1 /*
2 * General Purpose functions for the global management of the
3 * 8260 Communication Processor Module.
4 * Copyright (c) 1999-2001 Dan Malek <dan@embeddedalley.com>
5 * Copyright (c) 2000 MontaVista Software, Inc (source@mvista.com)
6 * 2.3.99 Updates
7 *
8 * 2006 (c) MontaVista Software, Inc.
9 * Vitaly Bordug <vbordug@ru.mvista.com>
10 * Merged to arch/powerpc from arch/ppc/syslib/cpm2_common.c
11 *
12 * This file is licensed under the terms of the GNU General Public License
13 * version 2. This program is licensed "as is" without any warranty of any
14 * kind, whether express or implied.
15 */
16
17 /*
18 *
19 * In addition to the individual control of the communication
20 * channels, there are a few functions that globally affect the
21 * communication processor.
22 *
23 * Buffer descriptors must be allocated from the dual ported memory
24 * space. The allocator for that is here. When the communication
25 * process is reset, we reclaim the memory available. There is
26 * currently no deallocator for this memory.
27 */
28 #include <linux/errno.h>
29 #include <linux/sched.h>
30 #include <linux/kernel.h>
31 #include <linux/param.h>
32 #include <linux/string.h>
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/module.h>
36 #include <linux/of.h>
37
38 #include <asm/io.h>
39 #include <asm/irq.h>
40 #include <asm/mpc8260.h>
41 #include <asm/page.h>
42 #include <asm/cpm2.h>
43 #include <asm/rheap.h>
44 #include <asm/fs_pd.h>
45
46 #include <sysdev/fsl_soc.h>
47
48 cpm_cpm2_t __iomem *cpmp; /* Pointer to comm processor space */
49
50 /* We allocate this here because it is used almost exclusively for
51 * the communication processor devices.
52 */
53 cpm2_map_t __iomem *cpm2_immr;
54 EXPORT_SYMBOL(cpm2_immr);
55
56 #define CPM_MAP_SIZE (0x40000) /* 256k - the PQ3 reserve this amount
57 of space for CPM as it is larger
58 than on PQ2 */
59
cpm2_reset(void)60 void __init cpm2_reset(void)
61 {
62 #ifdef CONFIG_PPC_85xx
63 cpm2_immr = ioremap(get_immrbase() + 0x80000, CPM_MAP_SIZE);
64 #else
65 cpm2_immr = ioremap(get_immrbase(), CPM_MAP_SIZE);
66 #endif
67
68 /* Tell everyone where the comm processor resides.
69 */
70 cpmp = &cpm2_immr->im_cpm;
71
72 #ifndef CONFIG_PPC_EARLY_DEBUG_CPM
73 /* Reset the CPM.
74 */
75 cpm_command(CPM_CR_RST, 0);
76 #endif
77 }
78
79 static DEFINE_SPINLOCK(cmd_lock);
80
81 #define MAX_CR_CMD_LOOPS 10000
82
cpm_command(u32 command,u8 opcode)83 int cpm_command(u32 command, u8 opcode)
84 {
85 int i, ret;
86 unsigned long flags;
87
88 spin_lock_irqsave(&cmd_lock, flags);
89
90 ret = 0;
91 out_be32(&cpmp->cp_cpcr, command | opcode | CPM_CR_FLG);
92 for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
93 if ((in_be32(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0)
94 goto out;
95
96 printk(KERN_ERR "%s(): Not able to issue CPM command\n", __func__);
97 ret = -EIO;
98 out:
99 spin_unlock_irqrestore(&cmd_lock, flags);
100 return ret;
101 }
102 EXPORT_SYMBOL(cpm_command);
103
104 /* Set a baud rate generator. This needs lots of work. There are
105 * eight BRGs, which can be connected to the CPM channels or output
106 * as clocks. The BRGs are in two different block of internal
107 * memory mapped space.
108 * The baud rate clock is the system clock divided by something.
109 * It was set up long ago during the initial boot phase and is
110 * is given to us.
111 * Baud rate clocks are zero-based in the driver code (as that maps
112 * to port numbers). Documentation uses 1-based numbering.
113 */
__cpm2_setbrg(uint brg,uint rate,uint clk,int div16,int src)114 void __cpm2_setbrg(uint brg, uint rate, uint clk, int div16, int src)
115 {
116 u32 __iomem *bp;
117 u32 val;
118
119 /* This is good enough to get SMCs running.....
