1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   *
4   * Copyright (C) 2000, 2001 Kanoj Sarcar
5   * Copyright (C) 2000, 2001 Ralf Baechle
6   * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
7   * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
8   */
9  #include <linux/cache.h>
10  #include <linux/delay.h>
11  #include <linux/init.h>
12  #include <linux/interrupt.h>
13  #include <linux/smp.h>
14  #include <linux/spinlock.h>
15  #include <linux/threads.h>
16  #include <linux/export.h>
17  #include <linux/time.h>
18  #include <linux/timex.h>
19  #include <linux/sched/mm.h>
20  #include <linux/cpumask.h>
21  #include <linux/cpu.h>
22  #include <linux/err.h>
23  #include <linux/ftrace.h>
24  #include <linux/irqdomain.h>
25  #include <linux/of.h>
26  #include <linux/of_irq.h>
27  
28  #include <linux/atomic.h>
29  #include <asm/cpu.h>
30  #include <asm/ginvt.h>
31  #include <asm/processor.h>
32  #include <asm/idle.h>
33  #include <asm/r4k-timer.h>
34  #include <asm/mips-cps.h>
35  #include <asm/mmu_context.h>
36  #include <asm/time.h>
37  #include <asm/setup.h>
38  #include <asm/maar.h>
39  
40  int __cpu_number_map[CONFIG_MIPS_NR_CPU_NR_MAP];   /* Map physical to logical */
41  EXPORT_SYMBOL(__cpu_number_map);
42  
43  int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
44  EXPORT_SYMBOL(__cpu_logical_map);
45  
46  /* Number of TCs (or siblings in Intel speak) per CPU core */
47  int smp_num_siblings = 1;
48  EXPORT_SYMBOL(smp_num_siblings);
49  
50  /* representing the TCs (or siblings in Intel speak) of each logical CPU */
51  cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
52  EXPORT_SYMBOL(cpu_sibling_map);
53  
54  /* representing the core map of multi-core chips of each logical CPU */
55  cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
56  EXPORT_SYMBOL(cpu_core_map);
57  
58  static DECLARE_COMPLETION(cpu_starting);
59  static DECLARE_COMPLETION(cpu_running);
60  
61  /*
62   * A logical cpu mask containing only one VPE per core to
63   * reduce the number of IPIs on large MT systems.
64   */
65  cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
66  EXPORT_SYMBOL(cpu_foreign_map);
67  
68  /* representing cpus for which sibling maps can be computed */
69  static cpumask_t cpu_sibling_setup_map;
70  
71  /* representing cpus for which core maps can be computed */
72  static cpumask_t cpu_core_setup_map;
73  
74  cpumask_t cpu_coherent_mask;
75  
76  #ifdef CONFIG_GENERIC_IRQ_IPI
77  static struct irq_desc *call_desc;
78  static struct irq_desc *sched_desc;
79  #endif
80  
set_cpu_sibling_map(int cpu)81  static inline void set_cpu_sibling_map(int cpu)
82  {
83  	int i;
84  
85  	cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
86  
87  	if (smp_num_siblings > 1) {
88  		for_each_cpu(i, &cpu_sibling_setup_map) {
89  			if (cpus_are_siblings(cpu, i)) {
90  				cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
91  				cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
92  			}
93  		}
94  	} else
95  		cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
96  }
97  
set_cpu_core_map(int cpu)98  static inline void set_cpu_core_map(int cpu)
99  {
100  	int i;
101  
102  	cpumask_set_cpu(cpu, &cpu_core_setup_map);
103  
104  	for_each_cpu(i, &cpu_core_setup_map) {
105  		if (cpu_data[cpu].package == cpu_data[i].package) {
106  			cpumask_set_cpu(i, &cpu_core_map[cpu]);
107  			cpumask_set_cpu(cpu, &cpu_core_map[i]);
108  		}
109  	}
110  }
111  
112  /*
113   * Calculate a new cpu_foreign_map mask whenever a
114   * new cpu appears or disappears.
