk_sprint(char * text,u16 size,int facility,enum printk_info_flags * flags,const char * fmt,va_list args)2070 static u16 printk_sprint(char *text, u16 size, int facility,
2071 enum printk_info_flags *flags, const char *fmt,
2072 va_list args)
2073 {
2074 u16 text_len;
2075
2076 text_len = vscnprintf(text, size, fmt, args);
2077
2078 /* Mark and strip a trailing newline. */
2079 if (text_len && text[text_len - 1] == '\n') {
2080 text_len--;
2081 *flags |= LOG_NEWLINE;
2082 }
2083
2084 /* Strip log level and control flags. */
2085 if (facility == 0) {
2086 u16 prefix_len;
2087
2088 prefix_len = printk_parse_prefix(text, NULL, NULL);
2089 if (prefix_len) {
2090 text_len -= prefix_len;
2091 memmove(text, text + prefix_len, text_len);
2092 }
2093 }
2094
2095 return text_len;
2096 }
2097
2098 __printf(4, 0)
vprintk_store(int facility,int level,const struct dev_printk_info * dev_info,const char * fmt,va_list args)2099 int vprintk_store(int facility, int level,
2100 const struct dev_printk_info *dev_info,
2101 const char *fmt, va_list args)
2102 {
2103 const u32 caller_id = printk_caller_id();
2104 struct prb_reserved_entry e;
2105 enum printk_info_flags flags = 0;
2106 struct printk_record r;
2107 unsigned long irqflags;
2108 u16 trunc_msg_len = 0;
2109 char prefix_buf[8];
2110 u8 *recursion_ptr;
2111 u16 reserve_size;
2112 va_list args2;
2113 u16 text_len;
2114 int ret = 0;
2115 u64 ts_nsec;
2116
2117 /*
2118 * Since the duration of printk() can vary depending on the message
2119 * and state of the ringbuffer, grab the timestamp now so that it is
2120 * close to the call of printk(). This provides a more deterministic
2121 * timestamp with respect to the caller.
2122 */
2123 ts_nsec = local_clock();
2124
2125 if (!printk_enter_irqsave(recursion_ptr, irqflags))
2126 return 0;
2127
2128 /*
2129 * The sprintf needs to come first since the syslog prefix might be
2130 * passed in as a parameter. An extra byte must be reserved so that
2131 * later the vscnprintf() into the reserved buffer has room for the
2132 * terminating '\0', which is not counted by vsnprintf().
2133 */
2134 va_copy(args2, args);
2135 reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1;
2136 va_end(args2);
2137
2138 if (reserve_size > LOG_LINE_MAX)
2139 reserve_size = LOG_LINE_MAX;
2140
2141 /* Extract log level or control flags. */
2142 if (facility == 0)
2143 printk_parse_prefix(&prefix_buf[0], &level, &flags);
2144
2145 if (level == LOGLEVEL_DEFAULT)
2146 level = default_message_loglevel;
2147
2148 if (dev_info)
2149 flags |= LOG_NEWLINE;
2150
2151 if (flags & LOG_CONT) {
2152 prb_rec_init_wr(&r, reserve_size);
2153 if (prb_reserve_in_last(&e, prb, &r, caller_id, LOG_LINE_MAX)) {
2154 text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size,
2155 facility, &flags, fmt, args);
2156 r.info->text_len += text_len;
2157
2158 if (flags & LOG_NEWLINE) {
2159 r.info->flags |= LOG_NEWLINE;
2160 prb_final_commit(&e);
2161 } else {
2162 prb_commit(&e);
2163 }
2164
2165 ret = text_len;
2166 goto out;
2167 }
2168 }
2169
2170 /*
2171 * Explicitly initialize the record before every prb_reserve() call.
2172 * prb_reserve_in_last() and prb_reserve() purposely invalidate the
2173 * structure when they fail.
2174 */
2175 prb_rec_init_wr(&r, reserve_size);
2176 if (!prb_reserve(&e, prb, &r)) {
2177 /* truncate the message if it is too long for empty buffer */
2178 truncate_msg(&reserve_size, &trunc_msg_len);
2179
2180 prb_rec_init_wr(&r, reserve_size + trunc_msg_len);
2181 if (!prb_reserve(&e, prb, &r))
2182 goto out;
2183 }
2184
2185 /* fill message */
2186 text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args);
2187 if (trunc_msg_len)
2188 memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
2189 r.info->text_len = text_len + trunc_msg_len;
2190 r.info->facility = facility;
2191 r.info->level = level & 7;
2192 r.info->flags = flags & 0x1f;
2193 r.info->ts_nsec = ts_nsec;
2194 r.info->caller_id = caller_id;
2195 if (dev_info)
2196 memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
2197
2198 /* A message without a trailing newline can be continued. */
2199 if (!(flags & LOG_NEWLINE))
2200 prb_commit(&e);
2201 else
2202 prb_final_commit(&e);
2203
2204 ret = text_len + trunc_msg_len;
2205 out:
2206 printk_exit_irqrestore(recursion_ptr, irqflags);
2207 return ret;
2208 }
2209
vprintk_emit(int facility,int level,const struct dev_printk_info * dev_info,const char * fmt,va_list args)2210 asmlinkage int vprintk_emit(int facility, int level,
2211 const struct dev_printk_info *dev_info,
2212 const char *fmt, va_list args)
2213 {
2214 int printed_len;
2215 bool in_sched = false;
2216
2217 /* Suppress unimportant messages after panic happens */
2218 if (unlikely(suppress_printk))
2219 return 0;
2220
2221 if (level == LOGLEVEL_SCHED) {
2222 level = LOGLEVEL_DEFAULT;
2223 in_sched = true;
2224 }
2225
2226 boot_delay_msec(level);
2227 printk_delay();
2228
2229 printed_len = vprintk_store(facility, level, dev_info, fmt, args);
2230
2231 /* If called from the scheduler, we can not call up(). */
2232 if (!in_sched) {
2233 /*
2234 * Disable preemption to avoid being preempted while holding
2235 * console_sem which would prevent anyone from printing to
2236 * console
2237 */
2238 preempt_disable();
2239 /*
2240 * Try to acquire and then immediately release the console
2241 * semaphore. The release will print out buffers and wake up
2242 * /dev/kmsg and syslog() users.
2243 */
2244 if (console_trylock_spinning())
2245 console_unlock();
2246 preempt_enable();
2247 }
2248
2249 wake_up_klogd();
2250 return printed_len;
2251 }
2252 EXPORT_SYMBOL(vprintk_emit);
2253
vprintk_default(const char * fmt,va_list args)2254 int vprintk_default(const char *fmt, va_list args)
2255 {
2256 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
2257 }
2258 EXPORT_SYMBOL_GPL(vprintk_default);
2259
_printk(const char * fmt,...)2260 asmlinkage __visible int _printk(const char *fmt, ...)