120 */
121 if (brg < 4) {
122 bp = cpm2_map_size(im_brgc1, 16);
123 } else {
124 bp = cpm2_map_size(im_brgc5, 16);
125 brg -= 4;
126 }
127 bp += brg;
128 /* Round the clock divider to the nearest integer. */
129 val = (((clk * 2 / rate) - 1) & ~1) | CPM_BRG_EN | src;
130 if (div16)
131 val |= CPM_BRG_DIV16;
132
133 out_be32(bp, val);
134 cpm2_unmap(bp);
135 }
136 EXPORT_SYMBOL(__cpm2_setbrg);
137
cpm2_clk_setup(enum cpm_clk_target target,int clock,int mode)138 int cpm2_clk_setup(enum cpm_clk_target target, int clock, int mode)
139 {
140 int ret = 0;
141 int shift;
142 int i, bits = 0;
143 cpmux_t __iomem *im_cpmux;
144 u32 __iomem *reg;
145 u32 mask = 7;
146
147 u8 clk_map[][3] = {
148 {CPM_CLK_FCC1, CPM_BRG5, 0},
149 {CPM_CLK_FCC1, CPM_BRG6, 1},
150 {CPM_CLK_FCC1, CPM_BRG7, 2},
151 {CPM_CLK_FCC1, CPM_BRG8, 3},
152 {CPM_CLK_FCC1, CPM_CLK9, 4},
153 {CPM_CLK_FCC1, CPM_CLK10, 5},
154 {CPM_CLK_FCC1, CPM_CLK11, 6},
155 {CPM_CLK_FCC1, CPM_CLK12, 7},
156 {CPM_CLK_FCC2, CPM_BRG5, 0},
157 {CPM_CLK_FCC2, CPM_BRG6, 1},
158 {CPM_CLK_FCC2, CPM_BRG7, 2},
159 {CPM_CLK_FCC2, CPM_BRG8, 3},
160 {CPM_CLK_FCC2, CPM_CLK13, 4},
161 {CPM_CLK_FCC2, CPM_CLK14, 5},
162 {CPM_CLK_FCC2, CPM_CLK15, 6},
163 {CPM_CLK_FCC2, CPM_CLK16, 7},
164 {CPM_CLK_FCC3, CPM_BRG5, 0},
165 {CPM_CLK_FCC3, CPM_BRG6, 1},
166 {CPM_CLK_FCC3, CPM_BRG7, 2},
167 {CPM_CLK_FCC3, CPM_BRG8, 3},
168 {CPM_CLK_FCC3, CPM_CLK13, 4},
169 {CPM_CLK_FCC3, CPM_CLK14, 5},
170 {CPM_CLK_FCC3, CPM_CLK15, 6},
171 {CPM_CLK_FCC3, CPM_CLK16, 7},
172 {CPM_CLK_SCC1, CPM_BRG1, 0},
173 {CPM_CLK_SCC1, CPM_BRG2, 1},
174 {CPM_CLK_SCC1, CPM_BRG3, 2},
175 {CPM_CLK_SCC1, CPM_BRG4, 3},
176 {CPM_CLK_SCC1, CPM_CLK11, 4},
177 {CPM_CLK_SCC1, CPM_CLK12, 5},
178 {CPM_CLK_SCC1, CPM_CLK3, 6},
179 {CPM_CLK_SCC1, CPM_CLK4, 7},
180 {CPM_CLK_SCC2, CPM_BRG1, 0},
181 {CPM_CLK_SCC2, CPM_BRG2, 1},
182 {CPM_CLK_SCC2, CPM_BRG3, 2},
183 {CPM_CLK_SCC2, CPM_BRG4, 3},
184 {CPM_CLK_SCC2, CPM_CLK11, 4},
185 {CPM_CLK_SCC2, CPM_CLK12, 5},
186 {CPM_CLK_SCC2, CPM_CLK3, 6},
187 {CPM_CLK_SCC2, CPM_CLK4, 7},
188 {CPM_CLK_SCC3, CPM_BRG1, 0},
189 {CPM_CLK_SCC3, CPM_BRG2, 1},
190 {CPM_CLK_SCC3, CPM_BRG3, 2},
191 {CPM_CLK_SCC3, CPM_BRG4, 3},
192 {CPM_CLK_SCC3, CPM_CLK5, 4},
193 {CPM_CLK_SCC3, CPM_CLK6, 5},
194 {CPM_CLK_SCC3, CPM_CLK7, 6},
195 {CPM_CLK_SCC3, CPM_CLK8, 7},
196 {CPM_CLK_SCC4, CPM_BRG1, 0},
197 {CPM_CLK_SCC4, CPM_BRG2, 1},
198 {CPM_CLK_SCC4, CPM_BRG3, 2},
199 {CPM_CLK_SCC4, CPM_BRG4, 3},
200 {CPM_CLK_SCC4, CPM_CLK5, 4},
201 {CPM_CLK_SCC4, CPM_CLK6, 5},
202 {CPM_CLK_SCC4, CPM_CLK7, 6},
203 {CPM_CLK_SCC4, CPM_CLK8, 7},
204 };
205
206 im_cpmux = cpm2_map(im_cpmux);
207
208 switch (target) {
209 case CPM_CLK_SCC1:
210 reg = &im_cpmux->cmx_scr;
211 shift = 24;
212 break;
213 case CPM_CLK_SCC2:
214 reg = &im_cpmux->cmx_scr;
215 shift = 16;
216 break;
217 case CPM_CLK_SCC3:
218 reg = &im_cpmux->cmx_scr;
219 shift = 8;
220 break;
221 case CPM_CLK_SCC4:
222 reg = &im_cpmux->cmx_scr;
223 shift = 0;
224 break;