115   */
calculate_cpu_foreign_map(void)116  void calculate_cpu_foreign_map(void)
117  {
118  	int i, k, core_present;
119  	cpumask_t temp_foreign_map;
120  
121  	/* Re-calculate the mask */
122  	cpumask_clear(&temp_foreign_map);
123  	for_each_online_cpu(i) {
124  		core_present = 0;
125  		for_each_cpu(k, &temp_foreign_map)
126  			if (cpus_are_siblings(i, k))
127  				core_present = 1;
128  		if (!core_present)
129  			cpumask_set_cpu(i, &temp_foreign_map);
130  	}
131  
132  	for_each_online_cpu(i)
133  		cpumask_andnot(&cpu_foreign_map[i],
134  			       &temp_foreign_map, &cpu_sibling_map[i]);
135  }
136  
137  const struct plat_smp_ops *mp_ops;
138  EXPORT_SYMBOL(mp_ops);
139  
register_smp_ops(const struct plat_smp_ops * ops)140  void register_smp_ops(const struct plat_smp_ops *ops)
141  {
142  	if (mp_ops)
143  		printk(KERN_WARNING "Overriding previously set SMP ops\n");
144  
145  	mp_ops = ops;
146  }
147  
148  #ifdef CONFIG_GENERIC_IRQ_IPI
mips_smp_send_ipi_single(int cpu,unsigned int action)149  void mips_smp_send_ipi_single(int cpu, unsigned int action)
150  {
151  	mips_smp_send_ipi_mask(cpumask_of(cpu), action);
152  }
153  
mips_smp_send_ipi_mask(const struct cpumask * mask,unsigned int action)154  void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
155  {
156  	unsigned long flags;
157  	unsigned int core;
158  	int cpu;
159  
160  	local_irq_save(flags);
161  
162  	switch (action) {
163  	case SMP_CALL_FUNCTION:
164  		__ipi_send_mask(call_desc, mask);
165  		break;
166  
167  	case SMP_RESCHEDULE_YOURSELF:
168  		__ipi_send_mask(sched_desc, mask);
169  		break;
170  
171  	default:
172  		BUG();
173  	}
174  
175  	if (mips_cpc_present()) {
176  		for_each_cpu(cpu, mask) {
177  			if (cpus_are_siblings(cpu, smp_processor_id()))
178  				continue;
179  
180  			core = cpu_core(&cpu_data[cpu]);
181  
182  			while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
183  				mips_cm_lock_other_cpu(cpu, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
184  				mips_cpc_lock_other(core);
185  				write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
186  				mips_cpc_unlock_other();
187  				mips_cm_unlock_other();
188  			}
189  		}
190  	}
191  
192  	local_irq_restore(flags);
193  }
194  
195  
ipi_resched_interrupt(int irq,void * dev_id)196  static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
197  {
198  	scheduler_ipi();
199  
200  	return IRQ_HANDLED;
201  }
202  
ipi_call_interrupt(int irq,void * dev_id)203  static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
204  {
205  	generic_smp_call_function_interrupt();
206  
207  	return IRQ_HANDLED;
208  }
209  
smp_ipi_init_one(unsigned int virq,const char * name,irq_handler_t handler)210  static void smp_ipi_init_one(unsigned int virq, const char *name,
211  			     irq_handler_t handler)
212  {
213  	int ret;
214  
215  	irq_set_handler(virq, handle_percpu_irq);
216  	ret = request_irq(virq, handler, IRQF_PERCPU, name, NULL);
217  	BUG_ON(ret);
218  }
219  
220  static unsigned int call_virq, sched_virq;
221  
mips_smp_ipi_allocate(const struct cpumask * mask)222  int mips_smp_ipi_allocate(const struct cpumask *mask)
223  {
224  	int virq;
225  	struct irq_domain *ipidomain;
226  	struct device_node *node;
227  
228  	node = of_irq_find_parent(of_root);
229  	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
230  
231  	/*
232  	 * Some platforms have half DT setup. So if we found irq node but
233  	 * didn't find an ipidomain, try to search for one that is not in the
234  	 * DT.