2261 {
2262 va_list args;
2263 int r;
2264
2265 va_start(args, fmt);
2266 r = vprintk(fmt, args);
2267 va_end(args);
2268
2269 return r;
2270 }
2271 EXPORT_SYMBOL(_printk);
2272
2273 #else /* CONFIG_PRINTK */
2274
2275 #define CONSOLE_LOG_MAX 0
2276 #define printk_time false
2277
2278 #define prb_read_valid(rb, seq, r) false
2279 #define prb_first_valid_seq(rb) 0
2280
2281 static u64 syslog_seq;
2282 static u64 console_seq;
2283 static u64 exclusive_console_stop_seq;
2284 static unsigned long console_dropped;
2285
record_print_text(const struct printk_record * r,bool syslog,bool time)2286 static size_t record_print_text(const struct printk_record *r,
2287 bool syslog, bool time)
2288 {
2289 return 0;
2290 }
info_print_ext_header(char * buf,size_t size,struct printk_info * info)2291 static ssize_t info_print_ext_header(char *buf, size_t size,
2292 struct printk_info *info)
2293 {
2294 return 0;
2295 }
msg_print_ext_body(char * buf,size_t size,char * text,size_t text_len,struct dev_printk_info * dev_info)2296 static ssize_t msg_print_ext_body(char *buf, size_t size,
2297 char *text, size_t text_len,
2298 struct dev_printk_info *dev_info) { return 0; }
console_lock_spinning_enable(void)2299 static void console_lock_spinning_enable(void) { }
console_lock_spinning_disable_and_check(void)2300 static int console_lock_spinning_disable_and_check(void) { return 0; }
call_console_drivers(const char * ext_text,size_t ext_len,const char * text,size_t len)2301 static void call_console_drivers(const char *ext_text, size_t ext_len,
2302 const char *text, size_t len) {}
suppress_message_printing(int level)2303 static bool suppress_message_printing(int level) { return false; }
2304
2305 #endif /* CONFIG_PRINTK */
2306
2307 #ifdef CONFIG_EARLY_PRINTK
2308 struct console *early_console;
2309
early_printk(const char * fmt,...)2310 asmlinkage __visible void early_printk(const char *fmt, ...)
2311 {
2312 va_list ap;
2313 char buf[512];
2314 int n;
2315
2316 if (!early_console)
2317 return;
2318
2319 va_start(ap, fmt);
2320 n = vscnprintf(buf, sizeof(buf), fmt, ap);
2321 va_end(ap);
2322
2323 early_console->write(early_console, buf, n);
2324 }
2325 #endif
2326
__add_preferred_console(char * name,int idx,char * options,char * brl_options,bool user_specified)2327 static int __add_preferred_console(char *name, int idx, char *options,
2328 char *brl_options, bool user_specified)
2329 {
2330 struct console_cmdline *c;
2331 int i;
2332
2333 /*
2334 * See if this tty is not yet registered, and
2335 * if we have a slot free.
2336 */
2337 for (i = 0, c = console_cmdline;
2338 i < MAX_CMDLINECONSOLES && c->name[0];
2339 i++, c++) {
2340 if (strcmp(c->name, name) == 0 && c->index == idx) {
2341 if (!brl_options)
2342 preferred_console = i;
2343 if (user_specified)
2344 c->user_specified = true;
2345 return 0;
2346 }
2347 }
2348 if (i == MAX_CMDLINECONSOLES)
2349 return -E2BIG;
2350 if (!brl_options)
2351 preferred_console = i;
2352 strlcpy(c->name, name, sizeof(c->name));
2353 c->options = options;
2354 c->user_specified = user_specified;
2355 braille_set_options(c, brl_options);
2356
2357 c->index = idx;
2358 return 0;
2359 }
2360
console_msg_format_setup(char * str)2361 static int __init console_msg_format_setup(char *str)
2362 {
2363 if (!strcmp(str, "syslog"))
2364 console_msg_format = MSG_FORMAT_SYSLOG;
2365 if (!strcmp(str, "default"))
2366 console_msg_format = MSG_FORMAT_DEFAULT;
2367 return 1;
2368 }
2369 __setup("console_msg_format=", console_msg_format_setup);
2370
2371 /*
2372 * Set up a console. Called via do_early_param() in init/main.c
2373 * for each "console=" parameter in the boot command line.
2374 */
console_setup(char * str)2375 static int __init console_setup(char *str)
2376 {
2377 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2378 char *s, *options, *brl_options = NULL;
2379 int idx;
2380
2381 /*
2382 * console="" or console=null have been suggested as a way to
2383 * disable console output. Use ttynull that has been created
2384 * for exactly this purpose.
2385 */
2386 if (str[0] == 0 || strcmp(str, "null") == 0) {
2387 __add_preferred_console("ttynull", 0, NULL, NULL, true);
2388 return 1;
2389 }
2390
2391 if (_braille_console_setup(&str, &brl_options))
2392 return 1;
2393
2394 /*
2395 * Decode str into name, index, options.
2396 */
2397 if (str[0] >= '0' && str[0] <= '9') {
2398 strcpy(buf, "ttyS");
2399 strncpy(buf + 4, str, sizeof(buf) - 5);
2400 } else {
2401 strncpy(buf, str, sizeof(buf) - 1);
2402 }
2403 buf[sizeof(buf) - 1] = 0;
2404 options = strchr(str, ',');
2405 if (options)
2406 *(options++) = 0;
2407 #ifdef __sparc__
2408 if (!strcmp(str, "ttya"))
2409 strcpy(buf, "ttyS0");
2410 if (!strcmp(str, "ttyb"))
2411 strcpy(buf, "ttyS1");
2412 #endif
2413 for (s = buf; *s; s++)
2414 if (isdigit(*s) || *s == ',')
2415 break;
2416 idx = simple_strtoul(s, NULL, 10);
2417 *s = 0;
2418
2419 __add_preferred_console(buf, idx, options, brl_options, true);
2420 console_set_on_cmdline = 1;
2421 return 1;
2422 }
2423 __setup("console=", console_setup);
2424
2425 /**
2426 * add_preferred_console - add a device to the list of preferred consoles.
2427 * @name: device name
2428 * @idx: device index
2429 * @options: options for this console
2430 *
2431 * The last preferred console added will be used for kernel messages
2432 * and stdin/out/err for init. Normally this is used by console_setup
2433 * above to handle user-supplied console arguments; however it can also
2434 * be used by arch-specific code either to override the user or more
2435 * commonly to provide a default console (ie from PROM variables) when
2436 * the user has not supplied one.