225 case CPM_CLK_FCC1:
226 reg = &im_cpmux->cmx_fcr;
227 shift = 24;
228 break;
229 case CPM_CLK_FCC2:
230 reg = &im_cpmux->cmx_fcr;
231 shift = 16;
232 break;
233 case CPM_CLK_FCC3:
234 reg = &im_cpmux->cmx_fcr;
235 shift = 8;
236 break;
237 default:
238 printk(KERN_ERR "cpm2_clock_setup: invalid clock target\n");
239 return -EINVAL;
240 }
241
242 for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
243 if (clk_map[i][0] == target && clk_map[i][1] == clock) {
244 bits = clk_map[i][2];
245 break;
246 }
247 }
248 if (i == ARRAY_SIZE(clk_map))
249 ret = -EINVAL;
250
251 bits <<= shift;
252 mask <<= shift;
253
254 if (mode == CPM_CLK_RTX) {
255 bits |= bits << 3;
256 mask |= mask << 3;
257 } else if (mode == CPM_CLK_RX) {
258 bits <<= 3;
259 mask <<= 3;
260 }
261
262 out_be32(reg, (in_be32(reg) & ~mask) | bits);
263
264 cpm2_unmap(im_cpmux);
265 return ret;
266 }
267
cpm2_smc_clk_setup(enum cpm_clk_target target,int clock)268 int cpm2_smc_clk_setup(enum cpm_clk_target target, int clock)
269 {
270 int ret = 0;
271 int shift;
272 int i, bits = 0;
273 cpmux_t __iomem *im_cpmux;
274 u8 __iomem *reg;
275 u8 mask = 3;
276
277 u8 clk_map[][3] = {
278 {CPM_CLK_SMC1, CPM_BRG1, 0},
279 {CPM_CLK_SMC1, CPM_BRG7, 1},
280 {CPM_CLK_SMC1, CPM_CLK7, 2},
281 {CPM_CLK_SMC1, CPM_CLK9, 3},
282 {CPM_CLK_SMC2, CPM_BRG2, 0},
283 {CPM_CLK_SMC2, CPM_BRG8, 1},
284 {CPM_CLK_SMC2, CPM_CLK4, 2},
285 {CPM_CLK_SMC2, CPM_CLK15, 3},
286 };
287
288 im_cpmux = cpm2_map(im_cpmux);
289
290 switch (target) {
291 case CPM_CLK_SMC1:
292 reg = &im_cpmux->cmx_smr;
293 mask = 3;
294 shift = 4;
295 break;
296 case CPM_CLK_SMC2:
297 reg = &im_cpmux->cmx_smr;
298 mask = 3;
299 shift = 0;
300 break;
301 default:
302 printk(KERN_ERR "cpm2_smc_clock_setup: invalid clock target\n");
303 return -EINVAL;
304 }
305
306 for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
307 if (clk_map[i][0] == target && clk_map[i][1] == clock) {
308 bits = clk_map[i][2];
309 break;
310 }
311 }
312 if (i == ARRAY_SIZE(clk_map))
313 ret = -EINVAL;
314
315 bits <<= shift;
316 mask <<= shift;
317
318 out_8(reg, (in_8(reg) & ~mask) | bits);
319
320 cpm2_unmap(im_cpmux);
321 return ret;
322 }
323
324 struct cpm2_ioports {
325 u32 dir, par, sor, odr, dat;
326 u32 res[3];
327 };
328
cpm2_set_pin(int port,int pin,int flags)329 void cpm2_set_pin(int port, int pin, int flags)
330 {
331 struct cpm2_ioports __iomem *iop =
332 (struct cpm2_ioports __iomem *)&cpm2_immr->im_ioport;
333
334 pin = 1 << (31 - pin);
335
336 if (flags & CPM_PIN_OUTPUT)
337 setbits32(&iop[port].dir, pin);
338 else
339 clrbits32(&iop[port].dir, pin);
340
341 if (!(flags & CPM_PIN_GPIO))
342 setbits32(&iop[port].par, pin);
343 else
344 clrbits32(&iop[port].par, pin);
345
346 if (flags & CPM_PIN_SECONDARY)
347 setbits32(&iop[port].sor, pin);
348 else
349 clrbits32(&iop[port].sor, pin);
350
351 if (flags & CPM_PIN_OPENDRAIN)
352 setbits32(&iop[port].odr, pin);
353 else
354 clrbits32(&iop[port].odr, pin);
355 }
356