235  	 */
236  	if (node && !ipidomain)
237  		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
238  
239  	/*
240  	 * There are systems which use IPI IRQ domains, but only have one
241  	 * registered when some runtime condition is met. For example a Malta
242  	 * kernel may include support for GIC & CPU interrupt controller IPI
243  	 * IRQ domains, but if run on a system with no GIC & no MT ASE then
244  	 * neither will be supported or registered.
245  	 *
246  	 * We only have a problem if we're actually using multiple CPUs so fail
247  	 * loudly if that is the case. Otherwise simply return, skipping IPI
248  	 * setup, if we're running with only a single CPU.
249  	 */
250  	if (!ipidomain) {
251  		BUG_ON(num_present_cpus() > 1);
252  		return 0;
253  	}
254  
255  	virq = irq_reserve_ipi(ipidomain, mask);
256  	BUG_ON(!virq);
257  	if (!call_virq)
258  		call_virq = virq;
259  
260  	virq = irq_reserve_ipi(ipidomain, mask);
261  	BUG_ON(!virq);
262  	if (!sched_virq)
263  		sched_virq = virq;
264  
265  	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
266  		int cpu;
267  
268  		for_each_cpu(cpu, mask) {
269  			smp_ipi_init_one(call_virq + cpu, "IPI call",
270  					 ipi_call_interrupt);
271  			smp_ipi_init_one(sched_virq + cpu, "IPI resched",
272  					 ipi_resched_interrupt);
273  		}
274  	} else {
275  		smp_ipi_init_one(call_virq, "IPI call", ipi_call_interrupt);
276  		smp_ipi_init_one(sched_virq, "IPI resched",
277  				 ipi_resched_interrupt);
278  	}
279  
280  	return 0;
281  }
282  
mips_smp_ipi_free(const struct cpumask * mask)283  int mips_smp_ipi_free(const struct cpumask *mask)
284  {
285  	struct irq_domain *ipidomain;
286  	struct device_node *node;
287  
288  	node = of_irq_find_parent(of_root);
289  	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
290  
291  	/*
292  	 * Some platforms have half DT setup. So if we found irq node but
293  	 * didn't find an ipidomain, try to search for one that is not in the
294  	 * DT.
295  	 */
296  	if (node && !ipidomain)
297  		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
298  
299  	BUG_ON(!ipidomain);
300  
301  	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
302  		int cpu;
303  
304  		for_each_cpu(cpu, mask) {
305  			free_irq(call_virq + cpu, NULL);
306  			free_irq(sched_virq + cpu, NULL);
307  		}
308  	}
309  	irq_destroy_ipi(call_virq, mask);
310  	irq_destroy_ipi(sched_virq, mask);
311  	return 0;
312  }
313  
314  
mips_smp_ipi_init(void)315  static int __init mips_smp_ipi_init(void)
316  {
317  	if (num_possible_cpus() == 1)
318  		return 0;
319  
320  	mips_smp_ipi_allocate(cpu_possible_mask);
321  
322  	call_desc = irq_to_desc(call_virq);
323  	sched_desc = irq_to_desc(sched_virq);
324  
325  	return 0;
326  }
327  early_initcall(mips_smp_ipi_init);
328  #endif
329  
330  /*
331   * First C code run on the secondary CPUs after being started up by
332   * the master.