2437 */
add_preferred_console(char * name,int idx,char * options)2438 int add_preferred_console(char *name, int idx, char *options)
2439 {
2440 return __add_preferred_console(name, idx, options, NULL, false);
2441 }
2442
2443 bool console_suspend_enabled = true;
2444 EXPORT_SYMBOL(console_suspend_enabled);
2445
console_suspend_disable(char * str)2446 static int __init console_suspend_disable(char *str)
2447 {
2448 console_suspend_enabled = false;
2449 return 1;
2450 }
2451 __setup("no_console_suspend", console_suspend_disable);
2452 module_param_named(console_suspend, console_suspend_enabled,
2453 bool, S_IRUGO | S_IWUSR);
2454 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2455 " and hibernate operations");
2456
2457 static bool printk_console_no_auto_verbose;
2458
console_verbose(void)2459 void console_verbose(void)
2460 {
2461 if (console_loglevel && !printk_console_no_auto_verbose)
2462 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
2463 }
2464 EXPORT_SYMBOL_GPL(console_verbose);
2465
2466 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644);
2467 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc");
2468
2469 /**
2470 * suspend_console - suspend the console subsystem
2471 *
2472 * This disables printk() while we go into suspend states
2473 */
suspend_console(void)2474 void suspend_console(void)
2475 {
2476 if (!console_suspend_enabled)
2477 return;
2478 pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2479 console_lock();
2480 console_suspended = 1;
2481 up_console_sem();
2482 }
2483
resume_console(void)2484 void resume_console(void)
2485 {
2486 if (!console_suspend_enabled)
2487 return;
2488 down_console_sem();
2489 console_suspended = 0;
2490 console_unlock();
2491 }
2492
2493 /**
2494 * console_cpu_notify - print deferred console messages after CPU hotplug
2495 * @cpu: unused
2496 *
2497 * If printk() is called from a CPU that is not online yet, the messages
2498 * will be printed on the console only if there are CON_ANYTIME consoles.
2499 * This function is called when a new CPU comes online (or fails to come
2500 * up) or goes offline.
2501 */
console_cpu_notify(unsigned int cpu)2502 static int console_cpu_notify(unsigned int cpu)
2503 {
2504 if (!cpuhp_tasks_frozen) {
2505 /* If trylock fails, someone else is doing the printing */
2506 if (console_trylock())
2507 console_unlock();
2508 }
2509 return 0;
2510 }
2511
2512 /**
2513 * console_lock - lock the console system for exclusive use.
2514 *
2515 * Acquires a lock which guarantees that the caller has
2516 * exclusive access to the console system and the console_drivers list.
2517 *
2518 * Can sleep, returns nothing.
2519 */
console_lock(void)2520 void console_lock(void)
2521 {
2522 might_sleep();
2523
2524 down_console_sem();
2525 if (console_suspended)
2526 return;
2527 console_locked = 1;
2528 console_may_schedule = 1;
2529 }
2530 EXPORT_SYMBOL(console_lock);
2531
2532 /**
2533 * console_trylock - try to lock the console system for exclusive use.
2534 *
2535 * Try to acquire a lock which guarantees that the caller has exclusive
2536 * access to the console system and the console_drivers list.
2537 *
2538 * returns 1 on success, and 0 on failure to acquire the lock.
2539 */
console_trylock(void)2540 int console_trylock(void)
2541 {
2542 if (down_trylock_console_sem())
2543 return 0;
2544 if (console_suspended) {
2545 up_console_sem();
2546 return 0;
2547 }
2548 console_locked = 1;
2549 console_may_schedule = 0;
2550 return 1;
2551 }
2552 EXPORT_SYMBOL(console_trylock);
2553
is_console_locked(void)2554 int is_console_locked(void)
2555 {
2556 return console_locked;
2557 }
2558 EXPORT_SYMBOL(is_console_locked);
2559
2560 /*
2561 * Check if we have any console that is capable of printing while cpu is
2562 * booting or shutting down. Requires console_sem.
2563 */
have_callable_console(void)2564 static int have_callable_console(void)
2565 {
2566 struct console *con;
2567
2568 for_each_console(con)
2569 if ((con->flags & CON_ENABLED) &&
2570 (con->flags & CON_ANYTIME))
2571 return 1;
2572
2573 return 0;
2574 }
2575
2576 /*
2577 * Can we actually use the console at this time on this cpu?
2578 *
2579 * Console drivers may assume that per-cpu resources have been allocated. So
2580 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2581 * call them until this CPU is officially up.
2582 */
can_use_console(void)2583 static inline int can_use_console(void)
2584 {
2585 return cpu_online(raw_smp_processor_id()) || have_callable_console();
2586 }
2587
2588 /**
2589 * console_unlock - unlock the console system
2590 *
2591 * Releases the console_lock which the caller holds on the console system
2592 * and the console driver list.
2593 *
2594 * While the console_lock was held, console output may have been buffered
2595 * by printk(). If this is the case, console_unlock(); emits
2596 * the output prior to releasing the lock.
2597 *
2598 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2599 *
2600 * console_unlock(); may be called from any context.
2601 */
console_unlock(void)2602 void console_unlock(void)
2603 {
2604 static char ext_text[CONSOLE_EXT_LOG_MAX];
2605 static char text[CONSOLE_LOG_MAX];
2606 unsigned long flags;
2607 bool do_cond_resched, retry;
2608 struct printk_info info;
2609 struct printk_record r;
2610 u64 __maybe_unused next_seq;
2611
2612 if (console_suspended) {
2613 up_console_sem();
2614 return;
2615 }
2616
2617 prb_rec_init_rd(&r, &info, text, sizeof(text));
2618
2619 /*
2620 * Console drivers are called with interrupts disabled, so
2621 * @console_may_schedule should be cleared before; however, we may
2622 * end up dumping a lot of lines, for example, if called from
2623 * console registration path, and should invoke cond_resched()
2624 * between lines if allowable. Not doing so can cause a very long
2625 * scheduling stall on a slow console leading to RCU stall and
2626 * softlockup warnings which exacerbate the issue with more
2627 * messages practically incapacitating the system.
2628 *
2629 * console_trylock() is not able to detect the preemptive
2630 * context reliably. Therefore the value must be stored before
2631 * and cleared after the "again" goto label.
2632 */
2633 do_cond_resched = console_may_schedule;
2634 again:
2635 console_may_schedule = 0;
2636
2637 /*
2638 * We released the console_sem lock, so we need to recheck if
2639 * cpu is online and (if not) is there at least one CON_ANYTIME
2640 * console.
2641 */
2642 if (!can_use_console()) {
2643 console_locked = 0;
2644 up_console_sem();
2645 return;
2646 }
2647
2648 for (;;) {
2649 size_t ext_len = 0;
2650 int handover;
2651 size_t len;
2652
2653 skip:
2654 if (!prb_read_valid(prb, console_seq, &r))
2655 break;
2656
2657 if (console_seq != r.info->seq) {
2658 console_dropped += r.info->seq - console_seq;
2659 console_seq = r.info->seq;
2660 }
2661
2662 if (suppress_message_printing(r.info->level)) {
2663 /*
2664 * Skip record we have buffered and already printed
2665 * directly to the console when we received it, and
2666 * record that has level above the console loglevel.
2667 */
2668 console_seq++;
2669 goto skip;
2670 }
2671
2672 /* Output to all consoles once old messages replayed. */
2673 if (unlikely(exclusive_console &&
2674 console_seq >= exclusive_console_stop_seq)) {
2675 exclusive_console = NULL;
2676 }
2677
2678 /*
2679 * Handle extended console text first because later
2680 * record_print_text() will modify the record buffer in-place.