333   */
start_secondary(void)334  asmlinkage void start_secondary(void)
335  {
336  	unsigned int cpu;
337  
338  	cpu_probe();
339  	per_cpu_trap_init(false);
340  	mips_clockevent_init();
341  	mp_ops->init_secondary();
342  	cpu_report();
343  	maar_init();
344  
345  	/*
346  	 * XXX parity protection should be folded in here when it's converted
347  	 * to an option instead of something based on .cputype
348  	 */
349  
350  	calibrate_delay();
351  	cpu = smp_processor_id();
352  	cpu_data[cpu].udelay_val = loops_per_jiffy;
353  
354  	cpumask_set_cpu(cpu, &cpu_coherent_mask);
355  	notify_cpu_starting(cpu);
356  
357  	/* Notify boot CPU that we're starting & ready to sync counters */
358  	complete(&cpu_starting);
359  
360  	synchronise_count_slave(cpu);
361  
362  	/* The CPU is running and counters synchronised, now mark it online */
363  	set_cpu_online(cpu, true);
364  
365  	set_cpu_sibling_map(cpu);
366  	set_cpu_core_map(cpu);
367  
368  	calculate_cpu_foreign_map();
369  
370  	/*
371  	 * Notify boot CPU that we're up & online and it can safely return
372  	 * from __cpu_up
373  	 */
374  	complete(&cpu_running);
375  
376  	/*
377  	 * irq will be enabled in ->smp_finish(), enabling it too early
378  	 * is dangerous.
379  	 */
380  	WARN_ON_ONCE(!irqs_disabled());
381  	mp_ops->smp_finish();
382  
383  	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
384  }
385  
stop_this_cpu(void * dummy)386  static void stop_this_cpu(void *dummy)
387  {
388  	/*
389  	 * Remove this CPU:
390  	 */
391  
392  	set_cpu_online(smp_processor_id(), false);
393  	calculate_cpu_foreign_map();
394  	local_irq_disable();
395  	while (1);
396  }
397  
smp_send_stop(void)398  void smp_send_stop(void)
399  {
400  	smp_call_function(stop_this_cpu, NULL, 0);
401  }
402  
smp_cpus_done(unsigned int max_cpus)403  void __init smp_cpus_done(unsigned int max_cpus)
404  {
405  }
406  
407  /* called from main before smp_init() */
smp_prepare_cpus(unsigned int max_cpus)408  void __init smp_prepare_cpus(unsigned int max_cpus)
409  {
410  	init_new_context(current, &init_mm);
411  	current_thread_info()->cpu = 0;
412  	mp_ops->prepare_cpus(max_cpus);
413  	set_cpu_sibling_map(0);
414  	set_cpu_core_map(0);
415  	calculate_cpu_foreign_map();
416  #ifndef CONFIG_HOTPLUG_CPU
417  	init_cpu_present(cpu_possible_mask);
418  #endif
419  	cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
420  }
421  
422  /* preload SMP state for boot cpu */
smp_prepare_boot_cpu(void)423  void smp_prepare_boot_cpu(void)
424  {
425  	if (mp_ops->prepare_boot_cpu)
426  		mp_ops->prepare_boot_cpu();
427  	set_cpu_possible(0, true);
428  	set_cpu_online(0, true);
429  }
430  
__cpu_up(unsigned int cpu,struct task_struct * tidle)431  int __cpu_up(unsigned int cpu, struct task_struct *tidle)
432  {
433  	int err;
434  
435  	err = mp_ops->boot_secondary(cpu, tidle);
436  	if (err)
437  		return err;
438  
439  	/* Wait for CPU to start and be ready to sync counters */
440  	if (!wait_for_completion_timeout(&cpu_starting,
441  					 msecs_to_jiffies(1000))) {
442  		pr_crit("CPU%u: failed to start\n", cpu);
443  		return -EIO;
444  	}
445  
446  	synchronise_count_master(cpu);
447  
448  	/* Wait for CPU to finish startup & mark itself online before return */
449  	wait_for_completion(&cpu_running);
450  	return 0;
451  }
452  
453  /* Not really SMP stuff ... */
setup_profiling_timer(unsigned int multiplier)454  int setup_profiling_timer(unsigned int multiplier)
455  {
456  	return 0;
457  }
458  
flush_tlb_all_ipi(void * info)459  static void flush_tlb_all_ipi(void *info)
460  {
461  	local_flush_tlb_all();
462  }
463  
flush_tlb_all(void)464  void flush_tlb_all(void)
465  {
466  	if (cpu_has_mmid) {
467  		htw_stop();
468  		ginvt_full();
469  		sync_ginv();
470  		instruction_hazard();
471  		htw_start();
472  		return;
473  	}
474  
475  	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
476  }
477  
flush_tlb_mm_ipi(void * mm)478  static void flush_tlb_mm_ipi(void *mm)
479  {
480  	drop_mmu_context((struct mm_struct *)mm);
481  }
482  
483  /*
484   * Special Variant of smp_call_function for use by TLB functions:
485   *
486   *  o No return value
487   *  o collapses to normal function call on UP kernels
488   *  o collapses to normal function call on systems with a single shared
489   *    primary cache.
490   */
smp_on_other_tlbs(void (* func)(void * info),void * info)491  static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
492  {
493  	smp_call_function(func, info, 1);
494  }
495  
smp_on_each_tlb(void (* func)(void * info),void * info)496  static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
497  {
498  	preempt_disable();
499  
500  	smp_on_other_tlbs(func, info);
501  	func(info);
502  
503  	preempt_enable();
504  }
505  
506  /*
507   * The following tlb flush calls are invoked when old translations are
508   * being torn down, or pte attributes are changing. For single threaded
509   * address spaces, a new context is obtained on the current cpu, and tlb
510   * context on other cpus are invalidated to force a new context allocation
511   * at switch_mm time, should the mm ever be used on other cpus. For
512   * multithreaded address spaces, inter-CPU interrupts have to be sent.
513   * Another case where inter-CPU interrupts are required is when the target
514   * mm might be active on another cpu (eg debuggers doing the flushes on
515   * behalf of debugees, kswapd stealing pages from another process etc).
516   * Kanoj 07/00.
517   */
518  
flush_tlb_mm(struct mm_struct * mm)519  void flush_tlb_mm(struct mm_struct *mm)
520  {
521  	preempt_disable();
522  
523  	if (cpu_has_mmid) {
524  		/*
525  		 * No need to worry about other CPUs - the ginvt in
526  		 * drop_mmu_context() will be globalized.
527  		 */
528  	} else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
529  		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
530  	} else {
531  		unsigned int cpu;
532  
533  		for_each_online_cpu(cpu) {
534  			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
535  				set_cpu_context(cpu, mm, 0);
536  		}
537  	}
538  	drop_mmu_context(mm);
539  
540  	preempt_enable();
541  }
542  
543  struct flush_tlb_data {
544  	struct vm_area_struct *vma;
545  	unsigned long addr1;
546  	unsigned long addr2;
547  };
548  
flush_tlb_range_ipi(void * info)549  static void flush_tlb_range_ipi(void *info)
550  {
551  	struct flush_tlb_data *fd = info;
552  
553  	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
554  }
555  
flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)556  void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
557  {
558  	struct mm_struct *mm = vma->vm_mm;
559  	unsigned long addr;
560  	u32 old_mmid;
561  
562  	preempt_disable();
563  	if (cpu_has_mmid) {
564  		htw_stop();
565  		old_mmid = read_c0_memorymapid();
566  		write_c0_memorymapid(cpu_asid(0, mm));
567  		mtc0_tlbw_hazard();
568  		addr = round_down(start, PAGE_SIZE * 2);
569  		end = round_up(end, PAGE_SIZE * 2);
570  		do {
571  			ginvt_va_mmid(addr);
572  			sync_ginv();
573  			addr += PAGE_SIZE * 2;
574  		} while (addr < end);
575  		write_c0_memorymapid(old_mmid);
576  		instruction_hazard();
577  		htw_start();
578  	} else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
579  		struct flush_tlb_data fd = {
580  			.vma = vma,
581  			.addr1 = start,
582  			.addr2 = end,
583  		};
584  
585  		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
586  		local_flush_tlb_range(vma, start, end);
587  	} else {
588  		unsigned int cpu;
589  		int exec = vma->vm_flags & VM_EXEC;
590  
591  		for_each_online_cpu(cpu) {
592  			/*
593  			 * flush_cache_range() will only fully flush icache if
594  			 * the VMA is executable, otherwise we must invalidate
595  			 * ASID without it appearing to has_valid_asid() as if
596  			 * mm has been completely unused by that CPU.