2681 */
2682 if (nr_ext_console_drivers) {
2683 ext_len = info_print_ext_header(ext_text,
2684 sizeof(ext_text),
2685 r.info);
2686 ext_len += msg_print_ext_body(ext_text + ext_len,
2687 sizeof(ext_text) - ext_len,
2688 &r.text_buf[0],
2689 r.info->text_len,
2690 &r.info->dev_info);
2691 }
2692 len = record_print_text(&r,
2693 console_msg_format & MSG_FORMAT_SYSLOG,
2694 printk_time);
2695 console_seq++;
2696
2697 /*
2698 * While actively printing out messages, if another printk()
2699 * were to occur on another CPU, it may wait for this one to
2700 * finish. This task can not be preempted if there is a
2701 * waiter waiting to take over.
2702 *
2703 * Interrupts are disabled because the hand over to a waiter
2704 * must not be interrupted until the hand over is completed
2705 * (@console_waiter is cleared).
2706 */
2707 printk_safe_enter_irqsave(flags);
2708 console_lock_spinning_enable();
2709
2710 stop_critical_timings(); /* don't trace print latency */
2711 call_console_drivers(ext_text, ext_len, text, len);
2712 start_critical_timings();
2713
2714 handover = console_lock_spinning_disable_and_check();
2715 printk_safe_exit_irqrestore(flags);
2716 if (handover)
2717 return;
2718
2719 if (do_cond_resched)
2720 cond_resched();
2721 }
2722
2723 /* Get consistent value of the next-to-be-used sequence number. */
2724 next_seq = console_seq;
2725
2726 console_locked = 0;
2727 up_console_sem();
2728
2729 /*
2730 * Someone could have filled up the buffer again, so re-check if there's
2731 * something to flush. In case we cannot trylock the console_sem again,
2732 * there's a new owner and the console_unlock() from them will do the
2733 * flush, no worries.
2734 */
2735 retry = prb_read_valid(prb, next_seq, NULL);
2736 if (retry && console_trylock())
2737 goto again;
2738 }
2739 EXPORT_SYMBOL(console_unlock);
2740
2741 /**
2742 * console_conditional_schedule - yield the CPU if required
2743 *
2744 * If the console code is currently allowed to sleep, and
2745 * if this CPU should yield the CPU to another task, do
2746 * so here.
2747 *
2748 * Must be called within console_lock();.
2749 */
console_conditional_schedule(void)2750 void __sched console_conditional_schedule(void)
2751 {
2752 if (console_may_schedule)
2753 cond_resched();
2754 }
2755 EXPORT_SYMBOL(console_conditional_schedule);
2756
console_unblank(void)2757 void console_unblank(void)
2758 {
2759 struct console *c;
2760
2761 /*
2762 * console_unblank can no longer be called in interrupt context unless
2763 * oops_in_progress is set to 1..
2764 */
2765 if (oops_in_progress) {
2766 if (down_trylock_console_sem() != 0)
2767 return;
2768 } else
2769 console_lock();
2770
2771 console_locked = 1;
2772 console_may_schedule = 0;
2773 for_each_console(c)
2774 if ((c->flags & CON_ENABLED) && c->unblank)
2775 c->unblank();
2776 console_unlock();
2777 }
2778
2779 /**
2780 * console_flush_on_panic - flush console content on panic
2781 * @mode: flush all messages in buffer or just the pending ones
2782 *
2783 * Immediately output all pending messages no matter what.
2784 */
console_flush_on_panic(enum con_flush_mode mode)2785 void console_flush_on_panic(enum con_flush_mode mode)
2786 {
2787 /*
2788 * If someone else is holding the console lock, trylock will fail
2789 * and may_schedule may be set. Ignore and proceed to unlock so
2790 * that messages are flushed out. As this can be called from any
2791 * context and we don't want to get preempted while flushing,
2792 * ensure may_schedule is cleared.
2793 */
2794 console_trylock();
2795 console_may_schedule = 0;
2796
2797 if (mode == CONSOLE_REPLAY_ALL)
2798 console_seq = prb_first_valid_seq(prb);
2799 console_unlock();
2800 }
2801
2802 /*
2803 * Return the console tty driver structure and its associated index
2804 */
console_device(int * index)2805 struct tty_driver *console_device(int *index)
2806 {
2807 struct console *c;
2808 struct tty_driver *driver = NULL;
2809
2810 console_lock();
2811 for_each_console(c) {
2812 if (!c->device)
2813 continue;
2814 driver = c->device(c, index);
2815 if (driver)
2816 break;
2817 }
2818 console_unlock();
2819 return driver;
2820 }
2821
2822 /*
2823 * Prevent further output on the passed console device so that (for example)
2824 * serial drivers can disable console output before suspending a port, and can
2825 * re-enable output afterwards.
2826 */
console_stop(struct console * console)2827 void console_stop(struct console *console)
2828 {
2829 console_lock();
2830 console->flags &= ~CON_ENABLED;
2831 console_unlock();
2832 }
2833 EXPORT_SYMBOL(console_stop);
2834
console_start(struct console * console)2835 void console_start(struct console *console)
2836 {
2837 console_lock();
2838 console->flags |= CON_ENABLED;
2839 console_unlock();
2840 }
2841 EXPORT_SYMBOL(console_start);
2842
2843 static int __read_mostly keep_bootcon;
2844
keep_bootcon_setup(char * str)2845 static int __init keep_bootcon_setup(char *str)
2846 {
2847 keep_bootcon = 1;
2848 pr_info("debug: skip boot console de-registration.\n");
2849
2850 return 0;
2851 }
2852
2853 early_param("keep_bootcon", keep_bootcon_setup);
2854
2855 /*
2856 * This is called by register_console() to try to match
2857 * the newly registered console with any of the ones selected
2858 * by either the command line or add_preferred_console() and
2859 * setup/enable it.
2860 *
2861 * Care need to be taken with consoles that are statically
2862 * enabled such as netconsole
2863 */
try_enable_new_console(struct console * newcon,bool user_specified)2864 static int try_enable_new_console(struct console *newcon, bool user_specified)
2865 {
2866 struct console_cmdline *c;
2867 int i, err;
2868
2869 for (i = 0, c = console_cmdline;
2870 i < MAX_CMDLINECONSOLES && c->name[0];
2871 i++, c++) {
2872 if (c->user_specified != user_specified)
2873 continue;
2874 if (!newcon->match ||
2875 newcon->match(newcon, c->name, c->index, c->options) != 0) {
2876 /* default matching */
2877 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2878 if (strcmp(c->name, newcon->name) != 0)
2879 continue;
2880 if (newcon->index >= 0 &&
2881 newcon->index != c->index)
2882 continue;
2883 if (newcon->index < 0)
2884 newcon->index = c->index;
2885
2886 if (_braille_register_console(newcon, c))
2887 return 0;
2888
2889 if (newcon->setup &&
2890 (err = newcon->setup(newcon, c->options)) != 0)
2891 return err;
2892 }
2893 newcon->flags |= CON_ENABLED;
2894 if (i == preferred_console) {
2895 newcon->flags |= CON_CONSDEV;
2896 has_preferred_console = true;
2897 }
2898 return 0;
2899 }
2900
2901 /*
2902 * Some consoles, such as pstore and netconsole, can be enabled even
2903 * without matching. Accept the pre-enabled consoles only when match()
2904 * and setup() had a chance to be called.
2905 */
2906 if (newcon->flags & CON_ENABLED && c->user_specified == user_specified)
2907 return 0;
2908
2909 return -ENOENT;
2910 }
2911
2912 /*
2913 * The console driver calls this routine during kernel initialization
2914 * to register the console printing procedure with printk() and to
2915 * print any messages that were printed by the kernel before the
2916 * console driver was initialized.
2917 *
2918 * This can happen pretty early during the boot process (because of
2919 * early_printk) - sometimes before setup_arch() completes - be careful
2920 * of what kernel features are used - they may not be initialised yet.
2921 *
2922 * There are two types of consoles - bootconsoles (early_printk) and
2923 * "real" consoles (everything which is not a bootconsole) which are
2924 * handled differently.
2925 * - Any number of bootconsoles can be registered at any time.
2926 * - As soon as a "real" console is registered, all bootconsoles
2927 * will be unregistered automatically.
2928 * - Once a "real" console is registered, any attempt to register a
2929 * bootconsoles will be rejected
2930 */
register_console(struct console * newcon)2931 void register_console(struct console *newcon)
2932 {
2933 struct console *bcon = NULL;
2934 int err;
2935
2936 for_each_console(bcon) {
2937 if (WARN(bcon == newcon, "console '%s%d' already registered\n",
2938 bcon->name, bcon->index))
2939 return;
2940 }
2941
2942 /*
2943 * before we register a new CON_BOOT console, make sure we don't
2944 * already have a valid console
2945 */
2946 if (newcon->flags & CON_BOOT) {
2947 for_each_console(bcon) {
2948 if (!(bcon->flags & CON_BOOT)) {
2949 pr_info("Too late to register bootconsole %s%d\n",
2950 newcon->name, newcon->index);
2951 return;
2952 }
2953 }
2954 }
2955
2956 if (console_drivers && console_drivers->flags & CON_BOOT)
2957 bcon = console_drivers;
2958
2959 if (!has_preferred_console || bcon || !console_drivers)
2960 has_preferred_console = preferred_console >= 0;
2961
2962 /*
2963 * See if we want to use this console driver. If we
2964 * didn't select a console we take the first one
2965 * that registers here.
2966 */
2967 if (!has_preferred_console) {
2968 if (newcon->index < 0)
2969 newcon->index = 0;
2970 if (newcon->setup == NULL ||
2971 newcon->setup(newcon, NULL) == 0) {
2972 newcon->flags |= CON_ENABLED;
2973 if (newcon->device) {
2974 newcon->flags |= CON_CONSDEV;
2975 has_preferred_console = true;
2976 }
2977 }
2978 }
2979
2980 /* See if this console matches one we selected on the command line */
2981 err = try_enable_new_console(newcon, true);
2982
2983 /* If not, try to match against the platform default(s) */
2984 if (err == -ENOENT)
2985 err = try_enable_new_console(newcon, false);
2986
2987 /* printk() messages are not printed to the Braille console. */
2988 if (err || newcon->flags & CON_BRL)
2989 return;
2990
2991 /*
2992 * If we have a bootconsole, and are switching to a real console,
2993 * don't print everything out again, since when the boot console, and
2994 * the real console are the same physical device, it's annoying to
2995 * see the beginning boot messages twice
2996 */
2997 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2998 newcon->flags &= ~CON_PRINTBUFFER;
2999
3000 /*
3001 * Put this console in the list - keep the
3002 * preferred driver at the head of the list.
3003 */
3004 console_lock();
3005 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
3006 newcon->next = console_drivers;
3007 console_drivers = newcon;
3008 if (newcon->next)
3009 newcon->next->flags &= ~CON_CONSDEV;
3010 /* Ensure this flag is always set for the head of the list */
3011 newcon->flags |= CON_CONSDEV;
3012 } else {
3013 newcon->next = console_drivers->next;
3014 console_drivers->next = newcon;
3015 }
3016
3017 if (newcon->flags & CON_EXTENDED)
3018 nr_ext_console_drivers++;
3019
3020 if (newcon->flags & CON_PRINTBUFFER) {
3021 /*
3022 * console_unlock(); will print out the buffered messages
3023 * for us.
3024 *
3025 * We're about to replay the log buffer. Only do this to the
3026 * just-registered console to avoid excessive message spam to
3027 * the already-registered consoles.
3028 *
3029 * Set exclusive_console with disabled interrupts to reduce
3030 * race window with eventual console_flush_on_panic() that
3031 * ignores console_lock.
3032 */
3033 exclusive_console = newcon;
3034 exclusive_console_stop_seq = console_seq;
3035
3036 /* Get a consistent copy of @syslog_seq. */
3037 mutex_lock(&syslog_lock);
3038 console_seq = syslog_seq;
3039 mutex_unlock(&syslog_lock);
3040 }
3041 console_unlock();
3042 console_sysfs_notify();
3043
3044 /*
3045 * By unregistering the bootconsoles after we enable the real console
3046 * we get the "console xxx enabled" message on all the consoles -
3047 * boot consoles, real consoles, etc - this is to ensure that end
3048 * users know there might be something in the kernel's log buffer that
3049 * went to the bootconsole (that they do not see on the real console)
3050 */
3051 pr_info("%sconsole [%s%d] enabled\n",
3052 (newcon->flags & CON_BOOT) ? "boot" : "" ,
3053 newcon->name, newcon->index);
3054 if (bcon &&
3055 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
3056 !keep_bootcon) {
3057 /* We need to iterate through all boot consoles, to make
3058 * sure we print everything out, before we unregister them.
3059 */
3060 for_each_console(bcon)
3061 if (bcon->flags & CON_BOOT)
3062 unregister_console(bcon);
3063 }
3064 }
3065 EXPORT_SYMBOL(register_console);
3066
unregister_console(struct console * console)3067 int unregister_console(struct console *console)
3068 {
3069 struct console *con;
3070 int res;
3071
3072 pr_info("%sconsole [%s%d] disabled\n",
3073 (console->flags & CON_BOOT) ? "boot" : "" ,
3074 console->name, console->index);
3075
3076 res = _braille_unregister_console(console);
3077 if (res < 0)
3078 return res;
3079 if (res > 0)
3080 return 0;
3081
3082 res = -ENODEV;
3083 console_lock();
3084 if (console_drivers == console) {
3085 console_drivers=console->next;
3086 res = 0;
3087 } else {
3088 for_each_console(con) {
3089 if (con->next == console) {
3090 con->next = console->next;
3091 res = 0;
3092 break;
3093 }
3094 }
3095 }
3096
3097 if (res)
3098 goto out_disable_unlock;
3099
3100 if (console->flags & CON_EXTENDED)
3101 nr_ext_console_drivers--;
3102
3103 /*
3104 * If this isn't the last console and it has CON_CONSDEV set, we
3105 * need to set it on the next preferred console.