597  			 */
598  			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
599  				set_cpu_context(cpu, mm, !exec);
600  		}
601  		local_flush_tlb_range(vma, start, end);
602  	}
603  	preempt_enable();
604  }
605  
flush_tlb_kernel_range_ipi(void * info)606  static void flush_tlb_kernel_range_ipi(void *info)
607  {
608  	struct flush_tlb_data *fd = info;
609  
610  	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
611  }
612  
flush_tlb_kernel_range(unsigned long start,unsigned long end)613  void flush_tlb_kernel_range(unsigned long start, unsigned long end)
614  {
615  	struct flush_tlb_data fd = {
616  		.addr1 = start,
617  		.addr2 = end,
618  	};
619  
620  	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
621  }
622  
flush_tlb_page_ipi(void * info)623  static void flush_tlb_page_ipi(void *info)
624  {
625  	struct flush_tlb_data *fd = info;
626  
627  	local_flush_tlb_page(fd->vma, fd->addr1);
628  }
629  
flush_tlb_page(struct vm_area_struct * vma,unsigned long page)630  void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
631  {
632  	u32 old_mmid;
633  
634  	preempt_disable();
635  	if (cpu_has_mmid) {
636  		htw_stop();
637  		old_mmid = read_c0_memorymapid();
638  		write_c0_memorymapid(cpu_asid(0, vma->vm_mm));
639  		mtc0_tlbw_hazard();
640  		ginvt_va_mmid(page);
641  		sync_ginv();
642  		write_c0_memorymapid(old_mmid);
643  		instruction_hazard();
644  		htw_start();
645  	} else if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
646  		   (current->mm != vma->vm_mm)) {
647  		struct flush_tlb_data fd = {
648  			.vma = vma,
649  			.addr1 = page,
650  		};
651  
652  		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
653  		local_flush_tlb_page(vma, page);
654  	} else {
655  		unsigned int cpu;
656  
657  		for_each_online_cpu(cpu) {
658  			/*
659  			 * flush_cache_page() only does partial flushes, so
660  			 * invalidate ASID without it appearing to
661  			 * has_valid_asid() as if mm has been completely unused
662  			 * by that CPU.
663  			 */
664  			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
665  				set_cpu_context(cpu, vma->vm_mm, 1);
666  		}
667  		local_flush_tlb_page(vma, page);
668  	}
669  	preempt_enable();
670  }
671  
flush_tlb_one_ipi(void * info)672  static void flush_tlb_one_ipi(void *info)
673  {
674  	unsigned long vaddr = (unsigned long) info;
675  
676  	local_flush_tlb_one(vaddr);
677  }
678  
flush_tlb_one(unsigned long vaddr)679  void flush_tlb_one(unsigned long vaddr)
680  {
681  	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
682  }
683  
684  EXPORT_SYMBOL(flush_tlb_page);
685  EXPORT_SYMBOL(flush_tlb_one);
686  
687  #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
688  
tick_broadcast_callee(void * info)689  static void tick_broadcast_callee(void *info)
690  {
691  	tick_receive_broadcast();
692  }
693  
694  static DEFINE_PER_CPU(call_single_data_t, tick_broadcast_csd) =
695  	CSD_INIT(tick_broadcast_callee, NULL);
696  
tick_broadcast(const struct cpumask * mask)697  void tick_broadcast(const struct cpumask *mask)
698  {
699  	call_single_data_t *csd;
700  	int cpu;
701  
702  	for_each_cpu(cpu, mask) {
703  		csd = &per_cpu(tick_broadcast_csd, cpu);
704  		smp_call_function_single_async(cpu, csd);
705  	}
706  }
707  
708  #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */
709