3106 */
3107 if (console_drivers != NULL && console->flags & CON_CONSDEV)
3108 console_drivers->flags |= CON_CONSDEV;
3109
3110 console->flags &= ~CON_ENABLED;
3111 console_unlock();
3112 console_sysfs_notify();
3113
3114 if (console->exit)
3115 res = console->exit(console);
3116
3117 return res;
3118
3119 out_disable_unlock:
3120 console->flags &= ~CON_ENABLED;
3121 console_unlock();
3122
3123 return res;
3124 }
3125 EXPORT_SYMBOL(unregister_console);
3126
3127 /*
3128 * Initialize the console device. This is called *early*, so
3129 * we can't necessarily depend on lots of kernel help here.
3130 * Just do some early initializations, and do the complex setup
3131 * later.
3132 */
console_init(void)3133 void __init console_init(void)
3134 {
3135 int ret;
3136 initcall_t call;
3137 initcall_entry_t *ce;
3138
3139 /* Setup the default TTY line discipline. */
3140 n_tty_init();
3141
3142 /*
3143 * set up the console device so that later boot sequences can
3144 * inform about problems etc..
3145 */
3146 ce = __con_initcall_start;
3147 trace_initcall_level("console");
3148 while (ce < __con_initcall_end) {
3149 call = initcall_from_entry(ce);
3150 trace_initcall_start(call);
3151 ret = call();
3152 trace_initcall_finish(call, ret);
3153 ce++;
3154 }
3155 }
3156
3157 /*
3158 * Some boot consoles access data that is in the init section and which will
3159 * be discarded after the initcalls have been run. To make sure that no code
3160 * will access this data, unregister the boot consoles in a late initcall.
3161 *
3162 * If for some reason, such as deferred probe or the driver being a loadable
3163 * module, the real console hasn't registered yet at this point, there will
3164 * be a brief interval in which no messages are logged to the console, which
3165 * makes it difficult to diagnose problems that occur during this time.
3166 *
3167 * To mitigate this problem somewhat, only unregister consoles whose memory
3168 * intersects with the init section. Note that all other boot consoles will
3169 * get unregistered when the real preferred console is registered.
3170 */
printk_late_init(void)3171 static int __init printk_late_init(void)
3172 {
3173 struct console *con;
3174 int ret;
3175
3176 for_each_console(con) {
3177 if (!(con->flags & CON_BOOT))
3178 continue;
3179
3180 /* Check addresses that might be used for enabled consoles. */
3181 if (init_section_intersects(con, sizeof(*con)) ||
3182 init_section_contains(con->write, 0) ||
3183 init_section_contains(con->read, 0) ||
3184 init_section_contains(con->device, 0) ||
3185 init_section_contains(con->unblank, 0) ||
3186 init_section_contains(con->data, 0)) {
3187 /*
3188 * Please, consider moving the reported consoles out
3189 * of the init section.
3190 */
3191 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
3192 con->name, con->index);
3193 unregister_console(con);
3194 }
3195 }
3196 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
3197 console_cpu_notify);
3198 WARN_ON(ret < 0);
3199 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
3200 console_cpu_notify, NULL);
3201 WARN_ON(ret < 0);
3202 return 0;
3203 }
3204 late_initcall(printk_late_init);
3205
3206 #if defined CONFIG_PRINTK
3207 /*
3208 * Delayed printk version, for scheduler-internal messages:
3209 */
3210 #define PRINTK_PENDING_WAKEUP 0x01
3211 #define PRINTK_PENDING_OUTPUT 0x02
3212
3213 static DEFINE_PER_CPU(int, printk_pending);
3214
wake_up_klogd_work_func(struct irq_work * irq_work)3215 static void wake_up_klogd_work_func(struct irq_work *irq_work)
3216 {
3217 int pending = __this_cpu_xchg(printk_pending, 0);
3218
3219 if (pending & PRINTK_PENDING_OUTPUT) {
3220 /* If trylock fails, someone else is doing the printing */
3221 if (console_trylock())
3222 console_unlock();
3223 }
3224
3225 if (pending & PRINTK_PENDING_WAKEUP)
3226 wake_up_interruptible(&log_wait);
3227 }
3228
3229 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) =
3230 IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func);
3231
wake_up_klogd(void)3232 void wake_up_klogd(void)
3233 {
3234 if (!printk_percpu_data_ready())
3235 return;
3236
3237 preempt_disable();
3238 if (waitqueue_active(&log_wait)) {
3239 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
3240 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3241 }
3242 preempt_enable();
3243 }
3244
defer_console_output(void)3245 void defer_console_output(void)
3246 {
3247 if (!printk_percpu_data_ready())
3248 return;
3249
3250 preempt_disable();
3251 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
3252 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3253 preempt_enable();
3254 }
3255
printk_trigger_flush(void)3256 void printk_trigger_flush(void)
3257 {
3258 defer_console_output();
3259 }
3260
vprintk_deferred(const char * fmt,va_list args)3261 int vprintk_deferred(const char *fmt, va_list args)
3262 {
3263 int r;
3264
3265 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
3266 defer_console_output();
3267
3268 return r;
3269 }
3270
_printk_deferred(const char * fmt,...)3271 int _printk_deferred(const char *fmt, ...)
3272 {
3273 va_list args;
3274 int r;
3275
3276 va_start(args, fmt);
3277 r = vprintk_deferred(fmt, args);
3278 va_end(args);
3279
3280 return r;
3281 }
3282
3283 /*
3284 * printk rate limiting, lifted from the networking subsystem.
3285 *
3286 * This enforces a rate limit: not more than 10 kernel messages
3287 * every 5s to make a denial-of-service attack impossible.
3288 */
3289 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3290
__printk_ratelimit(const char * func)3291 int __printk_ratelimit(const char *func)
3292 {
3293 return ___ratelimit(&printk_ratelimit_state, func);
3294 }
3295 EXPORT_SYMBOL(__printk_ratelimit);
3296
3297 /**
3298 * printk_timed_ratelimit - caller-controlled printk ratelimiting
3299 * @caller_jiffies: pointer to caller's state
3300 * @interval_msecs: minimum interval between prints
3301 *
3302 * printk_timed_ratelimit() returns true if more than @interval_msecs
3303 * milliseconds have elapsed since the last time printk_timed_ratelimit()
3304 * returned true.
3305 */
printk_timed_ratelimit(unsigned long * caller_jiffies,unsigned int interval_msecs)3306 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3307 unsigned int interval_msecs)
3308 {
3309 unsigned long elapsed = jiffies - *caller_jiffies;
3310
3311 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3312 return false;
3313
3314 *caller_jiffies = jiffies;
3315 return true;
3316 }
3317 EXPORT_SYMBOL(printk_timed_ratelimit);
3318
3319 static DEFINE_SPINLOCK(dump_list_lock);
3320 static LIST_HEAD(dump_list);
3321
3322 /**
3323 * kmsg_dump_register - register a kernel log dumper.
3324 * @dumper: pointer to the kmsg_dumper structure
3325 *
3326 * Adds a kernel log dumper to the system. The dump callback in the
3327 * structure will be called when the kernel oopses or panics and must be
3328 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
3329 */
kmsg_dump_register(struct kmsg_dumper * dumper)3330 int kmsg_dump_register(struct kmsg_dumper *dumper)
3331 {
3332 unsigned long flags;
3333 int err = -EBUSY;
3334
3335 /* The dump callback needs to be set */
3336 if (!dumper->dump)
3337 return -EINVAL;
3338
3339 spin_lock_irqsave(&dump_list_lock, flags);
3340 /* Don't allow registering multiple times */
3341 if (!dumper->registered) {
3342 dumper->registered = 1;
3343 list_add_tail_rcu(&dumper->list, &dump_list);
3344 err = 0;
3345 }
3346 spin_unlock_irqrestore(&dump_list_lock, flags);
3347
3348 return err;
3349 }
3350 EXPORT_SYMBOL_GPL(kmsg_dump_register);
3351
3352 /**
3353 * kmsg_dump_unregister - unregister a kmsg dumper.
3354 * @dumper: pointer to the kmsg_dumper structure
3355 *
3356 * Removes a dump device from the system. Returns zero on success and
3357 * %-EINVAL otherwise.
3358 */
kmsg_dump_unregister(struct kmsg_dumper * dumper)3359 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3360 {
3361 unsigned long flags;
3362 int err = -EINVAL;
3363
3364 spin_lock_irqsave(&dump_list_lock, flags);
3365 if (dumper->registered) {
3366 dumper->registered = 0;
3367 list_del_rcu(&dumper->list);
3368 err = 0;
3369 }
3370 spin_unlock_irqrestore(&dump_list_lock, flags);
3371 synchronize_rcu();
3372
3373 return err;
3374 }
3375 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3376
3377 static bool always_kmsg_dump;
3378 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3379
kmsg_dump_reason_str(enum kmsg_dump_reason reason)3380 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
3381 {
3382 switch (reason) {
3383 case KMSG_DUMP_PANIC:
3384 return "Panic";
3385 case KMSG_DUMP_OOPS:
3386 return "Oops";
3387 case KMSG_DUMP_EMERG:
3388 return "Emergency";
3389 case KMSG_DUMP_SHUTDOWN:
3390 return "Shutdown";
3391 default:
3392 return "Unknown";
3393 }
3394 }
3395 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
3396
3397 /**
3398 * kmsg_dump - dump kernel log to kernel message dumpers.
3399 * @reason: the reason (oops, panic etc) for dumping
3400 *
3401 * Call each of the registered dumper's dump() callback, which can
3402 * retrieve the kmsg records with kmsg_dump_get_line() or
3403 * kmsg_dump_get_buffer().
3404 */
kmsg_dump(enum kmsg_dump_reason reason)3405 void kmsg_dump(enum kmsg_dump_reason reason)
3406 {
3407 struct kmsg_dumper *dumper;
3408
3409 rcu_read_lock();
3410 list_for_each_entry_rcu(dumper, &dump_list, list) {
3411 enum kmsg_dump_reason max_reason = dumper->max_reason;
3412
3413 /*
3414 * If client has not provided a specific max_reason, default
3415 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
3416 */
3417 if (max_reason == KMSG_DUMP_UNDEF) {
3418 max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
3419 KMSG_DUMP_OOPS;
3420 }
3421 if (reason > max_reason)
3422 continue;
3423
3424 /* invoke dumper which will iterate over records */
3425 dumper->dump(dumper, reason);
3426 }
3427 rcu_read_unlock();
3428 }
3429
3430 /**
3431 * kmsg_dump_get_line - retrieve one kmsg log line
3432 * @iter: kmsg dump iterator
3433 * @syslog: include the "<4>" prefixes
3434 * @line: buffer to copy the line to
3435 * @size: maximum size of the buffer
3436 * @len: length of line placed into buffer
3437 *
3438 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3439 * record, and copy one record into the provided buffer.
3440 *
3441 * Consecutive calls will return the next available record moving
3442 * towards the end of the buffer with the youngest messages.
3443 *
3444 * A return value of FALSE indicates that there are no more records to
3445 * read.
3446 */
kmsg_dump_get_line(struct kmsg_dump_iter * iter,bool syslog,char * line,size_t size,size_t * len)3447 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
3448 char *line, size_t size, size_t *len)
3449 {
3450 u64 min_seq = latched_seq_read_nolock(&clear_seq);
3451 struct printk_info info;
3452 unsigned int line_count;
3453 struct printk_record r;
3454 size_t l = 0;
3455 bool ret = false;
3456
3457 if (iter->cur_seq < min_seq)
3458 iter->cur_seq = min_seq;
3459
3460 prb_rec_init_rd(&r, &info, line, size);
3461
3462 /* Read text or count text lines? */
3463 if (line) {
3464 if (!prb_read_valid(prb, iter->cur_seq, &r))
3465 goto out;
3466 l = record_print_text(&r, syslog, printk_time);
3467 } else {
3468 if (!prb_read_valid_info(prb, iter->cur_seq,
3469 &info, &line_count)) {
3470 goto out;
3471 }
3472 l = get_record_print_text_size(&info, line_count, syslog,
3473 printk_time);
3474
3475 }
3476
3477 iter->cur_seq = r.info->seq + 1;
3478 ret = true;
3479 out:
3480 if (len)
3481 *len = l;
3482 return ret;
3483 }
3484 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3485
3486 /**
3487 * kmsg_dump_get_buffer - copy kmsg log lines
3488 * @iter: kmsg dump iterator
3489 * @syslog: include the "<4>" prefixes
3490 * @buf: buffer to copy the line to
3491 * @size: maximum size of the buffer
3492 * @len_out: length of line placed into buffer
3493 *
3494 * Start at the end of the kmsg buffer and fill the provided buffer
3495 * with as many of the *youngest* kmsg records that fit into it.
3496 * If the buffer is large enough, all available kmsg records will be
3497 * copied with a single call.
3498 *
3499 * Consecutive calls will fill the buffer with the next block of
3500 * available older records, not including the earlier retrieved ones.
3501 *
3502 * A return value of FALSE indicates that there are no more records to
3503 * read.
3504 */
kmsg_dump_get_buffer(struct kmsg_dump_iter * iter,bool syslog,char * buf,size_t size,size_t * len_out)3505 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
3506 char *buf, size_t size, size_t *len_out)
3507 {
3508 u64 min_seq = latched_seq_read_nolock(&clear_seq);
3509 struct printk_info info;
3510 struct printk_record r;
3511 u64 seq;
3512 u64 next_seq;
3513 size_t len = 0;
3514 bool ret = false;
3515 bool time = printk_time;
3516
3517 if (!buf || !size)
3518 goto out;
3519
3520 if (iter->cur_seq < min_seq)
3521 iter->cur_seq = min_seq;
3522
3523 if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) {
3524 if (info.seq != iter->cur_seq) {
3525 /* messages are gone, move to first available one */
3526 iter->cur_seq = info.seq;
3527 }
3528 }
3529
3530 /* last entry */
3531 if (iter->cur_seq >= iter->next_seq)
3532 goto out;
3533
3534 /*
3535 * Find first record that fits, including all following records,
3536 * into the user-provided buffer for this dump. Pass in size-1
3537 * because this function (by way of record_print_text()) will
3538 * not write more than size-1 bytes of text into @buf.
3539 */
3540 seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq,
3541 size - 1, syslog, time);
3542
3543 /*
3544 * Next kmsg_dump_get_buffer() invocation will dump block of
3545 * older records stored right before this one.
3546 */
3547 next_seq = seq;
3548
3549 prb_rec_init_rd(&r, &info, buf, size);
3550
3551 len = 0;
3552 prb_for_each_record(seq, prb, seq, &r) {
3553 if (r.info->seq >= iter->next_seq)
3554 break;
3555
3556 len += record_print_text(&r, syslog, time);
3557
3558 /* Adjust record to store to remaining buffer space. */
3559 prb_rec_init_rd(&r, &info, buf + len, size - len);
3560 }
3561
3562 iter->next_seq = next_seq;
3563 ret = true;
3564 out:
3565 if (len_out)
3566 *len_out = len;
3567 return ret;
3568 }
3569 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3570
3571 /**
3572 * kmsg_dump_rewind - reset the iterator
3573 * @iter: kmsg dump iterator
3574 *
3575 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3576 * kmsg_dump_get_buffer() can be called again and used multiple
3577 * times within the same dumper.dump() callback.
3578 */
kmsg_dump_rewind(struct kmsg_dump_iter * iter)3579 void kmsg_dump_rewind(struct kmsg_dump_iter *iter)
3580 {
3581 iter->cur_seq = latched_seq_read_nolock(&clear_seq);
3582 iter->next_seq = prb_next_seq(prb);
3583 }
3584 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3585
3586 #endif
3587
3588 #ifdef CONFIG_SMP
3589 static atomic_t printk_cpulock_owner = ATOMIC_INIT(-1);
3590 static atomic_t printk_cpulock_nested = ATOMIC_INIT(0);
3591
3592 /**
3593 * __printk_wait_on_cpu_lock() - Busy wait until the printk cpu-reentrant
3594 * spinning lock is not owned by any CPU.
3595 *
3596 * Context: Any context.
3597 */
__printk_wait_on_cpu_lock(void)3598 void __printk_wait_on_cpu_lock(void)
3599 {
3600 do {
3601 cpu_relax();
3602 } while (atomic_read(&printk_cpulock_owner) != -1);
3603 }
3604 EXPORT_SYMBOL(__printk_wait_on_cpu_lock);
3605
3606 /**
3607 * __printk_cpu_trylock() - Try to acquire the printk cpu-reentrant
3608 * spinning lock.
3609 *
3610 * If no processor has the lock, the calling processor takes the lock and
3611 * becomes the owner. If the calling processor is already the owner of the
3612 * lock, this function succeeds immediately.
3613 *
3614 * Context: Any context. Expects interrupts to be disabled.
3615 * Return: 1 on success, otherwise 0.
3616 */
__printk_cpu_trylock(void)3617 int __printk_cpu_trylock(void)
3618 {
3619 int cpu;
3620 int old;
3621
3622 cpu = smp_processor_id();
3623
3624 /*
3625 * Guarantee loads and stores from this CPU when it is the lock owner
3626 * are _not_ visible to the previous lock owner. This pairs with
3627 * __printk_cpu_unlock:B.
3628 *
3629 * Memory barrier involvement:
3630 *
3631 * If __printk_cpu_trylock:A reads from __printk_cpu_unlock:B, then
3632 * __printk_cpu_unlock:A can never read from __printk_cpu_trylock:B.
3633 *
3634 * Relies on:
3635 *
3636 * RELEASE from __printk_cpu_unlock:A to __printk_cpu_unlock:B
3637 * of the previous CPU
3638 * matching
3639 * ACQUIRE from __printk_cpu_trylock:A to __printk_cpu_trylock:B
3640 * of this CPU
3641 */
3642 old = atomic_cmpxchg_acquire(&printk_cpulock_owner, -1,
3643 cpu); /* LMM(__printk_cpu_trylock:A) */
3644 if (old == -1) {
3645 /*
3646 * This CPU is now the owner and begins loading/storing
3647 * data: LMM(__printk_cpu_trylock:B)
3648 */
3649 return 1;
3650
3651 } else if (old == cpu) {
3652 /* This CPU is already the owner. */
3653 atomic_inc(&printk_cpulock_nested);
3654 return 1;
3655 }
3656
3657 return 0;
3658 }
3659 EXPORT_SYMBOL(__printk_cpu_trylock);
3660
3661 /**
3662 * __printk_cpu_unlock() - Release the printk cpu-reentrant spinning lock.
3663 *
3664 * The calling processor must be the owner of the lock.
3665 *
3666 * Context: Any context. Expects interrupts to be disabled.
3667 */
__printk_cpu_unlock(void)3668 void __printk_cpu_unlock(void)
3669 {
3670 if (atomic_read(&printk_cpulock_nested)) {
3671 atomic_dec(&printk_cpulock_nested);
3672 return;
3673 }
3674
3675 /*
3676 * This CPU is finished loading/storing data:
3677 * LMM(__printk_cpu_unlock:A)
3678 */
3679
3680 /*
3681 * Guarantee loads and stores from this CPU when it was the
3682 * lock owner are visible to the next lock owner. This pairs
3683 * with __printk_cpu_trylock:A.
3684 *
3685 * Memory barrier involvement:
3686 *
3687 * If __printk_cpu_trylock:A reads from __printk_cpu_unlock:B,
3688 * then __printk_cpu_trylock:B reads from __printk_cpu_unlock:A.
3689 *
3690 * Relies on:
3691 *
3692 * RELEASE from __printk_cpu_unlock:A to __printk_cpu_unlock:B
3693 * of this CPU
3694 * matching
3695 * ACQUIRE from __printk_cpu_trylock:A to __printk_cpu_trylock:B
3696 * of the next CPU
3697 */
3698 atomic_set_release(&printk_cpulock_owner,
3699 -1); /* LMM(__printk_cpu_unlock:B) */
3700 }
3701 EXPORT_SYMBOL(__printk_cpu_unlock);
3702 #endif /* CONFIG_SMP */
3703